/* * Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * */ // A "CollectedHeap" is an implementation of a java heap for HotSpot. This // is an abstract class: there may be many different kinds of heaps. This // class defines the functions that a heap must implement, and contains // infrastructure common to all heaps. class BarrierSet; class ThreadClosure; class AdaptiveSizePolicy; class Thread; // // CollectedHeap // SharedHeap // GenCollectedHeap // G1CollectedHeap // ParallelScavengeHeap // class CollectedHeap : public CHeapObj { friend class VMStructs; friend class IsGCActiveMark; // Block structured external access to _is_gc_active friend class constantPoolCacheKlass; // allocate() method inserts is_conc_safe #ifdef ASSERT static int _fire_out_of_memory_count; #endif // Used for filler objects (static, but initialized in ctor). static size_t _filler_array_max_size; protected: MemRegion _reserved; BarrierSet* _barrier_set; bool _is_gc_active; unsigned int _total_collections; // ... started unsigned int _total_full_collections; // ... started NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;) NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;) // Reason for current garbage collection. Should be set to // a value reflecting no collection between collections. GCCause::Cause _gc_cause; GCCause::Cause _gc_lastcause; PerfStringVariable* _perf_gc_cause; PerfStringVariable* _perf_gc_lastcause; // Constructor CollectedHeap(); // Create a new tlab virtual HeapWord* allocate_new_tlab(size_t size); // Fix up tlabs to make the heap well-formed again, // optionally retiring the tlabs. virtual void fill_all_tlabs(bool retire); // Accumulate statistics on all tlabs. virtual void accumulate_statistics_all_tlabs(); // Reinitialize tlabs before resuming mutators. virtual void resize_all_tlabs(); protected: // Allocate from the current thread's TLAB, with broken-out slow path. inline static HeapWord* allocate_from_tlab(Thread* thread, size_t size); static HeapWord* allocate_from_tlab_slow(Thread* thread, size_t size); // Allocate an uninitialized block of the given size, or returns NULL if // this is impossible. inline static HeapWord* common_mem_allocate_noinit(size_t size, bool is_noref, TRAPS); // Like allocate_init, but the block returned by a successful allocation // is guaranteed initialized to zeros. inline static HeapWord* common_mem_allocate_init(size_t size, bool is_noref, TRAPS); // Same as common_mem version, except memory is allocated in the permanent area // If there is no permanent area, revert to common_mem_allocate_noinit inline static HeapWord* common_permanent_mem_allocate_noinit(size_t size, TRAPS); // Same as common_mem version, except memory is allocated in the permanent area // If there is no permanent area, revert to common_mem_allocate_init inline static HeapWord* common_permanent_mem_allocate_init(size_t size, TRAPS); // Helper functions for (VM) allocation. inline static void post_allocation_setup_common(KlassHandle klass, HeapWord* obj, size_t size); inline static void post_allocation_setup_no_klass_install(KlassHandle klass, HeapWord* objPtr, size_t size); inline static void post_allocation_setup_obj(KlassHandle klass, HeapWord* obj, size_t size); inline static void post_allocation_setup_array(KlassHandle klass, HeapWord* obj, size_t size, int length); // Clears an allocated object. inline static void init_obj(HeapWord* obj, size_t size); // Filler object utilities. static inline size_t filler_array_hdr_size(); static inline size_t filler_array_min_size(); static inline size_t filler_array_max_size(); DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);) DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words);) // Fill with a single array; caller must ensure filler_array_min_size() <= // words <= filler_array_max_size(). static inline void fill_with_array(HeapWord* start, size_t words); // Fill with a single object (either an int array or a java.lang.Object). static inline void fill_with_object_impl(HeapWord* start, size_t words); // Verification functions virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size) PRODUCT_RETURN; virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size) PRODUCT_RETURN; debug_only(static void check_for_valid_allocation_state();) public: enum Name { Abstract, SharedHeap, GenCollectedHeap, ParallelScavengeHeap, G1CollectedHeap }; virtual CollectedHeap::Name kind() const { return CollectedHeap::Abstract; } /** * Returns JNI error code JNI_ENOMEM if memory could not be allocated, * and JNI_OK on success. */ virtual jint initialize() = 0; // In many heaps, there will be a need to perform some initialization activities // after the Universe is fully formed, but before general heap allocation is allowed. // This is the correct place to place such initialization methods. virtual void post_initialize() = 0; MemRegion reserved_region() const { return _reserved; } address base() const { return (address)reserved_region().start(); } // Future cleanup here. The following functions should specify bytes or // heapwords as part of their signature. virtual size_t capacity() const = 0; virtual size_t used() const = 0; // Return "true" if the part of the heap that allocates Java // objects has reached the maximal committed limit that it can // reach, without a garbage collection. virtual bool is_maximal_no_gc() const = 0; virtual size_t permanent_capacity() const = 0; virtual size_t permanent_used() const = 0; // Support for java.lang.Runtime.maxMemory(): return the maximum amount of // memory that the vm could make available for storing 'normal' java objects. // This is based on the reserved address space, but should not include space // that the vm uses internally for bookkeeping or temporary storage (e.g., // perm gen space or, in the case of the young gen, one of the survivor // spaces). virtual size_t max_capacity() const = 0; // Returns "TRUE" if "p" points into the reserved area of the heap. bool is_in_reserved(const void* p) const { return _reserved.contains(p); } bool is_in_reserved_or_null(const void* p) const { return p == NULL || is_in_reserved(p); } // Returns "TRUE" if "p" points to the head of an allocated object in the // heap. Since this method can be expensive in general, we restrict its // use to assertion checking only. virtual bool is_in(const void* p) const = 0; bool is_in_or_null(const void* p) const { return p == NULL || is_in(p); } // Let's define some terms: a "closed" subset of a heap is one that // // 1) contains all currently-allocated objects, and // // 2) is closed under reference: no object in the closed subset // references one outside the closed subset. // // Membership in a heap's closed subset is useful for assertions. // Clearly, the entire heap is a closed subset, so the default // implementation is to use "is_in_reserved". But this may not be too // liberal to perform useful checking. Also, the "is_in" predicate // defines a closed subset, but may be too expensive, since "is_in" // verifies that its argument points to an object head. The // "closed_subset" method allows a heap to define an intermediate // predicate, allowing more precise checking than "is_in_reserved" at // lower cost than "is_in." // One important case is a heap composed of disjoint contiguous spaces, // such as the Garbage-First collector. Such heaps have a convenient // closed subset consisting of the allocated portions of those // contiguous spaces. // Return "TRUE" iff the given pointer points into the heap's defined // closed subset (which defaults to the entire heap). virtual bool is_in_closed_subset(const void* p) const { return is_in_reserved(p); } bool is_in_closed_subset_or_null(const void* p) const { return p == NULL || is_in_closed_subset(p); } // Returns "TRUE" if "p" is allocated as "permanent" data. // If the heap does not use "permanent" data, returns the same // value is_in_reserved() would return. // NOTE: this actually returns true if "p" is in reserved space // for the space not that it is actually allocated (i.e. in committed // space). If you need the more conservative answer use is_permanent(). virtual bool is_in_permanent(const void *p) const = 0; // Returns "TRUE" if "p" is in the committed area of "permanent" data. // If the heap does not use "permanent" data, returns the same // value is_in() would return. virtual bool is_permanent(const void *p) const = 0; bool is_in_permanent_or_null(const void *p) const { return p == NULL || is_in_permanent(p); } // Returns "TRUE" if "p" is a method oop in the // current heap, with high probability. This predicate // is not stable, in general. bool is_valid_method(oop p) const; void set_gc_cause(GCCause::Cause v) { if (UsePerfData) { _gc_lastcause = _gc_cause; _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause)); _perf_gc_cause->set_value(GCCause::to_string(v)); } _gc_cause = v; } GCCause::Cause gc_cause() { return _gc_cause; } // Preload classes into the shared portion of the heap, and then dump // that data to a file so that it can be loaded directly by another // VM (then terminate). virtual void preload_and_dump(TRAPS) { ShouldNotReachHere(); } // General obj/array allocation facilities. inline static oop obj_allocate(KlassHandle klass, int size, TRAPS); inline static oop array_allocate(KlassHandle klass, int size, int length, TRAPS); inline static oop large_typearray_allocate(KlassHandle klass, int size, int length, TRAPS); // Special obj/array allocation facilities. // Some heaps may want to manage "permanent" data uniquely. These default // to the general routines if the heap does not support such handling. inline static oop permanent_obj_allocate(KlassHandle klass, int size, TRAPS); // permanent_obj_allocate_no_klass_install() does not do the installation of // the klass pointer in the newly created object (as permanent_obj_allocate() // above does). This allows for a delay in the installation of the klass // pointer that is needed during the create of klassKlass's. The // method post_allocation_install_obj_klass() is used to install the // klass pointer. inline static oop permanent_obj_allocate_no_klass_install(KlassHandle klass, int size, TRAPS); inline static void post_allocation_install_obj_klass(KlassHandle klass, oop obj, int size); inline static oop permanent_array_allocate(KlassHandle klass, int size, int length, TRAPS); // Raw memory allocation facilities // The obj and array allocate methods are covers for these methods. // The permanent allocation method should default to mem_allocate if // permanent memory isn't supported. virtual HeapWord* mem_allocate(size_t size, bool is_noref, bool is_tlab, bool* gc_overhead_limit_was_exceeded) = 0; virtual HeapWord* permanent_mem_allocate(size_t size) = 0; // The boundary between a "large" and "small" array of primitives, in