/* * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_OOPS_OOP_INLINE_HPP #define SHARE_VM_OOPS_OOP_INLINE_HPP #include "gc/shared/ageTable.hpp" #include "gc/shared/barrierSet.inline.hpp" #include "gc/shared/cardTableModRefBS.hpp" #include "gc/shared/collectedHeap.inline.hpp" #include "gc/shared/genCollectedHeap.hpp" #include "gc/shared/generation.hpp" #include "oops/arrayKlass.hpp" #include "oops/arrayOop.hpp" #include "oops/klass.inline.hpp" #include "oops/markOop.inline.hpp" #include "oops/oop.hpp" #include "runtime/atomic.hpp" #include "runtime/orderAccess.inline.hpp" #include "runtime/os.hpp" #include "utilities/align.hpp" #include "utilities/macros.hpp" inline void update_barrier_set(void* p, oop v, bool release = false) { assert(oopDesc::bs() != NULL, "Uninitialized bs in oop!"); oopDesc::bs()->write_ref_field(p, v, release); } template inline void update_barrier_set_pre(T* p, oop v) { oopDesc::bs()->write_ref_field_pre(p, v); } template void oop_store(T* p, oop v) { if (always_do_update_barrier) { oop_store((volatile T*)p, v); } else { update_barrier_set_pre(p, v); oopDesc::encode_store_heap_oop(p, v); // always_do_update_barrier == false => // Either we are at a safepoint (in GC) or CMS is not used. In both // cases it's unnecessary to mark the card as dirty with release sematics. update_barrier_set((void*)p, v, false /* release */); // cast away type } } template void oop_store(volatile T* p, oop v) { update_barrier_set_pre((T*)p, v); // cast away volatile // Used by release_obj_field_put, so use release_store_ptr. oopDesc::release_encode_store_heap_oop(p, v); // When using CMS we must mark the card corresponding to p as dirty // with release sematics to prevent that CMS sees the dirty card but // not the new value v at p due to reordering of the two // stores. Note that CMS has a concurrent precleaning phase, where // it reads the card table while the Java threads are running. update_barrier_set((void*)p, v, true /* release */); // cast away type } // Should replace *addr = oop assignments where addr type depends on UseCompressedOops // (without having to remember the function name this calls). inline void oop_store_raw(HeapWord* addr, oop value) { if (UseCompressedOops) { oopDesc::encode_store_heap_oop((narrowOop*)addr, value); } else { oopDesc::encode_store_heap_oop((oop*)addr, value); } } // Implementation of all inlined member functions defined in oop.hpp // We need a separate file to avoid circular references void oopDesc::release_set_mark(markOop m) { OrderAccess::release_store_ptr(&_mark, m); } markOop oopDesc::cas_set_mark(markOop new_mark, markOop old_mark) { return Atomic::cmpxchg(new_mark, &_mark, old_mark); } void oopDesc::init_mark() { set_mark(markOopDesc::prototype_for_object(this)); } Klass* oopDesc::klass() const { if (UseCompressedClassPointers) { return Klass::decode_klass_not_null(_metadata._compressed_klass); } else { return _metadata._klass; } } Klass* oopDesc::klass_or_null() const volatile { if (UseCompressedClassPointers) { return Klass::decode_klass(_metadata._compressed_klass); } else { return _metadata._klass; } } Klass* oopDesc::klass_or_null_acquire() const volatile { if (UseCompressedClassPointers) { // Workaround for non-const load_acquire parameter. const volatile narrowKlass* addr = &_metadata._compressed_klass; volatile narrowKlass* xaddr = const_cast(addr); return Klass::decode_klass(OrderAccess::load_acquire(xaddr)); } else { return (Klass*)OrderAccess::load_ptr_acquire(&_metadata._klass); } } Klass** oopDesc::klass_addr() { // Only used internally and with CMS and will not work with // UseCompressedOops assert(!UseCompressedClassPointers, "only supported with uncompressed klass pointers"); return (Klass**) &_metadata._klass; } narrowKlass* oopDesc::compressed_klass_addr() { assert(UseCompressedClassPointers, "only called by compressed klass pointers"); return &_metadata._compressed_klass; } #define CHECK_SET_KLASS(k) \ do { \ assert(Universe::is_bootstrapping() || k != NULL, "NULL Klass"); \ assert(Universe::is_bootstrapping() || k->is_klass(), "not a Klass"); \ } while (0) void oopDesc::set_klass(Klass* k) { CHECK_SET_KLASS(k); if (UseCompressedClassPointers) { *compressed_klass_addr() = Klass::encode_klass_not_null(k); } else { *klass_addr() = k; } } void oopDesc::release_set_klass(Klass* k) { CHECK_SET_KLASS(k); if (UseCompressedClassPointers) { OrderAccess::release_store(compressed_klass_addr(), Klass::encode_klass_not_null(k)); } else { OrderAccess::release_store_ptr(klass_addr(), k); } } #undef CHECK_SET_KLASS int oopDesc::klass_gap() const { return *(int*)(((intptr_t)this) + klass_gap_offset_in_bytes()); } void oopDesc::set_klass_gap(int v) { if (UseCompressedClassPointers) { *(int*)(((intptr_t)this) + klass_gap_offset_in_bytes()) = v; } } void oopDesc::set_klass_to_list_ptr(oop k) { // This is only to be used during GC, for from-space objects, so no // barrier is needed. if (UseCompressedClassPointers) { _metadata._compressed_klass = (narrowKlass)encode_heap_oop(k); // may be null (parnew overflow handling) } else { _metadata._klass = (Klass*)(address)k; } } oop oopDesc::list_ptr_from_klass() { // This is only to be used during GC, for from-space objects. if (UseCompressedClassPointers) { return decode_heap_oop((narrowOop)_metadata._compressed_klass); } else { // Special case for GC return (oop)(address)_metadata._klass; } } bool oopDesc::is_a(Klass* k) const { return klass()->is_subtype_of(k); } int oopDesc::size() { return size_given_klass(klass()); } int oopDesc::size_given_klass(Klass* klass) { int lh = klass->layout_helper(); int s; // lh is now a value computed at class initialization that may hint // at the size. For instances, this is positive and equal to the // size. For arrays, this is negative and provides log2 of the // array element size. For other oops, it is zero and thus requires // a virtual call. // // We go to all this trouble because the size computation is at the // heart of phase 2 of mark-compaction, and called for every object, // alive or dead. So the speed here is equal in importance to the // speed of allocation. if (lh > Klass::_lh_neutral_value) { if (!Klass::layout_helper_needs_slow_path(lh)) { s = lh >> LogHeapWordSize; // deliver size scaled by wordSize } else { s = klass->oop_size(this); } } else if (lh <= Klass::_lh_neutral_value) { // The most common case is instances; fall through if so. if (lh < Klass::_lh_neutral_value) { // Second most common case is arrays. We have to fetch the // length of the array, shift (multiply) it appropriately, // up to wordSize, add the header, and align to object size. size_t size_in_bytes; size_t array_length = (size_t) ((arrayOop)this)->length(); size_in_bytes = array_length << Klass::layout_helper_log2_element_size(lh); size_in_bytes += Klass::layout_helper_header_size(lh); // This code could be simplified, but by keeping array_header_in_bytes // in units of bytes and doing it this way we can round up just once, // skipping the intermediate round to HeapWordSize. s = (int)(align_up(size_in_bytes, MinObjAlignmentInBytes) / HeapWordSize); // ParNew (used by CMS), UseParallelGC and UseG1GC can change the length field // of an "old copy" of an object array in the young gen so it indicates // the grey portion of an already copied array. This will cause the first // disjunct below to fail if the two comparands are computed across such // a concurrent change. // ParNew also runs with promotion labs (which look like int // filler