/* * Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2015, 2016, Red Hat Inc. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ import jdk.test.lib.Utils; import java.nio.Buffer; import java.nio.BufferOverflowException; import java.nio.BufferUnderflowException; import java.nio.ByteBuffer; import java.nio.ByteOrder; import java.nio.CharBuffer; import java.nio.DoubleBuffer; import java.nio.FloatBuffer; import java.nio.IntBuffer; import java.nio.LongBuffer; import java.nio.ShortBuffer; import java.util.Arrays; import java.util.Random; import static java.nio.ByteOrder.BIG_ENDIAN; import static java.nio.ByteOrder.LITTLE_ENDIAN; // A wrapper for a ByteBuffer which maintains a backing array and a // position. Whenever this wrapper is written the backing array and // the wrapped byte buffer are updated together, and whenever it is // read we check that the ByteBuffer and the backing array are identical. class MyByteBuffer { final ByteBuffer buf; final byte[] bytes; int pos; ByteOrder byteOrder = BIG_ENDIAN; MyByteBuffer(ByteBuffer buf) { this.buf = buf; this.bytes = new byte[buf.capacity()]; pos = 0; } public final MyByteBuffer order(ByteOrder bo) { byteOrder = bo; buf.order(bo); return this; } static MyByteBuffer allocate(int capacity) { return new MyByteBuffer(ByteBuffer.allocate(capacity)); } static MyByteBuffer allocateDirect(int capacity) { return new MyByteBuffer(ByteBuffer.allocateDirect(capacity)); } int capacity() { return bytes.length; } int position() { if (buf.position() != pos) throw new RuntimeException(); return buf.position(); } byte[] actualArray() { buf.rewind(); byte[] actual = new byte[bytes.length]; buf.get(actual, 0, actual.length); buf.rewind(); return actual; } byte[] expectedArray() { return bytes; } private static byte long7(long x) { return (byte)(x >> 56); } private static byte long6(long x) { return (byte)(x >> 48); } private static byte long5(long x) { return (byte)(x >> 40); } private static byte long4(long x) { return (byte)(x >> 32); } private static byte long3(long x) { return (byte)(x >> 24); } private static byte long2(long x) { return (byte)(x >> 16); } private static byte long1(long x) { return (byte)(x >> 8); } private static byte long0(long x) { return (byte)(x ); } private static byte int3(int x) { return (byte)(x >> 24); } private static byte int2(int x) { return (byte)(x >> 16); } private static byte int1(int x) { return (byte)(x >> 8); } private static byte int0(int x) { return (byte)(x ); } private static byte short1(short x) { return (byte)(x >> 8); } private static byte short0(short x) { return (byte)(x ); } byte _get(long i) { return bytes[(int)i]; } void _put(long i, byte x) { bytes[(int)i] = x; } private void putLongX(long a, long x) { if (byteOrder == BIG_ENDIAN) { x = Long.reverseBytes(x); } _put(a + 7, long7(x)); _put(a + 6, long6(x)); _put(a + 5, long5(x)); _put(a + 4, long4(x)); _put(a + 3, long3(x)); _put(a + 2, long2(x)); _put(a + 1, long1(x)); _put(a , long0(x)); } private void putIntX(long a, int x) { if (byteOrder == BIG_ENDIAN) { x = Integer.reverseBytes(x); } _put(a + 3, int3(x)); _put(a + 2, int2(x)); _put(a + 1, int1(x)); _put(a , int0(x)); } private void putShortX(int bi, short x) { if (byteOrder == BIG_ENDIAN) { x = Short.reverseBytes(x); } _put(bi , short0(x)); _put(bi + 1, short1(x)); } static