/* * Copyright (c) 2003, 2015, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * @test * @bug 4851776 4907265 6177836 6876282 8066842 * @summary Some tests for the divide methods. * @author Joseph D. Darcy */ import java.math.*; import static java.math.BigDecimal.*; public class DivideTests { // Preliminary exact divide method; could be used for comparison // purposes. BigDecimal anotherDivide(BigDecimal dividend, BigDecimal divisor) { /* * Handle zero cases first. */ if (divisor.signum() == 0) { // x/0 if (dividend.signum() == 0) // 0/0 throw new ArithmeticException("Division undefined"); // NaN throw new ArithmeticException("Division by zero"); } if (dividend.signum() == 0) // 0/y return BigDecimal.ZERO; else { /* * Determine if there is a result with a terminating * decimal expansion. Putting aside overflow and * underflow considerations, the existance of an exact * result only depends on the ratio of the intVal's of the * dividend (i.e. this) and and divisor since the scales * of the argument just affect where the decimal point * lies. * * For the ratio of (a = this.intVal) and (b = * divisor.intVal) to have a finite decimal expansion, * once a/b is put in lowest terms, b must be equal to * (2^i)*(5^j) for some integer i,j >= 0. Therefore, we * first compute to see if b_prime =(b/gcd(a,b)) is equal * to (2^i)*(5^j). */ BigInteger TWO = BigInteger.valueOf(2); BigInteger FIVE = BigInteger.valueOf(5); BigInteger TEN = BigInteger.valueOf(10); BigInteger divisorIntvalue = divisor.scaleByPowerOfTen(divisor.scale()).toBigInteger().abs(); BigInteger dividendIntvalue = dividend.scaleByPowerOfTen(dividend.scale()).toBigInteger().abs(); BigInteger b_prime = divisorIntvalue.divide(dividendIntvalue.gcd(divisorIntvalue)); boolean goodDivisor = false; int i=0, j=0; badDivisor: { while(! b_prime.equals(BigInteger.ONE) ) { int b_primeModTen = b_prime.mod(TEN).intValue() ; switch(b_primeModTen) { case 0: // b_prime divisible by 10=2*5, increment i and j i++; j++; b_prime = b_prime.divide(TEN); break; case 5: // b_prime divisible by 5, increment j j++; b_prime = b_prime.divide(FIVE); break; case 2: case 4: case 6: case 8: // b_prime divisible by 2, increment i i++; b_prime = b_prime.divide(TWO); break; default: // hit something we shouldn't have b_prime = BigInteger.ONE; // terminate loop break badDivisor; } } goodDivisor = true; } if( ! goodDivisor ) { throw new ArithmeticException("Non terminating decimal expansion"); } else { // What is a rule for determining how many digits are // needed? Once that is determined, cons up a new // MathContext object and pass it on to the divide(bd, // mc) method; precision == ?, roundingMode is unnecessary. // Are we sure this is the right scale to use? Should // also determine a precision-based method. MathContext mc = new MathContext(dividend.precision() + (int)Math.ceil( 10.0*divisor.precision()/3.0), RoundingMode.UNNECESSARY); // Should do some more work here to rescale, etc. return dividend.divide(divisor, mc); } } } public static int powersOf2and5() { int failures = 0; for(int i = 0; i < 6; i++) { int powerOf2 = (int)StrictMath.pow(2.0, i); for(int j = 0; j < 6; j++) { int powerOf5 = (int)StrictMath.pow(5.0, j); int product; BigDecimal bd; try { bd = BigDecimal.ONE.divide(new BigDecimal(product=powerOf2*powerOf5)); } catch (ArithmeticException e) { failures++; System.err.println((new BigDecimal(powerOf2)).toString() + " / " + (new BigDecimal(powerOf5)).toString() + " threw an exception."); e.printStackTrace(); } try { bd = new BigDecimal(powerOf2).divide(new BigDecimal(powerOf5)); } catch (ArithmeticException e) { failures++; System.err.println((new BigDecimal(powerOf2)).toString() + " / " + (new BigDecimal(powerOf5)).toString() + " threw an exception."); e.printStackTrace(); } try { bd = new BigDecimal(powerOf5).divide(new BigDecimal(powerOf2)); } catch (ArithmeticException e) { failures++; System.err.println((new