/* * Copyright (c) 2022, 2023, Arm Limited. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * @test * @summary Vectorization test on basic float operations * @library /test/lib / * * @build jdk.test.whitebox.WhiteBox * compiler.vectorization.runner.VectorizationTestRunner * * @run driver jdk.test.lib.helpers.ClassFileInstaller jdk.test.whitebox.WhiteBox * @run main/othervm -Xbootclasspath/a:. * -XX:+UnlockDiagnosticVMOptions * -XX:+WhiteBoxAPI * compiler.vectorization.runner.BasicFloatOpTest * * @requires (os.simpleArch == "x64") | (os.simpleArch == "aarch64") * @requires vm.compiler2.enabled & vm.flagless */ package compiler.vectorization.runner; import compiler.lib.ir_framework.*; public class BasicFloatOpTest extends VectorizationTestRunner { private static final int SIZE = 543; private float[] a; private float[] b; private float[] c; public BasicFloatOpTest() { a = new float[SIZE]; b = new float[SIZE]; c = new float[SIZE]; for (int i = 0; i < SIZE; i++) { a[i] = 850.0f * i + 22222.22f; b[i] = -12345.678f; c[i] = -1.23456e7f; } } // ---------------- Arithmetic ---------------- @Test @IR(applyIfCPUFeatureOr = {"asimd", "true", "sse", "true"}, counts = {IRNode.NEG_V, ">0"}) public float[] vectorNeg() { float[] res = new float[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = -a[i]; } return res; } @Test @IR(applyIfCPUFeatureOr = {"asimd", "true", "sse", "true"}, counts = {IRNode.ABS_V, ">0"}) public float[] vectorAbs() { float[] res = new float[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = Math.abs(a[i]); } return res; } @Test @IR(applyIfCPUFeatureOr = {"asimd", "true", "avx", "true"}, counts = {IRNode.SQRT_V, ">0"}) public float[] vectorSqrt() { float[] res = new float[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = (float) Math.sqrt(a[i]); } return res; } @Test @IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true"}, counts = {IRNode.ADD_V, ">0"}) public float[] vectorAdd() { float[] res = new float[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = a[i] + b[i]; } return res; } @Test @IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true"}, counts = {IRNode.SUB_V, ">0"}) public float[] vectorSub() { float[] res = new float[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = a[i] - b[i]; } return res; } @Test @IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true"}, counts = {IRNode.MUL_V, ">0"}) public float[] vectorMul() { float[] res = new float[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = a[i] * b[i]; } return res; } @Test @IR(applyIfCPUFeatureOr = {"asimd", "true", "sse2", "true"}, counts = {IRNode.DIV_V, ">0"}) public float[] vectorDiv() { float[] res = new float[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = a[i] / b[i]; } return res; } @Test @IR(applyIfCPUFeatureOr = {"asimd", "true", "avx", "true"}, counts = {IRNode.MAX_V, ">0"}) public float[] vectorMax() { float[] res = new float[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = Math.max(a[i], b[i]); } return res; } @Test @IR(applyIfCPUFeatureOr = {"asimd", "true", "avx", "true"}, counts = {IRNode.MIN_V, ">0"}) public float[] vectorMin() { float[] res = new float[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = Math.min(a[i], b[i]); } return res; } @Test @IR(applyIfCPUFeature = {"asimd", "true"}, counts = {IRNode.FMA_V, ">0"}) @IR(applyIfCPUFeatureAnd = {"fma", "true", "avx", "true"}, counts = {IRNode.FMA_V, ">0"}) public float[] vectorMulAdd() { float[] res = new float[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = Math.fma(a[i], b[i], c[i]); } return res; } @Test @IR(applyIfCPUFeature = {"asimd", "true"}, counts = {IRNode.FMA_V, ">0"}) @IR(applyIfCPUFeatureAnd = {"fma", "true", "avx", "true"}, counts = {IRNode.FMA_V, ">0"}) public float[] vectorMulSub1() { float[] res = new float[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = Math.fma(-a[i], b[i], c[i]); } return res; } @Test @IR(applyIfCPUFeature = {"asimd", "true"}, counts = {IRNode.FMA_V, ">0"}) @IR(applyIfCPUFeatureAnd = {"fma", "true", "avx", "true"}, counts = {IRNode.FMA_V, ">0"}) public float[] vectorMulSub2() { float[] res = new float[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = Math.fma(a[i], -b[i], c[i]); } return res; } @Test @IR(applyIfCPUFeature = {"asimd", "true"}, counts = {IRNode.FMA_V, ">0"}) @IR(applyIfCPUFeatureAnd = {"fma", "true", "avx", "true"}, counts = {IRNode.FMA_V, ">0"}) public float[] vectorNegateMulAdd1() { float[] res = new float[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = Math.fma(-a[i], b[i], -c[i]); } return res; } @Test @IR(applyIfCPUFeature = {"asimd", "true"}, counts = {IRNode.FMA_V, ">0"}) @IR(applyIfCPUFeatureAnd = {"fma", "true", "avx", "true"}, counts = {IRNode.FMA_V, ">0"}) public float[] vectorNegateMulAdd2() { float[] res = new float[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = Math.fma(a[i], -b[i], -c[i]); } return res; } @Test @IR(applyIfCPUFeature = {"asimd", "true"}, counts = {IRNode.FMA_V, ">0"}) @IR(applyIfCPUFeatureAnd = {"fma", "true", "avx", "true"}, counts = {IRNode.FMA_V, ">0"}) public float[] vectorNegateMulSub() { float[] res = new float[SIZE]; for (int i = 0; i < SIZE; i++) { res[i] = Math.fma(a[i], b[i], -c[i]); } return res; } // ---------------- Reduction ---------------- @Test public float reductionAdd() { float res = 0.0f; for (int i = 0; i < SIZE; i++) { res += a[i]; } return res; } @Test public float reductionMax() { float res = Float.MIN_VALUE; for (int i = 0; i < SIZE; i++) { res = Math.max(res, a[i]); } return res; } @Test public float reductionMin() { float res = Float.MAX_VALUE; for (int i = 0; i < SIZE; i++) { res = Math.min(res, a[i]); } return res; } }