private int makeInt(byte b3, byte b2, byte b1, byte b0) { return (((b3 ) << 24) | ((b2 & 0xff) << 16) | ((b1 & 0xff) << 8) | ((b0 & 0xff) )); } int getIntX(long a) { int x = makeInt(_get(a + 3), _get(a + 2), _get(a + 1), _get(a)); if (byteOrder == BIG_ENDIAN) { x = Integer.reverseBytes(x); } return x; } static private long makeLong(byte b7, byte b6, byte b5, byte b4, byte b3, byte b2, byte b1, byte b0) { return ((((long)b7 ) << 56) | (((long)b6 & 0xff) << 48) | (((long)b5 & 0xff) << 40) | (((long)b4 & 0xff) << 32) | (((long)b3 & 0xff) << 24) | (((long)b2 & 0xff) << 16) | (((long)b1 & 0xff) << 8) | (((long)b0 & 0xff) )); } long getLongX(long a) { long x = makeLong(_get(a + 7), _get(a + 6), _get(a + 5), _get(a + 4), _get(a + 3), _get(a + 2), _get(a + 1), _get(a)); if (byteOrder == BIG_ENDIAN) { x = Long.reverseBytes(x); } return x; } static private short makeShort(byte b1, byte b0) { return (short)((b1 << 8) | (b0 & 0xff)); } short getShortX(long a) { short x = makeShort(_get(a + 1), _get(a )); if (byteOrder == BIG_ENDIAN) { x = Short.reverseBytes(x); } return x; } double getDoubleX(long a) { long x = getLongX(a); return Double.longBitsToDouble(x); } double getFloatX(long a) { int x = getIntX(a); return Float.intBitsToFloat(x); } void ck(long x, long y) { if (x != y) { throw new RuntimeException("expect x == y: x = " + Long.toHexString(x) + ", y = " + Long.toHexString(y)); } } void ck(double x, double y) { // Check if x and y have identical values. // Remember: NaN == x is false for ANY x, including if x is NaN (IEEE standard). // Therefore, if x and y are NaN, x != y would return true, which is not what we want. // We do not want an Exception if both are NaN. // Double.compare takes care of these special cases // including NaNs, and comparing -0.0 to 0.0 if (Double.compare(x,y) != 0) { throw new RuntimeException("expect x == y:" + " x = " + Double.toString(x) + ", y = " + Double.toString(y) + " (x = " + Long.toHexString(Double.doubleToRawLongBits(x)) + ", y = " + Long.toHexString(Double.doubleToRawLongBits(y)) + ")"); } } // Method accessors long getLong(int i) { ck(buf.getLong(i), getLongX(i)); return buf.getLong(i); } int getInt(int i) { ck(buf.getInt(i), getIntX(i)); return buf.getInt(i); } short getShort(int i) { ck(buf.getShort(i), getShortX(i)); return buf.getShort(i); } char getChar(int i) { ck(buf.getChar(i), (char)getShortX(i)); return buf.getChar(i); } double getDouble(int i) { ck(buf.getDouble(i), getDoubleX(i)); return buf.getDouble(i); } float getFloat(int i) { ck(buf.getFloat(i), getFloatX(i)); return buf.getFloat(i); } void putLong(int i, long x) { buf.putLong(i, x); putLongX(i, x); } void putInt(int i, int x) { buf.putInt(i, x); putIntX(i, x); } void putShort(int i, short x) { buf.putShort(i, x); putShortX(i, x); } void putChar(int i, char x) { buf.putChar(i, x); putShortX(i, (short)x); } void putDouble(int i, double x) { buf.putDouble(i, x); putLongX(i, Double.doubleToRawLongBits(x)); } void putFloat(int i, float x) { buf.putFloat(i, x); putIntX(i, Float.floatToRawIntBits(x)); } long getLong() { ck(buf.getLong(buf.position()), getLongX(pos)); long x = buf.getLong(); pos += 8; return x; } int getInt() { ck(buf.getInt(buf.position()), getIntX(pos)); int x = buf.getInt(); pos += 4; return x; } short getShort() { ck(buf.getShort(buf.position()), getShortX(pos)); short