arrays) which are subject to changing their declared size // when finally retiring a PLAB; this also can cause the first disjunct // to fail for another worker thread that is concurrently walking the block // offset table. Both these invariant failures are benign for their // current uses; we relax the assertion checking to cover these two cases below: // is_objArray() && is_forwarded() // covers first scenario above // || is_typeArray() // covers second scenario above // If and when UseParallelGC uses the same obj array oop stealing/chunking // technique, we will need to suitably modify the assertion. assert((s == klass->oop_size(this)) || (Universe::heap()->is_gc_active() && ((is_typeArray() && UseConcMarkSweepGC) || (is_objArray() && is_forwarded() && (UseConcMarkSweepGC || UseParallelGC || UseG1GC)))), "wrong array object size"); } else { // Must be zero, so bite the bullet and take the virtual call. s = klass->oop_size(this); } } assert(s > 0, "Oop size must be greater than zero, not %d", s); assert(is_object_aligned(s), "Oop size is not properly aligned: %d", s); return s; } bool oopDesc::is_instance() const { return klass()->is_instance_klass(); } bool oopDesc::is_array() const { return klass()->is_array_klass(); } bool oopDesc::is_objArray() const { return klass()->is_objArray_klass(); } bool oopDesc::is_typeArray() const { return klass()->is_typeArray_klass(); } void* oopDesc::field_base(int offset) const { return (void*)&((char*)this)[offset]; } jbyte* oopDesc::byte_field_addr(int offset) const { return (jbyte*) field_base(offset); } jchar* oopDesc::char_field_addr(int offset) const { return (jchar*) field_base(offset); } jboolean* oopDesc::bool_field_addr(int offset) const { return (jboolean*) field_base(offset); } jint* oopDesc::int_field_addr(int offset) const { return (jint*) field_base(offset); } jshort* oopDesc::short_field_addr(int offset) const { return (jshort*) field_base(offset); } jlong* oopDesc::long_field_addr(int offset) const { return (jlong*) field_base(offset); } jfloat* oopDesc::float_field_addr(int offset) const { return (jfloat*) field_base(offset); } jdouble* oopDesc::double_field_addr(int offset) const { return (jdouble*) field_base(offset); } Metadata** oopDesc::metadata_field_addr(int offset) const { return (Metadata**)field_base(offset); } template T* oopDesc::obj_field_addr(int offset) const { return (T*) field_base(offset); } address* oopDesc::address_field_addr(int offset) const { return (address*) field_base(offset); } // Functions for getting and setting oops within instance objects. // If the oops are compressed, the type passed to these overloaded functions // is narrowOop. All functions are overloaded so they can be called by // template functions without conditionals (the compiler instantiates via // the right type and inlines the appopriate code). // Algorithm for encoding and decoding oops from 64 bit pointers to 32 bit // offset from the heap base. Saving the check for null can save instructions // in inner GC loops so these are separated. inline bool check_obj_alignment(oop obj) { return (cast_from_oop(obj) & MinObjAlignmentInBytesMask) == 0; } oop oopDesc::decode_heap_oop_not_null(narrowOop v) { assert(!is_null(v), "narrow oop value can never be zero"); address base = Universe::narrow_oop_base(); int shift = Universe::narrow_oop_shift(); oop result = (oop)(void*)((uintptr_t)base + ((uintptr_t)v << shift)); assert(check_obj_alignment(result), "address not aligned: " INTPTR_FORMAT, p2i((void*) result)); return result; } oop oopDesc::decode_heap_oop(narrowOop v) { return is_null(v) ? (oop)NULL : decode_heap_oop_not_null(v); } narrowOop oopDesc::encode_heap_oop_not_null(oop v) { assert(!is_null(v), "oop value can never be