/* * Copyright (c) 2003, 2023, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * @test * @bug 8302040 * @key randomness * @library /test/lib * @build jdk.test.lib.RandomFactory * @build Tests * @build FdlibmTranslit * @build SqrtTests * @run main SqrtTests * @summary Tests for StrictMath.sqrt */ import jdk.test.lib.RandomFactory; /** * The tests in ../Math/SqrtTests.java test properties that should * hold for any sqrt implementation, including the FDLIBM-based one * required for StrictMath.sqrt. Therefore, the test cases in * ../Math/SqrtTests.java are run against both the Math and * StrictMath versions of sqrt. The role of this test is to verify * that the FDLIBM sqrt algorithm is being used by running golden * file tests on values that may vary from one conforming sqrt * implementation to another. */ public class SqrtTests { private SqrtTests(){} public static void main(String... args) { int failures = 0; failures += testAgainstTranslit(); if (failures > 0) { System.err.println("Testing sqrt incurred " + failures + " failures."); throw new RuntimeException(); } } // Initialize shared random number generator private static java.util.Random random = RandomFactory.getRandom(); /** * Test StrictMath.sqrt against transliteration port of sqrt. */ private static int testAgainstTranslit() { int failures = 0; double x; // Test just above subnormal threshold... x = Double.MIN_NORMAL; failures += testRange(x, Math.ulp(x), 1000); // ... and just below subnormal threshold ... x = Math.nextDown(Double.MIN_NORMAL); failures += testRange(x, -Math.ulp(x), 1000); // ... and near 1.0 ... failures += testRangeMidpoint(1.0, Math.ulp(x), 2000); // (Note: probes every-other value less than 1.0 due to // change in the size of an ulp at 1.0. // Probe near decision points in the FDLIBM algorithm. double[] decisionPoints = { Double.MIN_VALUE, Double.MAX_VALUE, }; for (double testPoint : decisionPoints) { failures += testRangeMidpoint(testPoint, Math.ulp(testPoint), 1000); } x = Tests.createRandomDouble(random); // Make the increment twice the ulp value in case the random // value is near an exponent threshold. Don't worry about test // elements overflowing to infinity if the starting value is // near Double.MAX_VALUE. failures += testRange(x, 2.0 * Math.ulp(x), 1000); return failures; } private static int testRange(double start, double increment, int count) { int failures = 0; double x = start; for (int i = 0; i < count; i++, x += increment) { failures += testSqrtCase(x, FdlibmTranslit.sqrt(x)); } return failures; } private static int testRangeMidpoint(double midpoint, double increment, int count) { int failures = 0; double x = midpoint - increment*(count / 2) ; for (int i = 0; i < count; i++, x += increment) { failures += testSqrtCase(x, FdlibmTranslit.sqrt(x)); } return failures; } private static int testSqrtCase(double input, double expected) { return Tests.test("StrictMath.sqrt(double)", input, StrictMath::sqrt, expected); } }