x = buf.getShort(); pos += 2; return x; } char getChar() { ck(buf.getChar(buf.position()), (char)getShortX(pos)); char x = buf.getChar(); pos += 2; return x; } double getDouble() { ck(buf.getDouble(buf.position()), getDoubleX(pos)); double x = buf.getDouble(); pos += 8; return x; } float getFloat() { ck(buf.getFloat(buf.position()), getFloatX(pos)); float x = buf.getFloat(); pos += 4; return x; } void putLong(long x) { putLongX(pos, x); pos += 8; buf.putLong(x); } void putInt(int x) { putIntX(pos, x); pos += 4; buf.putInt(x); } void putShort(short x) { putShortX(pos, x); pos += 2; buf.putShort(x); } void putChar(char x) { putShortX(pos, (short)x); pos += 2; buf.putChar(x); } void putDouble(double x) { putLongX(pos, Double.doubleToRawLongBits(x)); pos += 8; buf.putDouble(x); } void putFloat(float x) { putIntX(pos, Float.floatToRawIntBits(x)); pos += 4; buf.putFloat(x); } // View accessors long getLong(LongBuffer vb, int i) { ck(vb.get(i / 8), getLongX(i)); return vb.get(i / 8); } int getInt(IntBuffer vb, int i) { ck(vb.get(i / 4), getIntX(i)); return vb.get(i / 4); } short getShort(ShortBuffer vb, int i) { ck(vb.get(i / 2), getShortX(i)); return vb.get(i / 2); } char getChar(CharBuffer vb, int i) { ck(vb.get(i / 2), (char)getShortX(i)); return vb.get(i / 2); } double getDouble(DoubleBuffer vb, int i) { ck(vb.get(i / 8), getDoubleX(i)); return vb.get(i / 8); } float getFloat(FloatBuffer vb, int i) { ck(vb.get(i / 4), getFloatX(i)); return vb.get(i / 4); } void putLong(LongBuffer vb, int i, long x) { vb.put(i / 8, x); putLongX(i, x); } void putInt(IntBuffer vb, int i, int x) { vb.put(i / 4, x); putIntX(i, x); } void putShort(ShortBuffer vb, int i, short x) { vb.put(i / 2, x); putShortX(i, x); } void putChar(CharBuffer vb, int i, char x) { vb.put(i / 2, x); putShortX(i, (short)x); } void putDouble(DoubleBuffer vb, int i, double x) { vb.put(i / 8, x); putLongX(i, Double.doubleToRawLongBits(x)); } void putFloat(FloatBuffer vb, int i, float x) { vb.put(i / 4, x); putIntX(i, Float.floatToRawIntBits(x)); } long getLong(LongBuffer v) { ck(v.get(v.position()), getLongX(pos)); long x = v.get(); pos += 8; return x; } int getInt(IntBuffer v) { ck(v.get(v.position()), getIntX(pos)); int x = v.get(); pos += 4; return x; } short getShort(ShortBuffer v) { ck(v.get(v.position()), getShortX(pos)); short x = v.get(); pos += 2; return x; } char getChar(CharBuffer v) { ck(v.get(v.position()), (char)getShortX(pos)); char x = v.get(); pos += 2; return x; } double getDouble(DoubleBuffer v) { ck(v.get(v.position()), getDoubleX(pos)); double x = v.get(); pos += 8; return x; } float getFloat(FloatBuffer v) { ck(v.get(v.position()), getFloatX(pos)); float x = v.get(); pos += 4; return x; } void putLong(LongBuffer v, long x) { putLongX(pos, x); pos += 8; v.put(x); } void putInt(IntBuffer v, int x) { putIntX(pos, x); pos += 4; v.put(x); } void putShort(ShortBuffer v, short x) { putShortX(pos, x); pos += 2; v.put(x); } void putChar(CharBuffer v, char x) { putShortX(pos, (short)x); pos += 2; v.put(x); } void putDouble(DoubleBuffer v, double x) { putLongX(pos, Double.doubleToRawLongBits(x)); pos += 8; v.put(x); } void putFloat(FloatBuffer v, float x) { putIntX(pos, Float.floatToRawIntBits(x)); pos += 4; v.put(x); } void rewind() { pos = 0; buf.rewind(); } } public abstract