zero"); assert(check_obj_alignment(v), "Address not aligned"); assert(Universe::heap()->is_in_reserved(v), "Address not in heap"); address base = Universe::narrow_oop_base(); int shift = Universe::narrow_oop_shift(); uint64_t pd = (uint64_t)(pointer_delta((void*)v, (void*)base, 1)); assert(OopEncodingHeapMax > pd, "change encoding max if new encoding"); uint64_t result = pd >> shift; assert((result & CONST64(0xffffffff00000000)) == 0, "narrow oop overflow"); assert(decode_heap_oop(result) == v, "reversibility"); return (narrowOop)result; } narrowOop oopDesc::encode_heap_oop(oop v) { return (is_null(v)) ? (narrowOop)0 : encode_heap_oop_not_null(v); } // Load and decode an oop out of the Java heap into a wide oop. oop oopDesc::load_decode_heap_oop_not_null(narrowOop* p) { return decode_heap_oop_not_null(*p); } // Load and decode an oop out of the heap accepting null oop oopDesc::load_decode_heap_oop(narrowOop* p) { return decode_heap_oop(*p); } // Encode and store a heap oop. void oopDesc::encode_store_heap_oop_not_null(narrowOop* p, oop v) { *p = encode_heap_oop_not_null(v); } // Encode and store a heap oop allowing for null. void oopDesc::encode_store_heap_oop(narrowOop* p, oop v) { *p = encode_heap_oop(v); } // Store heap oop as is for volatile fields. void oopDesc::release_store_heap_oop(volatile oop* p, oop v) { OrderAccess::release_store_ptr(p, v); } void oopDesc::release_store_heap_oop(volatile narrowOop* p, narrowOop v) { OrderAccess::release_store(p, v); } void oopDesc::release_encode_store_heap_oop_not_null(volatile narrowOop* p, oop v) { // heap oop is not pointer sized. OrderAccess::release_store(p, encode_heap_oop_not_null(v)); } void oopDesc::release_encode_store_heap_oop_not_null(volatile oop* p, oop v) { OrderAccess::release_store_ptr(p, v); } void oopDesc::release_encode_store_heap_oop(volatile oop* p, oop v) { OrderAccess::release_store_ptr(p, v); } void oopDesc::release_encode_store_heap_oop(volatile narrowOop* p, oop v) { OrderAccess::release_store(p, encode_heap_oop(v)); } // These functions are only used to exchange oop fields in instances, // not headers. oop oopDesc::atomic_exchange_oop(oop exchange_value, volatile HeapWord *dest) { if (UseCompressedOops) { // encode exchange value from oop to T narrowOop val = encode_heap_oop(exchange_value); narrowOop old = (narrowOop)Atomic::xchg(val, (narrowOop*)dest); // decode old from T to oop return decode_heap_oop(old); } else { return (oop)Atomic::xchg_ptr(exchange_value, (oop*)dest); } } oop oopDesc::atomic_compare_exchange_oop(oop exchange_value, volatile HeapWord *dest, oop compare_value, bool prebarrier) { if (UseCompressedOops) { if (prebarrier) { update_barrier_set_pre((narrowOop*)dest, exchange_value); } // encode exchange and compare value from oop to T narrowOop val = encode_heap_oop(exchange_value); narrowOop cmp = encode_heap_oop(compare_value); narrowOop old = Atomic::cmpxchg(val, (narrowOop*)dest, cmp); // decode old from T to oop return decode_heap_oop(old); } else { if (prebarrier) { update_barrier_set_pre((oop*)dest, exchange_value); } return Atomic::cmpxchg(exchange_value, (oop*)dest, compare_value); } } // In order to put or get a field out of an instance, must first check // if the field has been compressed and uncompress it. oop oopDesc::obj_field(int offset) const { return UseCompressedOops ? load_decode_heap_oop(obj_field_addr(offset)) : load_decode_heap_oop(obj_field_addr(offset)); } void oopDesc::obj_field_put(int offset, oop value) { UseCompressedOops ? oop_store(obj_field_addr(offset), value) : oop_store(obj_field_addr(offset), value); } void oopDesc::obj_field_put_raw(int offset, oop value) { UseCompressedOops ? encode_store_heap_oop(obj_field_addr(offset), value) : encode_store_heap_oop(obj_field_addr(offset), value); } void