BigDecimal(powerOf5)).toString() + " / " + (new BigDecimal(powerOf2)).toString() + " threw an exception."); e.printStackTrace(); } } } return failures; } public static int nonTerminating() { int failures = 0; int[] primes = {1, 3, 7, 13, 17}; // For each pair of prime products, verify the ratio of // non-equal products has a non-terminating expansion. for(int i = 0; i < primes.length; i++) { for(int j = i+1; j < primes.length; j++) { for(int m = 0; m < primes.length; m++) { for(int n = m+1; n < primes.length; n++) { int dividend = primes[i] * primes[j]; int divisor = primes[m] * primes[n]; if ( ((dividend/divisor) * divisor) != dividend ) { try { BigDecimal quotient = (new BigDecimal(dividend). divide(new BigDecimal(divisor))); failures++; System.err.println("Exact quotient " + quotient.toString() + " returned for non-terminating fraction " + dividend + " / " + divisor + "."); } catch (ArithmeticException e) { ; // Correct result } } } } } } return failures; } public static int properScaleTests(){ int failures = 0; BigDecimal[][] testCases = { {new BigDecimal("1"), new BigDecimal("5"), new BigDecimal("2e-1")}, {new BigDecimal("1"), new BigDecimal("50e-1"), new BigDecimal("2e-1")}, {new BigDecimal("10e-1"), new BigDecimal("5"), new BigDecimal("2e-1")}, {new BigDecimal("1"), new BigDecimal("500e-2"), new BigDecimal("2e-1")}, {new BigDecimal("100e-2"), new BigDecimal("5"), new BigDecimal("20e-2")}, {new BigDecimal("1"), new BigDecimal("32"), new BigDecimal("3125e-5")}, {new BigDecimal("1"), new BigDecimal("64"), new BigDecimal("15625e-6")}, {new BigDecimal("1.0000000"), new BigDecimal("64"), new BigDecimal("156250e-7")}, }; for(BigDecimal[] tc : testCases) { BigDecimal quotient; if (! (quotient = tc[0].divide(tc[1])).equals(tc[2]) ) { failures++; System.err.println("Unexpected quotient from " + tc[0] + " / " + tc[1] + "; expected " + tc[2] + " got " + quotient); } } return failures; } public static int trailingZeroTests() { int failures = 0; MathContext mc = new MathContext(3, RoundingMode.FLOOR); BigDecimal[][] testCases = { {new BigDecimal("19"), new BigDecimal("100"), new BigDecimal("0.19")}, {new BigDecimal("21"), new BigDecimal("110"), new BigDecimal("0.190")}, }; for(BigDecimal[] tc : testCases) { BigDecimal quotient; if (! (quotient = tc[0].divide(tc[1], mc)).equals(tc[2]) ) { failures++; System.err.println("Unexpected quotient from " + tc[0] + " / " + tc[1] + "; expected " + tc[2] + " got " + quotient); } } return failures; } public static int scaledRoundedDivideTests() { int failures = 0; // Tests of the traditional scaled divide under different // rounding modes. // Encode rounding mode and scale for the divide in a // BigDecimal with the significand equal to the rounding mode // and the scale equal to the number's scale. // {dividend, dividisor, rounding, quotient} BigDecimal a = new BigDecimal("31415"); BigDecimal a_minus = a.negate(); BigDecimal b = new BigDecimal("10000"); BigDecimal c = new BigDecimal("31425"); BigDecimal c_minus = c.negate(); // Ad hoc tests BigDecimal d = new BigDecimal(new BigInteger("-37361671119238118911893939591735"), 10); BigDecimal e = new BigDecimal(new BigInteger("74723342238476237823787879183470"), 15); BigDecimal[][] testCases = { {a, b, BigDecimal.valueOf(ROUND_UP, 3), new BigDecimal("3.142")}, {a_minus, b, BigDecimal.valueOf(ROUND_UP, 3), new BigDecimal("-3.142")}, {a, b, BigDecimal.valueOf(ROUND_DOWN, 3), new BigDecimal("3.141")}, {a_minus, b, BigDecimal.valueOf(ROUND_DOWN, 3), new BigDecimal("-3.141")}, {a, b, BigDecimal.valueOf(ROUND_CEILING, 3), new BigDecimal("3.142")}, {a_minus, b, BigDecimal.valueOf(ROUND_CEILING, 3), new BigDecimal("-3.141")}, {a, b, BigDecimal.valueOf(ROUND_FLOOR, 3), new BigDecimal("3.141")}, {a_minus, b, BigDecimal.valueOf(ROUND_FLOOR, 3), new BigDecimal("-3.142")}, {a, b, BigDecimal.valueOf(ROUND_HALF_UP, 3), new BigDecimal("3.142")}, {a_minus, b, BigDecimal.valueOf(ROUND_HALF_UP, 