class ByteBufferTest implements Runnable { Random random = Utils.getRandomInstance(); MyByteBuffer data; static int randomOffset(Random r, MyByteBuffer buf, int size) { return r.nextInt(buf.capacity() - size); } static int randomAlignedOffset(Random r, MyByteBuffer buf, int unitSize) { return r.nextInt(buf.capacity() / unitSize) * unitSize; } long iterations; ByteBufferTest(long iterations, boolean direct) { this.iterations = iterations; data = direct ? MyByteBuffer.allocateDirect(1024) : MyByteBuffer.allocate(1024); } // The core of the test. Walk over the buffer reading and writing // random data, XORing it as we go. We can detect writes in the // wrong place, writes which are too long or too short, and reads // or writes of the wrong data, void step(Random r) { stepUsingAccessors(r); stepUsingViews(r); } void stepUsingAccessors(Random r) { data.order((r.nextInt() & 1) != 0 ? BIG_ENDIAN : LITTLE_ENDIAN); data.rewind(); while (data.position() < data.capacity()) data.putLong(data.getLong() ^ random.nextLong()); data.rewind(); while (data.position() < data.capacity()) data.putInt(data.getInt() ^ random.nextInt()); data.rewind(); while (data.position() < data.capacity()) data.putShort((short)(data.getShort() ^ random.nextInt())); data.rewind(); while (data.position() < data.capacity()) data.putChar((char)(data.getChar() ^ random.nextInt())); data.rewind(); while (data.position() < data.capacity()) data.putDouble(combine(data.getDouble(), random.nextLong())); data.rewind(); while (data.position() < data.capacity()) data.putFloat(combine(data.getFloat(), random.nextInt())); for (int i = 0; i < 100; i++) { int offset = randomOffset(r, data, Long.BYTES); data.putLong(offset, data.getLong(offset) ^ random.nextLong()); } for (int i = 0; i < 100; i++) { int offset = randomOffset(r, data, Integer.BYTES); data.putInt(offset, data.getInt(offset) ^ random.nextInt()); } for (int i = 0; i < 100; i++) { int offset = randomOffset(r, data, Short.BYTES); data.putShort(offset, (short)(data.getShort(offset) ^ random.nextInt())); } for (int i = 0; i < 100; i++) { int offset = randomOffset(r, data, Character.BYTES); data.putChar(offset, (char)(data.getChar(offset) ^ random.nextInt())); } for (int i = 0; i < 100; i++) { int offset = randomOffset(r, data, Double.BYTES); data.putDouble(offset, combine(data.getDouble(offset), random.nextLong())); } for (int i = 0; i < 100; i++) { int offset = randomOffset(r, data, Float.BYTES); data.putFloat(offset, combine(data.getFloat(offset), random.nextInt())); } } void stepUsingViews(Random r) { data.order((r.nextInt() & 1) != 0 ? BIG_ENDIAN : LITTLE_ENDIAN); data.rewind(); LongBuffer lbuf = data.buf.asLongBuffer(); while (lbuf.position() < data.capacity() / Long.BYTES) data.putLong(lbuf, data.getLong(lbuf) ^ random.nextLong()); data.rewind(); IntBuffer ibuf = data.buf.asIntBuffer(); while (ibuf.position() < data.capacity() / Integer.BYTES) data.putInt(ibuf, data.getInt(ibuf) ^ random.nextInt()); data.rewind(); ShortBuffer sbuf = data.buf.asShortBuffer(); while (sbuf.position() < data.capacity() / Short.BYTES) data.putShort(sbuf, (short)(data.getShort(sbuf) ^ random.nextInt())); data.rewind(); CharBuffer cbuf = data.buf.asCharBuffer(); while (cbuf.position() < data.capacity() / Character.BYTES) data.putChar(cbuf, (char)(data.getChar(cbuf) ^ random.nextInt())); data.rewind(); DoubleBuffer dbuf = data.buf.asDoubleBuffer(); while (dbuf.position() < data.capacity() / Double.BYTES) data.putDouble(dbuf, combine(data.getDouble(dbuf), random.nextLong())); data.rewind(); FloatBuffer fbuf = data.buf.asFloatBuffer(); while (fbuf.position() < data.capacity() / Float.BYTES) data.putFloat(fbuf, combine(data.getFloat(fbuf), random.nextInt())); for (int i = 0; i < 100; i++) { int offset = randomAlignedOffset(r, data, Long.BYTES); data.putLong(lbuf, offset, data.getLong(lbuf, offset) ^ random.nextLong()); } for (int i = 0; i < 100; i++) { int offset = randomAlignedOffset(r, data, Integer.BYTES); data.putInt(ibuf, offset, data.getInt(ibuf, offset) ^ random.nextInt()); } for (int i = 0; i < 100; i++) { int offset = randomAlignedOffset(r, data, Short.BYTES); data.putShort(sbuf, offset, (short)(data.getShort(sbuf, offset) ^ random.nextInt())); } for (int i = 0; i < 100; i++) { int offset = randomAlignedOffset(r, data, Character.BYTES); data.putChar(cbuf, offset, (char)(data.getChar(cbuf, offset) ^ random.nextInt())); } for (int i = 0; i < 100; i++) { int offset = randomAlignedOffset(r, data, Double.BYTES); data.putDouble(dbuf, offset, combine(data.getDouble(dbuf, offset), random.nextLong())); } for (int i = 0; i < 100; i++) { int offset = randomAlignedOffset(r, data, Float.BYTES); data.putFloat(fbuf, offset, combine(data.getFloat(fbuf, offset), random.nextInt())); } } // XOR the bit pattern of a double and a long, returning the // result as a double. // // We convert signalling NaNs to quiet NaNs. We need to do this // because some platforms (in particular legacy 80x87) do not // provide transparent conversions between integer and // floating-point types even when using raw conversions but // quietly convert sNaN to qNaN. This causes spurious test // failures when the template interpreter uses 80x87 and the JITs // use XMM registers. // public double combine(double prev, long bits) { bits ^= Double.doubleToRawLongBits(prev); double result = Double.longBitsToDouble(bits); if (Double.isNaN(result)) { result = Double.longBitsToDouble(bits | 0x8000000000000l); } return result; } // XOR the bit pattern of a float and an int, returning the result // as a float. Convert sNaNs to qNaNs. public Float combine(float prev, int bits) { bits ^= Float.floatToRawIntBits(prev); Float result = Float.intBitsToFloat(bits); if (Float.isNaN(result)) { result = Float.intBitsToFloat(bits | 0x400000); } return result; } enum PrimitiveType { BYTE(1), CHAR(2), SHORT(2), INT(4), LONG(8), FLOAT(4), DOUBLE(8); public final int size; PrimitiveType(int size) { this.size = size; } } Buffer asView(ByteBuffer b, PrimitiveType t) { switch (t) { case BYTE: return b; case CHAR: return b.asCharBuffer(); case SHORT: return b.asShortBuffer(); case INT: return b.asIntBuffer(); case LONG: return b.asLongBuffer(); case FLOAT: return b.asFloatBuffer(); case DOUBLE: return b.asDoubleBuffer(); } throw new InternalError("Should not reach here"); } void getOne(ByteBuffer b, PrimitiveType t) { switch (t) { case BYTE: b.get(); break; case CHAR: b.getChar(); break; case SHORT: b.getShort(); break; case INT: b.getInt(); break; case LONG: b.getLong(); break; case FLOAT: b.getFloat(); break; case DOUBLE: b.getDouble(); break; } } void putOne(ByteBuffer b, PrimitiveType