/* * Copyright (c) 2003, 2020, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "classfile/systemDictionary.hpp" #include "classfile/vmSymbols.hpp" #include "memory/allocation.inline.hpp" #include "memory/universe.hpp" #include "oops/oop.inline.hpp" #include "runtime/atomic.hpp" #include "runtime/handles.inline.hpp" #include "runtime/javaCalls.hpp" #include "services/lowMemoryDetector.hpp" #include "services/management.hpp" #include "services/memoryManager.hpp" #include "services/memoryPool.hpp" #include "services/memoryService.hpp" #include "services/gcNotifier.hpp" #include "utilities/dtrace.hpp" MemoryManager::MemoryManager(const char* name) : _num_pools(0), _name(name) {} int MemoryManager::add_pool(MemoryPool* pool) { int index = _num_pools; assert(index < MemoryManager::max_num_pools, "_num_pools exceeds the max"); if (index < MemoryManager::max_num_pools) { _pools[index] = pool; _num_pools++; } pool->add_manager(this); return index; } bool MemoryManager::is_manager(instanceHandle mh) const { return mh() == Atomic::load(&_memory_mgr_obj).resolve(); } MemoryManager* MemoryManager::get_code_cache_memory_manager() { return new MemoryManager("CodeCacheManager"); } MemoryManager* MemoryManager::get_metaspace_memory_manager() { return new MemoryManager("Metaspace Manager"); } instanceOop MemoryManager::get_memory_manager_instance(TRAPS) { // Must do an acquire so as to force ordering of subsequent // loads from anything _memory_mgr_obj points to or implies. oop mgr_obj = Atomic::load_acquire(&_memory_mgr_obj).resolve(); if (mgr_obj == NULL) { // It's ok for more than one thread to execute the code up to the locked region. // Extra manager instances will just be gc'ed. Klass* k = Management::sun_management_ManagementFactoryHelper_klass(CHECK_NULL); Handle mgr_name = java_lang_String::create_from_str(name(), CHECK_NULL); JavaValue result(T_OBJECT); JavaCallArguments args; args.push_oop(mgr_name); // Argument 1 Symbol* method_name = NULL; Symbol* signature = NULL; if (is_gc_memory_manager()) { Klass* extKlass = Management::com_sun_management_internal_GarbageCollectorExtImpl_klass(CHECK_NULL); // com.sun.management.GarbageCollectorMXBean is in jdk.management module which may not be present. if (extKlass != NULL) { k = extKlass; } method_name = vmSymbols::createGarbageCollector_name(); signature = vmSymbols::createGarbageCollector_signature(); args.push_oop(Handle()); // Argument 2 (for future extension) } else { method_name = vmSymbols::createMemoryManager_name(); signature = vmSymbols::createMemoryManager_signature(); } InstanceKlass* ik = InstanceKlass::cast(k); JavaCalls::call_static(&result, ik, method_name, signature, &args, CHECK_NULL); instanceOop m = (instanceOop) result.get_jobject(); instanceHandle mgr(THREAD, m); { // Get lock before setting _memory_mgr_obj // since another thread may have created the instance MutexLocker ml(THREAD, Management_lock); // Check if another thread has created the management object. We reload // _memory_mgr_obj here because some other thread may have initialized // it while we were executing the code before the lock. mgr_obj = Atomic::load(&_memory_mgr_obj).resolve(); if (mgr_obj != NULL) { return (instanceOop)mgr_obj; } // Get the address of the object we created via call_special. mgr_obj = mgr(); // Use store barrier to make sure the memory accesses associated // with creating the management object are visible before publishing // its address. The unlock will publish the store to _memory_mgr_obj // because it does a release first. Atomic::release_store(&_memory_mgr_obj, OopHandle(Universe::vm_global(), mgr_obj)); } } return (instanceOop)mgr_obj; } GCStatInfo::GCStatInfo(int num_pools) { // initialize the arrays for memory usage _before_gc_usage_array = NEW_C_HEAP_ARRAY(MemoryUsage, num_pools, mtInternal); _after_gc_usage_array = NEW_C_HEAP_ARRAY(MemoryUsage, num_pools, mtInternal); _usage_array_size = num_pools; clear(); } GCStatInfo::~GCStatInfo() { FREE_C_HEAP_ARRAY(MemoryUsage*, _before_gc_usage_array); FREE_C_HEAP_ARRAY(MemoryUsage*, _after_gc_usage_array); } void GCStatInfo::set_gc_usage(int pool_index, MemoryUsage usage, bool before_gc) { MemoryUsage* gc_usage_array; if (before_gc) { gc_usage_array = _before_gc_usage_array; } else { gc_usage_array = _after_gc_usage_array; } gc_usage_array[pool_index] = usage; } void GCStatInfo::clear() { _index = 0; _start_time = 0L; _end_time = 0L; for (int i = 0; i < _usage_array_size; i++) ::new (&_before_gc_usage_array[i]) MemoryUsage(); for (int i = 0; i < _usage_array_size; i++) ::new (&_after_gc_usage_array[i]) MemoryUsage(); } GCMemoryManager::GCMemoryManager(const