3), new BigDecimal("-3.142")}, {a, b, BigDecimal.valueOf(ROUND_DOWN, 3), new BigDecimal("3.141")}, {a_minus, b, BigDecimal.valueOf(ROUND_DOWN, 3), new BigDecimal("-3.141")}, {a, b, BigDecimal.valueOf(ROUND_HALF_EVEN, 3), new BigDecimal("3.142")}, {a_minus, b, BigDecimal.valueOf(ROUND_HALF_EVEN, 3), new BigDecimal("-3.142")}, {c, b, BigDecimal.valueOf(ROUND_HALF_EVEN, 3), new BigDecimal("3.142")}, {c_minus, b, BigDecimal.valueOf(ROUND_HALF_EVEN, 3), new BigDecimal("-3.142")}, {d, e, BigDecimal.valueOf(ROUND_HALF_UP, -5), BigDecimal.valueOf(-1, -5)}, {d, e, BigDecimal.valueOf(ROUND_HALF_DOWN, -5), BigDecimal.valueOf(0, -5)}, {d, e, BigDecimal.valueOf(ROUND_HALF_EVEN, -5), BigDecimal.valueOf(0, -5)}, }; for(BigDecimal tc[] : testCases) { int scale = tc[2].scale(); int rm = tc[2].unscaledValue().intValue(); BigDecimal quotient = tc[0].divide(tc[1], scale, rm); if (!quotient.equals(tc[3])) { failures++; System.err.println("Unexpected quotient from " + tc[0] + " / " + tc[1] + " scale " + scale + " rounding mode " + RoundingMode.valueOf(rm) + "; expected " + tc[3] + " got " + quotient); } } // 6876282 BigDecimal[][] testCases2 = { // { dividend, divisor, expected quotient } { new BigDecimal(3090), new BigDecimal(7), new BigDecimal(441) }, { new BigDecimal("309000000000000000000000"), new BigDecimal("700000000000000000000"), new BigDecimal(441) }, { new BigDecimal("962.430000000000"), new BigDecimal("8346463.460000000000"), new BigDecimal("0.000115309916") }, { new BigDecimal("18446744073709551631"), new BigDecimal("4611686018427387909"), new BigDecimal(4) }, { new BigDecimal("18446744073709551630"), new BigDecimal("4611686018427387909"), new BigDecimal(4) }, { new BigDecimal("23058430092136939523"), new BigDecimal("4611686018427387905"), new BigDecimal(5) }, { new BigDecimal("-18446744073709551661"), new BigDecimal("-4611686018427387919"), new BigDecimal(4) }, { new BigDecimal("-18446744073709551660"), new BigDecimal("-4611686018427387919"), new BigDecimal(4) }, }; for (BigDecimal test[] : testCases2) { BigDecimal quo = test[0].divide(test[1], RoundingMode.HALF_UP); if (!quo.equals(test[2])) { failures++; System.err.println("Unexpected quotient from " + test[0] + " / " + test[1] + " rounding mode HALF_UP" + "; expected " + test[2] + " got " + quo); } } return failures; } private static int divideByOneTests() { int failures = 0; //problematic divisor: one with scale 17 BigDecimal one = BigDecimal.ONE.setScale(17); RoundingMode rounding = RoundingMode.UNNECESSARY; long[][] unscaledAndScale = new long[][] { { Long.MAX_VALUE, 17}, {-Long.MAX_VALUE, 17}, { Long.MAX_VALUE, 0}, {-Long.MAX_VALUE, 0}, { Long.MAX_VALUE, 100}, {-Long.MAX_VALUE, 100} }; for (long[] uas : unscaledAndScale) { long unscaled = uas[0]; int scale = (int)uas[1]; BigDecimal noRound = null; try { noRound = BigDecimal.valueOf(unscaled, scale). divide(one, RoundingMode.UNNECESSARY); } catch (ArithmeticException e) { failures++; System.err.println("ArithmeticException for value " + unscaled + " and scale " + scale + " without rounding"); } BigDecimal roundDown = null; try { roundDown = BigDecimal.valueOf(unscaled, scale). divide(one, RoundingMode.DOWN); } catch (ArithmeticException e) { failures++; System.err.println("ArithmeticException for value " + unscaled + " and scale " + scale + " with rounding down"); } if (noRound != null && roundDown != null && noRound.compareTo(roundDown) != 0) { failures++; System.err.println("Equality failure for value " + unscaled + " and scale " + scale); } } return failures; } public static void main(String argv[]) { int failures = 0; failures += powersOf2and5(); failures += nonTerminating(); failures += properScaleTests(); failures += trailingZeroTests(); failures += scaledRoundedDivideTests(); failures += divideByOneTests(); if (failures > 0) { throw new RuntimeException("Incurred " + failures + " failures while testing division."); } } }