/* * Copyright (c) 2014, 2015, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/g1/g1CollectedHeap.inline.hpp" #include "gc/g1/g1OopClosures.inline.hpp" #include "gc/g1/g1ParScanThreadState.inline.hpp" #include "gc/g1/g1StringDedup.hpp" #include "gc/shared/taskqueue.inline.hpp" #include "oops/oop.inline.hpp" #include "runtime/prefetch.inline.hpp" G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint worker_id, ReferenceProcessor* rp) : _g1h(g1h), _refs(g1h->task_queue(worker_id)), _dcq(&g1h->dirty_card_queue_set()), _ct_bs(g1h->g1_barrier_set()), _g1_rem(g1h->g1_rem_set()), _hash_seed(17), _worker_id(worker_id), _term_attempts(0), _tenuring_threshold(g1h->g1_policy()->tenuring_threshold()), _age_table(false), _scanner(g1h, rp), _strong_roots_time(0), _term_time(0), _old_gen_is_full(false) { _scanner.set_par_scan_thread_state(this); // we allocate G1YoungSurvRateNumRegions plus one entries, since // we "sacrifice" entry 0 to keep track of surviving bytes for // non-young regions (where the age is -1) // We also add a few elements at the beginning and at the end in // an attempt to eliminate cache contention uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length(); uint array_length = PADDING_ELEM_NUM + real_length + PADDING_ELEM_NUM; _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC); if (_surviving_young_words_base == NULL) vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR, "Not enough space for young surv histo."); _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM; memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t)); _plab_allocator = G1PLABAllocator::create_allocator(_g1h->allocator()); _dest[InCSetState::NotInCSet] = InCSetState::NotInCSet; // The dest for Young is used when the objects are aged enough to // need to be moved to the next space. _dest[InCSetState::Young] = InCSetState::Old; _dest[InCSetState::Old] = InCSetState::Old; _start = os::elapsedTime(); } G1ParScanThreadState::~G1ParScanThreadState() { _plab_allocator->retire_alloc_buffers(); delete _plab_allocator; FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base); } void G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st) { st->print_raw_cr("GC Termination Stats"); st->print_raw_cr(" elapsed --strong roots-- -------termination------- ------waste (KiB)------"); st->print_raw_cr("thr ms ms % ms % attempts total alloc undo"); st->print_raw_cr("--- --------- --------- ------ --------- ------ -------- ------- ------- -------"); } void G1ParScanThreadState::print_termination_stats(outputStream* const st) const { const double elapsed_ms = elapsed_time() * 1000.0; const double s_roots_ms = strong_roots_time() * 1000.0; const double term_ms = term_time() * 1000.0; size_t alloc_buffer_waste = 0; size_t undo_waste = 0; _plab_allocator->waste(alloc_buffer_waste, undo_waste); st->print_cr("%3u %9.2f %9.2f %6.2f " "%9.2f %6.2f " SIZE_FORMAT_W(8) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7), _worker_id, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms, term_ms, term_ms * 100 / elapsed_ms, term_attempts(), (alloc_buffer_waste + undo_waste) * HeapWordSize / K, alloc_buffer_waste * HeapWordSize / K, undo_waste * HeapWordSize / K); } #ifdef ASSERT bool G1ParScanThreadState::verify_ref(narrowOop* ref) const { assert(ref != NULL, "invariant"); assert(UseCompressedOops, "sanity"); assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, p2i(ref))); oop p = oopDesc::load_decode_heap_oop(ref); assert(_g1h->is_in_g1_reserved(p), err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p))); return true; } bool G1ParScanThreadState::verify_ref(oop* ref) const { assert(ref != NULL, "invariant"); if (has_partial_array_mask(ref)) { // Must be in the collection set--it's already been copied. oop p = clear_partial_array_mask(ref); assert(_g1h->obj_in_cs(p), err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p))); } else { oop p = oopDesc::load_decode_heap_oop(ref); assert(_g1h->is_in_g1_reserved(p), err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p))); } return true; } bool G1ParScanThreadState::verify_task(StarTask ref) const { if (ref.is_narrow()) { return verify_ref((narrowOop*) ref); } else { return verify_ref((oop*) ref); } } #endif // ASSERT void G1ParScanThreadState::trim_queue() { StarTask ref; do { // Drain the overflow stack first, so other threads can steal. while (_refs->pop_overflow(ref)) { dispatch_reference(ref); } while (_refs->pop_local(ref)) { dispatch_reference(ref); } } while (!_refs->is_empty()); } HeapWord* G1ParScanThreadState::allocate_in_next_plab(InCSetState const state, InCSetState* dest, size_t word_sz, AllocationContext_t const context, bool previous_plab_refill_failed) { assert(state.is_in_cset_or_humongous(), err_msg("Unexpected state: " CSETSTATE_FORMAT, state.value())); assert(dest->is_in_cset_or_humongous(), err_msg("Unexpected dest: " CSETSTATE_FORMAT, dest->value())); // Right now we only have two types of regions (young / old) so // let's keep the logic here simple. We can generalize it when necessary. if (dest->is_young()) { bool plab_refill_in_old_failed = false; HeapWord* const obj_ptr = _plab_allocator->allocate(InCSetState::Old, word_sz, context, &plab_refill_in_old_failed); // Make sure that we won't attempt to copy any other objects out // of a survivor region (given that apparently we cannot allocate // any new ones) to avoid coming into this slow path again and again. // Only consider failed PLAB refill here: failed inline allocations are // typically large, so not indicative of remaining space. if (previous_plab_refill_failed) { _tenuring_threshold = 0; } if (obj_ptr != NULL) { dest->set_old(); } else { // We just failed to allocate in old gen. The same idea as explained above // for making survivor gen unavailable for allocation applies for old gen. _old_gen_is_full = plab_refill_in_old_failed; } return obj_ptr; } else { _old_gen_is_full = previous_plab_refill_failed; assert(dest->is_old(), err_msg("Unexpected dest: " CSETSTATE_FORMAT, dest->value())); // no other space to try. return NULL; } } InCSetState G1ParScanThreadState::next_state(InCSetState const state, markOop const m, uint& age) { if (state.is_young()) { age = !m->has_displaced_mark_helper() ? m->age() : m->displaced_mark_helper()->age(); if (age < _tenuring_threshold) { return state; } } return dest(state); } oop G1ParScanThreadState::copy_to_survivor_space(InCSetState const state, oop const old, markOop const old_mark) { const size_t word_sz = old->size(); HeapRegion* const from_region = _g1h->heap_region_containing_raw(old); // +1 to make the -1 indexes valid... const int young_index = from_region->young_index_in_cset()+1; assert( (from_region->is_young() && young_index > 0) || (!from_region->is_young() && young_index == 0), "invariant" ); const AllocationContext_t context = from_region->allocation_context(); uint age = 0; InCSetState dest_state = next_state(state, old_mark, age); // The second clause is to prevent premature evacuation failure in case there // is still space in survivor, but old gen is full. if (_old_gen_is_full && dest_state.is_old()) { return handle_evacuation_failure_par(old, old_mark); } HeapWord* obj_ptr = _plab_allocator->plab_allocate(dest_state, word_sz, context); // PLAB allocations should succeed most of the time, so we'll // normally check against NULL once and that's it. if (obj_ptr == NULL) { bool plab_refill_failed = false; obj_ptr = _plab_allocator->allocate_direct_or_new_plab(dest_state, word_sz, context, &plab_refill_failed); if (obj_ptr == NULL) { obj_ptr = allocate_in_next_plab(state, &dest_state, word_sz, context, plab_refill_failed); if (obj_ptr == NULL) { // This will either forward-to-self, or detect that someone else has // installed a forwarding pointer. return handle_evacuation_failure_par(old, old_mark); } } } assert(obj_ptr != NULL, "when we get here, allocation should have succeeded"); assert(_g1h->is_in_reserved(obj_ptr), "Allocated memory should be in the heap"); #ifndef PRODUCT // Should this evacuation fail? if (_g1h->evacuation_should_fail()) { // Doing this after all the allocation attempts also tests the // undo_allocation() method too. _plab_allocator->undo_allocation(dest_state, obj_ptr, word_sz, context); return handle_evacuation_failure_par(old, old_mark); } #endif // !PRODUCT // We're going to allocate linearly, so might as well prefetch ahead. Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes); const oop obj = oop(obj_ptr); const oop forward_ptr = old->forward_to_atomic(obj); if (forward_ptr == NULL) { Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz); if (dest_state.is_young()) { if (age < markOopDesc::max_age) { age++; } if (old_mark->has_displaced_mark_helper()) { // In this case, we have to install the mark word first, // otherwise obj looks to be forwarded (the old mark word, // which contains the forward pointer, was copied) obj->set_mark(old_mark); markOop new_mark = old_mark->displaced_mark_helper()->set_age(age); old_mark->set_displaced_mark_helper(new_mark); } else { obj->set_mark(old_mark->set_age(age)); } age_table()->add(age, word_sz); } else { obj->set_mark(old_mark); } if (G1StringDedup::is_enabled()) { const bool is_from_young = state.is_young(); const bool is_to_young = dest_state.is_young(); assert(is_from_young == _g1h->heap_region_containing_raw(old)->is_young(), "sanity"); assert(is_to_young == _g1h->heap_region_containing_raw(obj)->is_young(), "sanity"); G1StringDedup::enqueue_from_evacuation(is_from_young, is_to_young, _worker_id, obj); } size_t* const surv_young_words = surviving_young_words(); surv_young_words[young_index] += word_sz; if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) { // We keep track of the next start index in the length field of // the to-space object. The actual length can be found in the // length field of the from-space object. arrayOop(obj)->set_length(0); oop* old_p = set_partial_array_mask(old); push_on_queue(old_p); } else { HeapRegion* const to_region = _g1h->heap_region_containing_raw(obj_ptr); _scanner.set_region(to_region); obj->oop_iterate_backwards(&_scanner); } return obj; } else { _plab_allocator->undo_allocation(dest_state, obj_ptr, word_sz, context); return forward_ptr; } } oop G1ParScanThreadState::handle_evacuation_failure_par(oop old, markOop m) { assert(_g1h->obj_in_cs(old), err_msg("Object " PTR_FORMAT " should be in the CSet", p2i(old))); oop forward_ptr = old->forward_to_atomic(old); if (forward_ptr == NULL) { // Forward-to-self succeeded. We are the "owner" of the object. HeapRegion* r = _g1h->heap_region_containing(old); if (!r->evacuation_failed()) { r->set_evacuation_failed(true); _g1h->hr_printer()->evac_failure(r); } _g1h->preserve_mark_during_evac_failure(_worker_id, old, m); _scanner.set_region(r); old->oop_iterate_backwards(&_scanner); return old; } else { // Forward-to-self failed. Either someone else managed to allocate // space for this object (old != forward_ptr) or they beat us in // self-forwarding it (old == forward_ptr). assert(old == forward_ptr || !_g1h->obj_in_cs(forward_ptr), err_msg("Object " PTR_FORMAT " forwarded to: " PTR_FORMAT " " "should not be in the CSet", p2i(old), p2i(forward_ptr))); return forward_ptr; } }