/* * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_MEMORY_ALLOCATION_INLINE_HPP #define SHARE_VM_MEMORY_ALLOCATION_INLINE_HPP #include "runtime/atomic.hpp" #include "runtime/os.hpp" #include "services/memTracker.hpp" #include "utilities/globalDefinitions.hpp" // Explicit C-heap memory management void trace_heap_malloc(size_t size, const char* name, void *p); void trace_heap_free(void *p); #ifndef PRODUCT // Increments unsigned long value for statistics (not atomic on MP). inline void inc_stat_counter(volatile julong* dest, julong add_value) { #if defined(SPARC) || defined(X86) // Sparc and X86 have atomic jlong (8 bytes) instructions julong value = Atomic::load((volatile jlong*)dest); value += add_value; Atomic::store((jlong)value, (volatile jlong*)dest); #else // possible word-tearing during load/store *dest += add_value; #endif } #endif // allocate using malloc; will fail if no memory available inline char* AllocateHeap(size_t size, MEMFLAGS flags, const NativeCallStack& stack, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) { char* p = (char*) os::malloc(size, flags, stack); #ifdef ASSERT if (PrintMallocFree) trace_heap_malloc(size, "AllocateHeap", p); #endif if (p == NULL && alloc_failmode == AllocFailStrategy::EXIT_OOM) { vm_exit_out_of_memory(size, OOM_MALLOC_ERROR, "AllocateHeap"); } return p; } ALWAYSINLINE char* AllocateHeap(size_t size, MEMFLAGS flags, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) { return AllocateHeap(size, flags, CURRENT_PC, alloc_failmode); } ALWAYSINLINE char* ReallocateHeap(char *old, size_t size, MEMFLAGS flag, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) { char* p = (char*) os::realloc(old, size, flag, CURRENT_PC); #ifdef ASSERT if (PrintMallocFree) trace_heap_malloc(size, "ReallocateHeap", p); #endif if (p == NULL && alloc_failmode == AllocFailStrategy::EXIT_OOM) { vm_exit_out_of_memory(size, OOM_MALLOC_ERROR, "ReallocateHeap"); } return p; } inline void FreeHeap(void* p) { #ifdef ASSERT if (PrintMallocFree) trace_heap_free(p); #endif os::free(p); } template void* CHeapObj::operator new(size_t size, const NativeCallStack& stack) throw() { void* p = (void*)AllocateHeap(size, F, stack); #ifdef ASSERT if (PrintMallocFree) trace_heap_malloc(size, "CHeapObj-new", p); #endif return p; } template void* CHeapObj::operator new(size_t size) throw() { return CHeapObj::operator new(size, CALLER_PC); } template void* CHeapObj::operator new (size_t size, const std::nothrow_t& nothrow_constant, const NativeCallStack& stack) throw() { void* p = (void*)AllocateHeap(size, F, stack, AllocFailStrategy::RETURN_NULL); #ifdef ASSERT if (PrintMallocFree) trace_heap_malloc(size, "CHeapObj-new", p); #endif return p; } template void* CHeapObj::operator new (size_t size, const std::nothrow_t& nothrow_constant) throw() { return CHeapObj::operator new(size, nothrow_constant, CALLER_PC); } template void* CHeapObj::operator new [](size_t size, const NativeCallStack& stack) throw() { return CHeapObj::operator new(size, stack); } template void* CHeapObj::operator new [](size_t size) throw() { return CHeapObj::operator new(size, CALLER_PC); } template void* CHeapObj::operator new [](size_t size, const std::nothrow_t& nothrow_constant, const NativeCallStack& stack) throw() { return CHeapObj::operator new(size, nothrow_constant, stack); } template void* CHeapObj::operator new [](size_t size, const std::nothrow_t& nothrow_constant) throw() { return CHeapObj::operator new(size, nothrow_constant, CALLER_PC); } template void CHeapObj::operator delete(void* p){ FreeHeap(p); } template void CHeapObj::operator delete [](void* p){ FreeHeap(p); } template size_t MmapArrayAllocator::size_for(size_t length) { size_t size = length * sizeof(E); int alignment = os::vm_allocation_granularity(); return align_size_up(size, alignment); } template E* MmapArrayAllocator::allocate(size_t length) { size_t size = size_for(length); int alignment = os::vm_allocation_granularity(); char* addr = os::reserve_memory(size, NULL, alignment, F); if (addr == NULL) { vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "Allocator (reserve)"); } os::commit_memory_or_exit(addr, size, !ExecMem, "Allocator (commit)"); return (E*)addr; } template void MmapArrayAllocator::free(E* addr, size_t length) { bool result = os::release_memory((char*)addr, size_for(length)); assert(result, "Failed to release memory"); } template size_t MallocArrayAllocator::size_for(size_t length) { return length * sizeof(E); } template E* MallocArrayAllocator::allocate(size_t length) { return (E*)AllocateHeap(size_for(length), F); } template void MallocArrayAllocator::free(E* addr, size_t /*length*/) { FreeHeap(addr); } template bool ArrayAllocator::should_use_malloc(size_t length) { return MallocArrayAllocator::size_for(length) < ArrayAllocatorMallocLimit; } template E* ArrayAllocator::allocate_malloc(size_t length) { return MallocArrayAllocator::allocate(length); } template E* ArrayAllocator::allocate_mmap(size_t length) { return MmapArrayAllocator::allocate(length); } template E* ArrayAllocator::allocate(size_t length) { if (should_use_malloc(length)) { return allocate_malloc(length); } return allocate_mmap(length); } template E* ArrayAllocator::reallocate(E* old_addr, size_t old_length, size_t new_length) { E* new_addr = (new_length > 0) ? allocate(new_length) : NULL; if (new_addr != NULL && old_addr != NULL) { memcpy(new_addr, old_addr, MIN2(old_length, new_length) * sizeof(E)); } if (old_addr != NULL) { free(old_addr, old_length); } return new_addr; } template void ArrayAllocator::free_malloc(E* addr, size_t length) { MallocArrayAllocator::free(addr, length); } template void ArrayAllocator::free_mmap(E* addr, size_t length) { MmapArrayAllocator::free(addr, length); } template void ArrayAllocator::free(E* addr, size_t length) { if (addr != NULL) { if (should_use_malloc(length)) { free_malloc(addr, length); } else { free_mmap(addr, length); } } } #endif // SHARE_VM_MEMORY_ALLOCATION_INLINE_HPP