char* name, const char* gc_end_message) : MemoryManager(name), _gc_end_message(gc_end_message) { _num_collections = 0; _last_gc_stat = NULL; _last_gc_lock = new Mutex(Mutex::leaf, "_last_gc_lock", true, Mutex::_safepoint_check_never); _current_gc_stat = NULL; _num_gc_threads = 1; _notification_enabled = false; } GCMemoryManager::~GCMemoryManager() { delete _last_gc_stat; delete _last_gc_lock; delete _current_gc_stat; } void GCMemoryManager::add_pool(MemoryPool* pool) { add_pool(pool, true); } void GCMemoryManager::add_pool(MemoryPool* pool, bool always_affected_by_gc) { int index = MemoryManager::add_pool(pool); _pool_always_affected_by_gc[index] = always_affected_by_gc; } void GCMemoryManager::initialize_gc_stat_info() { assert(MemoryService::num_memory_pools() > 0, "should have one or more memory pools"); _last_gc_stat = new(ResourceObj::C_HEAP, mtGC) GCStatInfo(MemoryService::num_memory_pools()); _current_gc_stat = new(ResourceObj::C_HEAP, mtGC) GCStatInfo(MemoryService::num_memory_pools()); // tracking concurrent collections we need two objects: one to update, and one to // hold the publicly available "last (completed) gc" information. } void GCMemoryManager::gc_begin(bool recordGCBeginTime, bool recordPreGCUsage, bool recordAccumulatedGCTime) { assert(_last_gc_stat != NULL && _current_gc_stat != NULL, "Just checking"); if (recordAccumulatedGCTime) { _accumulated_timer.start(); } // _num_collections now increases in gc_end, to count completed collections if (recordGCBeginTime) { _current_gc_stat->set_index(_num_collections+1); _current_gc_stat->set_start_time(Management::timestamp()); } if (recordPreGCUsage) { // Keep memory usage of all memory pools for (int i = 0; i < MemoryService::num_memory_pools(); i++) { MemoryPool* pool = MemoryService::get_memory_pool(i); MemoryUsage usage = pool->get_memory_usage(); _current_gc_stat->set_before_gc_usage(i, usage); HOTSPOT_MEM_POOL_GC_BEGIN( (char *) name(), strlen(name()), (char *) pool->name(), strlen(pool->name()), usage.init_size(), usage.used(), usage.committed(), usage.max_size()); } } } // A collector MUST, even if it does not complete for some reason, // make a TraceMemoryManagerStats object where countCollection is true, // to ensure the current gc stat is placed in _last_gc_stat. void GCMemoryManager::gc_end(bool recordPostGCUsage, bool recordAccumulatedGCTime, bool recordGCEndTime, bool countCollection, GCCause::Cause cause, bool allMemoryPoolsAffected) { if (recordAccumulatedGCTime) { _accumulated_timer.stop(); } if (recordGCEndTime) { _current_gc_stat->set_end_time(Management::timestamp()); } if (recordPostGCUsage) { int i; // keep the last gc statistics for all memory pools for (i = 0; i < MemoryService::num_memory_pools(); i++) { MemoryPool* pool = MemoryService::get_memory_pool(i); MemoryUsage usage = pool->get_memory_usage(); HOTSPOT_MEM_POOL_GC_END( (char *) name(), strlen(name()), (char *) pool->name(), strlen(pool->name()), usage.init_size(), usage.used(), usage.committed(), usage.max_size()); _current_gc_stat->set_after_gc_usage(i, usage); } // Set last collection usage of the memory pools managed by this collector for (i = 0; i < num_memory_pools(); i++) { MemoryPool* pool = get_memory_pool(i); MemoryUsage usage = pool->get_memory_usage(); if (allMemoryPoolsAffected || pool_always_affected_by_gc(i)) { // Compare with GC usage threshold pool->set_last_collection_usage(usage); LowMemoryDetector::detect_after_gc_memory(pool); } } } if (countCollection) { _num_collections++; // alternately update two objects making one public when complete { MutexLocker ml(_last_gc_lock, Mutex::_no_safepoint_check_flag); GCStatInfo *tmp = _last_gc_stat; _last_gc_stat = _current_gc_stat; _current_gc_stat = tmp; // reset the current stat for diagnosability purposes _current_gc_stat->clear(); } if (is_notification_enabled()) { GCNotifier::pushNotification(this, _gc_end_message, GCCause::to_string(cause)); } } } size_t GCMemoryManager::get_last_gc_stat(GCStatInfo* dest) { MutexLocker ml(_last_gc_lock, Mutex::_no_safepoint_check_flag); if (_last_gc_stat->gc_index() != 0) { dest->set_index(_last_gc_stat->gc_index()); dest->set_start_time(_last_gc_stat->start_time()); dest->set_end_time(_last_gc_stat->end_time()); assert(dest->usage_array_size() == _last_gc_stat->usage_array_size(), "Must have same array size"); size_t len = dest->usage_array_size() * sizeof(MemoryUsage); memcpy(dest->before_gc_usage_array(), _last_gc_stat->before_gc_usage_array(), len); memcpy(dest->after_gc_usage_array(), _last_gc_stat->after_gc_usage_array(), len); } return _last_gc_stat->gc_index(); }