oopDesc::obj_field_put_volatile(int offset, oop value) { OrderAccess::release(); obj_field_put(offset, value); OrderAccess::fence(); } Metadata* oopDesc::metadata_field(int offset) const { return *metadata_field_addr(offset); } void oopDesc::metadata_field_put(int offset, Metadata* value) { *metadata_field_addr(offset) = value; } Metadata* oopDesc::metadata_field_acquire(int offset) const { return (Metadata*)OrderAccess::load_ptr_acquire(metadata_field_addr(offset)); } void oopDesc::release_metadata_field_put(int offset, Metadata* value) { OrderAccess::release_store_ptr(metadata_field_addr(offset), value); } jbyte oopDesc::byte_field(int offset) const { return (jbyte) *byte_field_addr(offset); } void oopDesc::byte_field_put(int offset, jbyte contents) { *byte_field_addr(offset) = (jint) contents; } jchar oopDesc::char_field(int offset) const { return (jchar) *char_field_addr(offset); } void oopDesc::char_field_put(int offset, jchar contents) { *char_field_addr(offset) = (jint) contents; } jboolean oopDesc::bool_field(int offset) const { return (jboolean) *bool_field_addr(offset); } void oopDesc::bool_field_put(int offset, jboolean contents) { *bool_field_addr(offset) = (((jint) contents) & 1); } jint oopDesc::int_field(int offset) const { return *int_field_addr(offset); } void oopDesc::int_field_put(int offset, jint contents) { *int_field_addr(offset) = contents; } jshort oopDesc::short_field(int offset) const { return (jshort) *short_field_addr(offset); } void oopDesc::short_field_put(int offset, jshort contents) { *short_field_addr(offset) = (jint) contents;} jlong oopDesc::long_field(int offset) const { return *long_field_addr(offset); } void oopDesc::long_field_put(int offset, jlong contents) { *long_field_addr(offset) = contents; } jfloat oopDesc::float_field(int offset) const { return *float_field_addr(offset); } void oopDesc::float_field_put(int offset, jfloat contents) { *float_field_addr(offset) = contents; } jdouble oopDesc::double_field(int offset) const { return *double_field_addr(offset); } void oopDesc::double_field_put(int offset, jdouble contents) { *double_field_addr(offset) = contents; } address oopDesc::address_field(int offset) const { return *address_field_addr(offset); } void oopDesc::address_field_put(int offset, address contents) { *address_field_addr(offset) = contents; } oop oopDesc::obj_field_acquire(int offset) const { return UseCompressedOops ? decode_heap_oop((narrowOop) OrderAccess::load_acquire(obj_field_addr(offset))) : decode_heap_oop((oop) OrderAccess::load_ptr_acquire(obj_field_addr(offset))); } void oopDesc::release_obj_field_put(int offset, oop value) { UseCompressedOops ? oop_store((volatile narrowOop*)obj_field_addr(offset), value) : oop_store((volatile oop*) obj_field_addr(offset), value); } jbyte oopDesc::byte_field_acquire(int offset) const { return OrderAccess::load_acquire(byte_field_addr(offset)); } void oopDesc::release_byte_field_put(int offset, jbyte contents) { OrderAccess::release_store(byte_field_addr(offset), contents); } jchar oopDesc::char_field_acquire(int offset) const { return OrderAccess::load_acquire(char_field_addr(offset)); } void oopDesc::release_char_field_put(int offset, jchar contents) { OrderAccess::release_store(char_field_addr(offset), contents); } jboolean oopDesc::bool_field_acquire(int offset) const { return OrderAccess::load_acquire(bool_field_addr(offset)); } void oopDesc::release_bool_field_put(int offset, jboolean contents) { OrderAccess::release_store(bool_field_addr(offset), (contents & 1)); } jint oopDesc::int_field_acquire(int offset) const { return OrderAccess::load_acquire(int_field_addr(offset)); } void oopDesc::release_int_field_put(int offset, jint