/* * Copyright (c) 2021, 2022, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * @test * @bug 8214761 * @key randomness * @library /test/lib * @build jdk.test.lib.RandomFactory * @run testng CompensatedSums * @summary */ import java.util.Random; import java.util.function.BiConsumer; import java.util.function.ObjDoubleConsumer; import java.util.function.Supplier; import java.util.stream.DoubleStream; import jdk.test.lib.RandomFactory; import org.testng.Assert; import org.testng.annotations.Test; public class CompensatedSums { @Test public void testCompensatedSums() { Random r = RandomFactory.getRandom(); double naive = 0; double jdkSequentialStreamError = 0; double goodSequentialStreamError = 0; double jdkParallelStreamError = 0; double goodParallelStreamError = 0; double badParallelStreamError = 0; for (int loop = 0; loop < 100; loop++) { // sequence of random numbers of varying magnitudes, both positive and negative double[] rand = r.doubles(1_000_000) .map(Math::log) .map(x -> (Double.doubleToLongBits(x) % 2 == 0) ? x : -x) .toArray(); // base case: standard Kahan summation double[] sum = new double[2]; for (int i=0; i < rand.length; i++) { sumWithCompensation(sum, rand[i]); } // All error is the squared difference of the standard Kahan Sum vs JDK Stream sum implementation // Older less accurate implementations included here as the baseline. // squared error of naive sum by reduction - should be large naive += square(DoubleStream.of(rand).reduce((x, y) -> x+y).getAsDouble() - sum[0]); // squared error of sequential sum - should be 0 jdkSequentialStreamError += square(DoubleStream.of(rand).sum() - sum[0]); goodSequentialStreamError += square(computeFinalSum(DoubleStream.of(rand).collect(doubleSupplier,objDoubleConsumer,goodCollectorConsumer)) - sum[0]); // squared error of parallel sum from the JDK jdkParallelStreamError += square(DoubleStream.of(rand).parallel().sum() - sum[0]); // squared error of parallel sum goodParallelStreamError += square(computeFinalSum(DoubleStream.of(rand).parallel().collect(doubleSupplier,objDoubleConsumer,goodCollectorConsumer)) - sum[0]); // the bad parallel stream badParallelStreamError += square(computeFinalSum(DoubleStream.of(rand).parallel().collect(doubleSupplier,objDoubleConsumer,badCollectorConsumer)) - sum[0]); } Assert.assertTrue(jdkParallelStreamError <= goodParallelStreamError); /* * Due to floating-point addition being inherently non-associative, * and due to the unpredictable scheduling of the threads used * in parallel streams, this assertion can fail intermittently, * hence is suppressed for now. */ // Assert.assertTrue(badParallelStreamError >= jdkParallelStreamError); Assert.assertTrue(goodSequentialStreamError >= jdkSequentialStreamError); Assert.assertTrue(naive > jdkSequentialStreamError); Assert.assertTrue(naive > jdkParallelStreamError); } private static double square(double arg) { return arg * arg; } // from OpenJDK 18 Collectors, unmodified static double[] sumWithCompensation(double[] intermediateSum, double value) { double tmp = value - intermediateSum[1]; double sum = intermediateSum[0]; double velvel = sum + tmp; // Little wolf of rounding error intermediateSum[1] = (velvel - sum) - tmp; intermediateSum[0] = velvel; return intermediateSum; } // from OpenJDK 18 Collectors, unmodified static double computeFinalSum(double[] summands) { // Final sum with better error bounds subtract second summand as it is negated double tmp = summands[0] - summands[1]; double simpleSum = summands[summands.length - 1]; if (Double.isNaN(tmp) && Double.isInfinite(simpleSum)) return simpleSum; else return tmp; } //Suppliers and consumers for Double Stream summation collection. static Supplier doubleSupplier = () -> new double[3]; static ObjDoubleConsumer objDoubleConsumer = (double[] ll, double d) -> { sumWithCompensation(ll, d); ll[2] += d; }; static BiConsumer badCollectorConsumer = (ll, rr) -> { sumWithCompensation(ll, rr[0]); sumWithCompensation(ll, rr[1]); ll[2] += rr[2]; }; static BiConsumer goodCollectorConsumer = (ll, rr) -> { sumWithCompensation(ll, rr[0]); sumWithCompensation(ll, -rr[1]); ll[2] += rr[2]; }; }