words. virtual size_t large_typearray_limit() = 0; // Utilities for turning raw memory into filler objects. // // min_fill_size() is the smallest region that can be filled. // fill_with_objects() can fill arbitrary-sized regions of the heap using // multiple objects. fill_with_object() is for regions known to be smaller // than the largest array of integers; it uses a single object to fill the // region and has slightly less overhead. static size_t min_fill_size() { return size_t(align_object_size(oopDesc::header_size())); } static void fill_with_objects(HeapWord* start, size_t words); static void fill_with_object(HeapWord* start, size_t words); static void fill_with_object(MemRegion region) { fill_with_object(region.start(), region.word_size()); } static void fill_with_object(HeapWord* start, HeapWord* end) { fill_with_object(start, pointer_delta(end, start)); } // Some heaps may offer a contiguous region for shared non-blocking // allocation, via inlined code (by exporting the address of the top and // end fields defining the extent of the contiguous allocation region.) // This function returns "true" iff the heap supports this kind of // allocation. (Default is "no".) virtual bool supports_inline_contig_alloc() const { return false; } // These functions return the addresses of the fields that define the // boundaries of the contiguous allocation area. (These fields should be // physically near to one another.) virtual HeapWord** top_addr() const { guarantee(false, "inline contiguous allocation not supported"); return NULL; } virtual HeapWord** end_addr() const { guarantee(false, "inline contiguous allocation not supported"); return NULL; } // Some heaps may be in an unparseable state at certain times between // collections. This may be necessary for efficient implementation of // certain allocation-related activities. Calling this function before // attempting to parse a heap ensures that the heap is in a parsable // state (provided other concurrent activity does not introduce // unparsability). It is normally expected, therefore, that this // method is invoked with the world stopped. // NOTE: if you override this method, make sure you call // super::ensure_parsability so that the non-generational // part of the work gets done. See implementation of // CollectedHeap::ensure_parsability and, for instance, // that of GenCollectedHeap::ensure_parsability(). // The argument "retire_tlabs" controls whether existing TLABs // are merely filled or also retired, thus preventing further // allocation from them and necessitating allocation of new TLABs. virtual void ensure_parsability(bool retire_tlabs); // Return an estimate of the maximum allocation that could be performed // without triggering any collection or expansion activity. In a // generational collector, for example, this is probably the largest // allocation that could be supported (without expansion) in the youngest // generation. It is "unsafe" because no locks are taken; the result // should be treated as an approximation, not a guarantee, for use in // heuristic resizing decisions. virtual size_t unsafe_max_alloc() = 0; // Section on thread-local allocation buffers (TLABs) // If the heap supports thread-local allocation buffers, it should override // the following methods: // Returns "true" iff the heap supports thread-local allocation buffers. // The default is "no". virtual bool supports_tlab_allocation() const { return false; } // The amount of space available for thread-local allocation buffers. virtual size_t tlab_capacity(Thread *thr) const { guarantee(false, "thread-local allocation buffers not supported"); return 0; } // An estimate of the maximum allocation that could be performed // for thread-local allocation buffers without triggering any // collection or expansion activity. virtual size_t unsafe_max_tlab_alloc(Thread *thr) const { guarantee(false, "thread-local allocation buffers not supported"); return 0; } // Can a compiler initialize a new object without store barriers? // This permission only extends from the creation of a new object // via a TLAB up to the first subsequent safepoint. virtual bool can_elide_tlab_store_barriers() const = 0; // If a compiler is eliding store barriers for TLAB-allocated objects, // there is probably a corresponding slow path which can produce // an object allocated anywhere. The compiler's runtime support // promises to call this function on such a slow-path-allocated // object before performing initializations that have elided // store barriers. Returns new_obj, or maybe a safer copy thereof. virtual oop new_store_barrier(oop new_obj); // Can a compiler elide a store barrier when it writes // a permanent oop into the heap? Applies when the compiler // is storing x to the heap, where x->is_perm() is true. virtual bool can_elide_permanent_oop_store_barriers() const = 0; // Does this heap support heap inspection (+PrintClassHistogram?) virtual bool supports_heap_inspection() const = 0; // Perform a collection of the heap; intended for use in implementing // "System.gc". This probably implies as full a collection as the // "CollectedHeap" supports. virtual void collect(GCCause::Cause cause) = 0; // This interface assumes that it's being called by the // vm thread. It collects the heap assuming that the // heap lock is already held and that we are executing in // the context of the vm thread. virtual void