t) { switch (t) { case BYTE: b.put((byte)0); break; case CHAR: b.putChar('0'); break; case SHORT: b.putShort((short)0); break; case INT: b.putInt(0); break; case LONG: b.putLong(0); break; case FLOAT: b.putFloat(0); break; case DOUBLE: b.putDouble(0); break; } } void asViewGetOne(ByteBuffer b, PrimitiveType t) { switch (t) { case BYTE: b.get(); break; case CHAR: b.asCharBuffer().get(); break; case SHORT: b.asShortBuffer().get(); break; case INT: b.asIntBuffer().get(); break; case LONG: b.asLongBuffer().get(); break; case FLOAT: b.asFloatBuffer().get(); break; case DOUBLE: b.asDoubleBuffer().get(); break; } } void asViewPutOne(ByteBuffer b, PrimitiveType t) { switch (t) { case BYTE: b.put((byte)0); break; case CHAR: b.asCharBuffer().put('0'); break; case SHORT: b.asShortBuffer().put((short)0); break; case INT: b.asIntBuffer().put(0); break; case LONG: b.asLongBuffer().put(0); break; case FLOAT: b.asFloatBuffer().put(0); break; case DOUBLE: b.asDoubleBuffer().put(0); break; } } void getOne(ByteBuffer b, PrimitiveType t, int index) { switch (t) { case BYTE: b.get(index); break; case CHAR: b.getChar(index); break; case SHORT: b.getShort(index); break; case INT: b.getInt(index); break; case LONG: b.getLong(index); break; case FLOAT: b.getFloat(index); break; case DOUBLE: b.getDouble(index); break; } } void putOne(ByteBuffer b, PrimitiveType t, int index) { switch (t) { case BYTE: b.put(index, (byte)0); break; case CHAR: b.putChar(index, '0'); break; case SHORT: b.putShort(index, (short)0); break; case INT: b.putInt(index, 0); break; case LONG: b.putLong(index, 0); break; case FLOAT: b.putFloat(index, 0); break; case DOUBLE: b.putDouble(index, 0); break; } } void asViewGetOne(Buffer v, PrimitiveType t, int index) { switch (t) { case BYTE: ((ByteBuffer) v).get(index); break; case CHAR: ((CharBuffer) v).get(index); break; case SHORT: ((ShortBuffer) v).get(index); break; case INT: ((IntBuffer) v).get(index); break; case LONG: ((LongBuffer) v).get(index); break; case FLOAT: ((FloatBuffer) v).get(index); break; case DOUBLE: ((DoubleBuffer) v).get(index); break; } } void asViewPutOne(Buffer v, PrimitiveType t, int index) { switch (t) { case BYTE: ((ByteBuffer) v).put(index, (byte)0); break; case CHAR: ((CharBuffer) v).put(index, '0'); break; case SHORT: ((ShortBuffer) v).put(index, (short)0); break; case INT: ((IntBuffer) v).put(index, 0); break; case LONG: ((LongBuffer) v).put(index, 0); break; case FLOAT: ((FloatBuffer) v).put(index, 0); break; case DOUBLE: ((DoubleBuffer) v).put(index, 0); break; } } void checkBoundaryConditions() { for (int i = 0; i < 100; i++) { int bufSize = random.nextInt(16); ByteBuffer buf = data.buf.isDirect() ? ByteBuffer.allocateDirect(bufSize) : ByteBuffer.allocate(bufSize); for (PrimitiveType t : PrimitiveType.values()) { buf.rewind(); Buffer viewBuf = asView(buf, t); for (int j = 0; j < 100; j++) { int offset = random.nextInt(32) - 8; int threw = 0; int checks = 6; try { try { buf.position(offset); getOne(buf, t); } catch (BufferUnderflowException e) { if (offset + t.size < bufSize) throw new RuntimeException ("type = " + t + ", offset = " + offset + ", bufSize = " + bufSize, e); threw++; } catch (IllegalArgumentException e) { if (offset >= 0 && offset + t.size < bufSize) throw new RuntimeException ("type = " + t + ", offset = " + offset + ", bufSize = " + bufSize, e); threw++; } try { buf.position(offset); asViewGetOne(buf, t); } catch (BufferUnderflowException e) { if (offset + t.size < bufSize) throw new RuntimeException ("type = " + t + ", offset = " + offset + ", bufSize = " + bufSize, e); threw++; } catch (IllegalArgumentException e) { if (offset >= 0 && offset + t.size < bufSize) throw new RuntimeException ("type = " + t + ", offset = " + offset + ", bufSize = " + bufSize, e); threw++; } try { buf.position(offset); putOne(buf, t); } catch (BufferOverflowException e) { if (offset + t.size < bufSize) throw new RuntimeException ("type = " + t + ", offset = " + offset + ", bufSize = " + bufSize, e); threw++; } catch (IllegalArgumentException e) { if (offset >= 0 && offset + t.size < bufSize) throw new RuntimeException ("type = " + t + ", offset = " + offset + ", bufSize = " + bufSize, e); threw++; } try { buf.position(offset); asViewPutOne(buf, t); } catch (BufferOverflowException e) { if (offset + t.size < bufSize) throw new RuntimeException ("type = " + t + ", offset = " + offset + ", bufSize = " + bufSize, e); threw++; } catch (IllegalArgumentException e) { if (offset >= 0 && offset + t.size < bufSize) throw new RuntimeException ("type = " + t + ", offset = " + offset + ", bufSize = " + bufSize, e); threw++; } try { putOne(buf, t, offset); } catch (IndexOutOfBoundsException e) { if (offset >= 0 && offset + t.size < bufSize) throw new RuntimeException ("type = " + t + ", offset = " + offset + ", bufSize = " + bufSize, e); threw++; } try { getOne(buf, t, offset); } catch (IndexOutOfBoundsException e) { if (offset >= 0 && offset + t.size < bufSize) throw new RuntimeException ("type = " + t + ", offset = " + offset + ", bufSize = " + bufSize, e); threw++; } // If offset is aligned access using the view if (offset % t.size == 0) { checks = 8; int viewOffset = offset / t.size; try { asViewPutOne(viewBuf, t, viewOffset); } catch (IndexOutOfBoundsException e) { if (offset >= 0 && offset + t.size < bufSize) throw new RuntimeException ("type = " + t + ", offset = " + offset + ", bufSize = " + bufSize, e); threw++; } try { asViewGetOne(viewBuf, t, viewOffset); } catch (IndexOutOfBoundsException e) { if (offset >= 0 && offset + t.size < bufSize) throw new RuntimeException ("type = " + t + ", offset = " + offset + ", bufSize = " + bufSize, e); threw++; } } if (threw == 0) { // Make sure that we should not have thrown. if (offset < 0 || offset + t.size > bufSize) { throw new RuntimeException ("should have thrown but did not, type = " + t + ", offset = " + offset + ", bufSize = " + bufSize); } } else if (threw != checks) { // If one of the {get,put} operations threw // due to an invalid offset then all four of // them should have thrown. throw new RuntimeException ("should have thrown but at least one did not, type = " + t + ", offset = " + offset + ", bufSize = " + bufSize); } } catch (Throwable th) { throw new RuntimeException ("unexpected throw: type = " + t + ", offset = " + offset + ", bufSize = " + bufSize, th); } } } } } public void run() { checkBoundaryConditions(); for (int i = 0; i < data.capacity(); i += 8) { data.putLong(i, random.nextLong()); } for (int i = 0; i < iterations; i++) { step(random); } if (!Arrays.equals(data.actualArray(), data.expectedArray())) { throw new RuntimeException(); } } }