contents) { OrderAccess::release_store(int_field_addr(offset), contents); } jshort oopDesc::short_field_acquire(int offset) const { return (jshort)OrderAccess::load_acquire(short_field_addr(offset)); } void oopDesc::release_short_field_put(int offset, jshort contents) { OrderAccess::release_store(short_field_addr(offset), contents); } jlong oopDesc::long_field_acquire(int offset) const { return OrderAccess::load_acquire(long_field_addr(offset)); } void oopDesc::release_long_field_put(int offset, jlong contents) { OrderAccess::release_store(long_field_addr(offset), contents); } jfloat oopDesc::float_field_acquire(int offset) const { return OrderAccess::load_acquire(float_field_addr(offset)); } void oopDesc::release_float_field_put(int offset, jfloat contents) { OrderAccess::release_store(float_field_addr(offset), contents); } jdouble oopDesc::double_field_acquire(int offset) const { return OrderAccess::load_acquire(double_field_addr(offset)); } void oopDesc::release_double_field_put(int offset, jdouble contents) { OrderAccess::release_store(double_field_addr(offset), contents); } address oopDesc::address_field_acquire(int offset) const { return (address) OrderAccess::load_ptr_acquire(address_field_addr(offset)); } void oopDesc::release_address_field_put(int offset, address contents) { OrderAccess::release_store_ptr(address_field_addr(offset), contents); } bool oopDesc::is_locked() const { return mark()->is_locked(); } bool oopDesc::is_unlocked() const { return mark()->is_unlocked(); } bool oopDesc::has_bias_pattern() const { return mark()->has_bias_pattern(); } // Used only for markSweep, scavenging bool oopDesc::is_gc_marked() const { return mark()->is_marked(); } bool oopDesc::is_scavengable() const { return Universe::heap()->is_scavengable(this); } // Used by scavengers bool oopDesc::is_forwarded() const { // The extra heap check is needed since the obj might be locked, in which case the // mark would point to a stack location and have the sentinel bit cleared return mark()->is_marked(); } // Used by scavengers void oopDesc::forward_to(oop p) { assert(check_obj_alignment(p), "forwarding to something not aligned"); assert(Universe::heap()->is_in_reserved(p), "forwarding to something not in heap"); assert(!is_archive_object(oop(this)) && !is_archive_object(p), "forwarding archive object"); markOop m = markOopDesc::encode_pointer_as_mark(p); assert(m->decode_pointer() == p, "encoding must be reversable"); set_mark(m); } // Used by parallel scavengers bool oopDesc::cas_forward_to(oop p, markOop compare) { assert(check_obj_alignment(p), "forwarding to something not aligned"); assert(Universe::heap()->is_in_reserved(p), "forwarding to something not in heap"); markOop m = markOopDesc::encode_pointer_as_mark(p); assert(m->decode_pointer() == p, "encoding must be reversable"); return cas_set_mark(m, compare) == compare; } #if INCLUDE_ALL_GCS oop oopDesc::forward_to_atomic(oop p) { markOop oldMark = mark(); markOop forwardPtrMark = markOopDesc::encode_pointer_as_mark(p); markOop curMark; assert(forwardPtrMark->decode_pointer() == p, "encoding must be reversable"); assert(sizeof(markOop) == sizeof(intptr_t), "CAS below requires this."); while (!oldMark->is_marked()) { curMark = Atomic::cmpxchg(forwardPtrMark, &_mark, oldMark); assert(is_forwarded(), "object should have been forwarded"); if (curMark == oldMark) { return NULL; } // If the CAS was unsuccessful then curMark->is_marked() // should return true as another thread has CAS'd in another // forwarding pointer. oldMark = curMark; } return forwardee(); } #endif // Note that the forwardee is not the same thing as the displaced_mark. // The forwardee is used when copying during scavenge and mark-sweep. // It does need to clear the low two locking- and