collect_as_vm_thread(GCCause::Cause cause) = 0; // Returns the barrier set for this heap BarrierSet* barrier_set() { return _barrier_set; } // Returns "true" iff there is a stop-world GC in progress. (I assume // that it should answer "false" for the concurrent part of a concurrent // collector -- dld). bool is_gc_active() const { return _is_gc_active; } // Total number of GC collections (started) unsigned int total_collections() const { return _total_collections; } unsigned int total_full_collections() const { return _total_full_collections;} // Increment total number of GC collections (started) // Should be protected but used by PSMarkSweep - cleanup for 1.4.2 void increment_total_collections(bool full = false) { _total_collections++; if (full) { increment_total_full_collections(); } } void increment_total_full_collections() { _total_full_collections++; } // Return the AdaptiveSizePolicy for the heap. virtual AdaptiveSizePolicy* size_policy() = 0; // Iterate over all the ref-containing fields of all objects, calling // "cl.do_oop" on each. This includes objects in permanent memory. virtual void oop_iterate(OopClosure* cl) = 0; // Iterate over all objects, calling "cl.do_object" on each. // This includes objects in permanent memory. virtual void object_iterate(ObjectClosure* cl) = 0; // Similar to object_iterate() except iterates only // over live objects. virtual void safe_object_iterate(ObjectClosure* cl) = 0; // Behaves the same as oop_iterate, except only traverses // interior pointers contained in permanent memory. If there // is no permanent memory, does nothing. virtual void permanent_oop_iterate(OopClosure* cl) = 0; // Behaves the same as object_iterate, except only traverses // object contained in permanent memory. If there is no // permanent memory, does nothing. virtual void permanent_object_iterate(ObjectClosure* cl) = 0; // NOTE! There is no requirement that a collector implement these // functions. // // A CollectedHeap is divided into a dense sequence of "blocks"; that is, // each address in the (reserved) heap is a member of exactly // one block. The defining characteristic of a block is that it is // possible to find its size, and thus to progress forward to the next // block. (Blocks may be of different sizes.) Thus, blocks may // represent Java objects, or they might be free blocks in a // free-list-based heap (or subheap), as long as the two kinds are // distinguishable and the size of each is determinable. // Returns the address of the start of the "block" that contains the // address "addr". We say "blocks" instead of "object" since some heaps // may not pack objects densely; a chunk may either be an object or a // non-object. virtual HeapWord* block_start(const void* addr) const = 0; // Requires "addr" to be the start of a chunk, and returns its size. // "addr + size" is required to be the start of a new chunk, or the end // of the active area of the heap. virtual size_t block_size(const HeapWord* addr) const = 0; // Requires "addr" to be the start of a block, and returns "TRUE" iff // the block is an object. virtual bool block_is_obj(const HeapWord* addr) const = 0; // Returns the longest time (in ms) that has elapsed since the last // time that any part of the heap was examined by a garbage collection. virtual jlong millis_since_last_gc() = 0; // Perform any cleanup actions necessary before allowing a verification. virtual void prepare_for_verify() = 0; // Generate any dumps preceding or following a full gc void pre_full_gc_dump(); void post_full_gc_dump(); virtual void print() const = 0; virtual void print_on(outputStream* st) const = 0; // Print all GC threads (other than the VM thread) // used by this heap. virtual void print_gc_threads_on(outputStream* st) const = 0; void print_gc_threads() { print_gc_threads_on(tty); } // Iterator for all GC threads (other than VM thread) virtual void gc_threads_do(ThreadClosure* tc) const = 0; // Print any relevant tracing info that flags imply. // Default implementation does nothing. virtual void print_tracing_info() const = 0; // Heap verification virtual void verify(bool allow_dirty, bool silent) = 0; // Non product verification and debugging. #ifndef PRODUCT // Support for PromotionFailureALot. Return true if it's time to cause a // promotion failure. The no-argument version uses // this->_promotion_failure_alot_count as the counter. inline bool promotion_should_fail(volatile size_t* count); inline bool promotion_should_fail(); // Reset the PromotionFailureALot counters. Should be called at the end of a // GC in which promotion failure ocurred. inline void reset_promotion_should_fail(volatile size_t* count); inline void reset_promotion_should_fail(); #endif // #ifndef PRODUCT #ifdef ASSERT static int fired_fake_oom() { return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt); } #endif }; // Class to set and reset the GC cause for a CollectedHeap. class GCCauseSetter : StackObj { CollectedHeap* _heap; GCCause::Cause _previous_cause; public: GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) { assert(SafepointSynchronize::is_at_safepoint(), "This method manipulates heap state without locking"); _heap = heap; _previous_cause = _heap->gc_cause(); _heap->set_gc_cause(cause); } ~GCCauseSetter() { assert(SafepointSynchronize::is_at_safepoint(), "This method manipulates heap state without locking"); _heap->set_gc_cause(_previous_cause); } };