/* * Copyright (c) 2003, 2022, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * @test * @library /test/lib * @build jdk.test.lib.RandomFactory * @run main HypotTests * @bug 4851638 4939441 8078672 8240632 * @summary Tests for {Math, StrictMath}.hypot (use -Dseed=X to set PRNG seed) * @key randomness */ import jdk.test.lib.RandomFactory; public class HypotTests { private HypotTests(){} static final double infinityD = Double.POSITIVE_INFINITY; static final double NaNd = Double.NaN; /** * Given integers m and n, assuming m < n, the triple (n^2 - m^2, * 2mn, and n^2 + m^2) is a Pythagorean triple with a^2 + b^2 = * c^2. This methods returns a long array holding the Pythagorean * triple corresponding to the inputs. */ static long [] pythagoreanTriple(int m, int n) { long M = m; long N = n; long result[] = new long[3]; result[0] = Math.abs(M*M - N*N); result[1] = Math.abs(2*M*N); result[2] = Math.abs(M*M + N*N); return result; } static int testHypot() { int failures = 0; double [][] testCases = { // Special cases {infinityD, infinityD, infinityD}, {infinityD, 0.0, infinityD}, {infinityD, 1.0, infinityD}, {infinityD, NaNd, infinityD}, {NaNd, NaNd, NaNd}, {0.0, NaNd, NaNd}, {1.0, NaNd, NaNd}, {Double.longBitsToDouble(0x7FF0000000000001L), 1.0, NaNd}, {Double.longBitsToDouble(0xFFF0000000000001L), 1.0, NaNd}, {Double.longBitsToDouble(0x7FF8555555555555L), 1.0, NaNd}, {Double.longBitsToDouble(0xFFF8555555555555L), 1.0, NaNd}, {Double.longBitsToDouble(0x7FFFFFFFFFFFFFFFL), 1.0, NaNd}, {Double.longBitsToDouble(0xFFFFFFFFFFFFFFFFL), 1.0, NaNd}, {Double.longBitsToDouble(0x7FFDeadBeef00000L), 1.0, NaNd}, {Double.longBitsToDouble(0xFFFDeadBeef00000L), 1.0, NaNd}, {Double.longBitsToDouble(0x7FFCafeBabe00000L), 1.0, NaNd}, {Double.longBitsToDouble(0xFFFCafeBabe00000L), 1.0, NaNd}, }; for(int i = 0; i < testCases.length; i++) { failures += testHypotCase(testCases[i][0], testCases[i][1], testCases[i][2]); } // Verify hypot(x, 0.0) is close to x over the entire exponent // range. for(int i = DoubleConsts.MIN_SUB_EXPONENT; i <= Double.MAX_EXPONENT; i++) { double input = Math.scalb(2, i); failures += testHypotCase(input, 0.0, input); } // Test Pythagorean triples // Small ones for(int m = 1; m < 10; m++) { for(int n = m+1; n < 11; n++) { long [] result = pythagoreanTriple(m, n); failures += testHypotCase(result[0], result[1], result[2]); } } // Big ones for(int m = 100000; m < 100100; m++) { for(int n = m+100000; n < 200200; n++) { long [] result = pythagoreanTriple(m, n); failures += testHypotCase(result[0], result[1], result[2]); } } // Approaching overflow tests /* * Create a random value r with an large-ish exponent. The * result of hypot(3*r, 4*r) should be approximately 5*r. (The * computation of 4*r is exact since it just changes the * exponent). While the exponent of r is less than or equal * to (MAX_EXPONENT - 3), the computation should not overflow. */ java.util.Random rand = RandomFactory.getRandom(); for(int i = 0; i < 1000; i++) { double d = rand.nextDouble(); // Scale d to have an exponent equal to MAX_EXPONENT -15 d = Math.scalb(d, Double.MAX_EXPONENT -15 - Tests.ilogb(d)); for(int j = 0; j <= 13; j += 1) { failures += testHypotCase(3*d, 4*d, 5*d, 2.5); d *= 2.0; // increase exponent by 1 } } // Test for monotonicity failures. Fix one argument and test // two numbers before and two numbers after each chosen value; // i.e. // // pcNeighbors[] = // {nextDown(nextDown(pc)), // nextDown(pc), // pc, // nextUp(pc), // nextUp(nextUp(pc))} // // and we test that hypot(pcNeighbors[i]) <= hypot(pcNeighbors[i+1]) { double pcNeighbors[] = new double[5]; double pcNeighborsHypot[] = new double[5]; double pcNeighborsStrictHypot[] = new double[5]; for(int i = -18; i <= 18; i++) { double pc = Math.scalb(1.0, i); pcNeighbors[2] = pc; pcNeighbors[1] = Math.nextDown(pc); pcNeighbors[0] = Math.nextDown(pcNeighbors[1]); pcNeighbors[3] = Math.nextUp(pc); pcNeighbors[4] = Math.nextUp(pcNeighbors[3]); for(int j = 0; j < pcNeighbors.length; j++) { pcNeighborsHypot[j] = Math.hypot(2.0, pcNeighbors[j]); pcNeighborsStrictHypot[j] = StrictMath.hypot(2.0, pcNeighbors[j]); } for(int j = 0; j < pcNeighborsHypot.length-1; j++) { if(pcNeighborsHypot[j] > pcNeighborsHypot[j+1] ) { failures++; System.err.println("Monotonicity failure for Math.hypot on " + pcNeighbors[j] + " and " + pcNeighbors[j+1] + "\n\treturned " + pcNeighborsHypot[j] + " and " + pcNeighborsHypot[j+1] ); } if(pcNeighborsStrictHypot[j] > pcNeighborsStrictHypot[j+1] ) { failures++; System.err.println("Monotonicity failure for StrictMath.hypot on " + pcNeighbors[j] + " and " + pcNeighbors[j+1] + "\n\treturned " + pcNeighborsStrictHypot[j] + " and " + pcNeighborsStrictHypot[j+1] ); } } } } return failures; } /** * Verify +0.0 is returned if both arguments are zero. */ private static int testHypotZeros() { return testHypotCase(0.0, 0.0, +0.0, 0.0); } static int testHypotCase(double input1, double input2, double expected) { return testHypotCase(input1,input2, expected, 1); } static int testHypotCase(double input1, double input2, double expected, double ulps) { int failures = 0; if (expected < 0.0) { throw new AssertionError("Result of hypot must be greater than " + "or equal to zero"); } // Test Math and StrictMath methods with no inputs negated, // each input negated singly, and both inputs negated. Also // test inputs in reversed order. for(int i = -1; i <= 1; i += 2) { for(int j = -1; j <= 1; j += 2) { double x = i * input1; double y = j * input2; failures += Tests.testUlpDiff("Math.hypot", x, y, Math::hypot, expected, ulps); failures += Tests.testUlpDiff("Math.hypot", y, x, Math::hypot, expected, ulps); failures += Tests.testUlpDiff("StrictMath.hypot", x, y, StrictMath::hypot, expected, ulps); failures += Tests.testUlpDiff("StrictMath.hypot", y, x, StrictMath::hypot, expected, ulps); } } return failures; } public static void main(String... argv) { int failures = 0; failures += testHypot(); failures += testHypotZeros(); if (failures > 0) { System.err.println("Testing the hypot incurred " + failures + " failures."); throw new RuntimeException(); } } }