GC-related bits. oop oopDesc::forwardee() const { return (oop) mark()->decode_pointer(); } // The following method needs to be MT safe. uint oopDesc::age() const { assert(!is_forwarded(), "Attempt to read age from forwarded mark"); if (has_displaced_mark()) { return displaced_mark()->age(); } else { return mark()->age(); } } void oopDesc::incr_age() { assert(!is_forwarded(), "Attempt to increment age of forwarded mark"); if (has_displaced_mark()) { set_displaced_mark(displaced_mark()->incr_age()); } else { set_mark(mark()->incr_age()); } } #if INCLUDE_ALL_GCS void oopDesc::pc_follow_contents(ParCompactionManager* cm) { klass()->oop_pc_follow_contents(this, cm); } void oopDesc::pc_update_contents(ParCompactionManager* cm) { Klass* k = klass(); if (!k->is_typeArray_klass()) { // It might contain oops beyond the header, so take the virtual call. k->oop_pc_update_pointers(this, cm); } // Else skip it. The TypeArrayKlass in the header never needs scavenging. } void oopDesc::ps_push_contents(PSPromotionManager* pm) { Klass* k = klass(); if (!k->is_typeArray_klass()) { // It might contain oops beyond the header, so take the virtual call. k->oop_ps_push_contents(this, pm); } // Else skip it. The TypeArrayKlass in the header never needs scavenging. } #endif // INCLUDE_ALL_GCS #define OOP_ITERATE_DEFN(OopClosureType, nv_suffix) \ \ void oopDesc::oop_iterate(OopClosureType* blk) { \ klass()->oop_oop_iterate##nv_suffix(this, blk); \ } \ \ void oopDesc::oop_iterate(OopClosureType* blk, MemRegion mr) { \ klass()->oop_oop_iterate_bounded##nv_suffix(this, blk, mr); \ } #define OOP_ITERATE_SIZE_DEFN(OopClosureType, nv_suffix) \ \ int oopDesc::oop_iterate_size(OopClosureType* blk) { \ Klass* k = klass(); \ int size = size_given_klass(k); \ k->oop_oop_iterate##nv_suffix(this, blk); \ return size; \ } \ \ int oopDesc::oop_iterate_size(OopClosureType* blk, MemRegion mr) { \ Klass* k = klass(); \ int size = size_given_klass(k); \ k->oop_oop_iterate_bounded##nv_suffix(this, blk, mr); \ return size; \ } int oopDesc::oop_iterate_no_header(OopClosure* blk) { // The NoHeaderExtendedOopClosure wraps the OopClosure and proxies all // the do_oop calls, but turns off all other features in ExtendedOopClosure. NoHeaderExtendedOopClosure cl(blk); return oop_iterate_size(&cl); } int oopDesc::oop_iterate_no_header(OopClosure* blk, MemRegion mr) { NoHeaderExtendedOopClosure cl(blk); return oop_iterate_size(&cl, mr); } #if INCLUDE_ALL_GCS #define OOP_ITERATE_BACKWARDS_DEFN(OopClosureType, nv_suffix) \ \ inline void oopDesc::oop_iterate_backwards(OopClosureType* blk) { \ klass()->oop_oop_iterate_backwards##nv_suffix(this, blk); \ } #else #define OOP_ITERATE_BACKWARDS_DEFN(OopClosureType, nv_suffix) #endif // INCLUDE_ALL_GCS #define ALL_OOPDESC_OOP_ITERATE(OopClosureType, nv_suffix) \ OOP_ITERATE_DEFN(OopClosureType, nv_suffix) \ OOP_ITERATE_SIZE_DEFN(OopClosureType, nv_suffix) \ OOP_ITERATE_BACKWARDS_DEFN(OopClosureType, nv_suffix) ALL_OOP_OOP_ITERATE_CLOSURES_1(ALL_OOPDESC_OOP_ITERATE) ALL_OOP_OOP_ITERATE_CLOSURES_2(ALL_OOPDESC_OOP_ITERATE) intptr_t oopDesc::identity_hash() { // Fast case; if the object is unlocked and the hash value is set, no locking is needed // Note: The mark must be read into local variable to avoid concurrent updates. markOop mrk = mark(); if (mrk->is_unlocked() && !mrk->has_no_hash()) { return mrk->hash(); } else if (mrk->is_marked()) { return mrk->hash(); } else { return slow_identity_hash(); } } bool oopDesc::has_displaced_mark() const { return mark()->has_displaced_mark_helper(); } markOop oopDesc::displaced_mark() const { return mark()->displaced_mark_helper(); } void oopDesc::set_displaced_mark(markOop m) { mark()->set_displaced_mark_helper(m); } #endif // SHARE_VM_OOPS_OOP_INLINE_HPP