/* * Copyright (c) 2012, 2018 SAP SE. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "libperfstat_aix.hpp" #include "misc_aix.hpp" #include // Handle to the libperfstat. static void* g_libhandle = NULL; typedef int (*fun_perfstat_cpu_total_t) (perfstat_id_t *name, PERFSTAT_CPU_TOTAL_T_LATEST* userbuff, int sizeof_userbuff, int desired_number); typedef int (*fun_perfstat_memory_total_t) (perfstat_id_t *name, perfstat_memory_total_t* userbuff, int sizeof_userbuff, int desired_number); typedef int (*fun_perfstat_partition_total_t) (perfstat_id_t *name, PERFSTAT_PARTITON_TOTAL_T_LATEST* userbuff, int sizeof_userbuff, int desired_number); typedef int (*fun_perfstat_wpar_total_t) (perfstat_id_wpar_t *name, PERFSTAT_WPAR_TOTAL_T_LATEST* userbuff, int sizeof_userbuff, int desired_number); typedef void (*fun_perfstat_reset_t) (); typedef cid_t (*fun_wpar_getcid_t) (); static fun_perfstat_cpu_total_t g_fun_perfstat_cpu_total = NULL; static fun_perfstat_memory_total_t g_fun_perfstat_memory_total = NULL; static fun_perfstat_partition_total_t g_fun_perfstat_partition_total = NULL; static fun_perfstat_wpar_total_t g_fun_perfstat_wpar_total = NULL; static fun_perfstat_reset_t g_fun_perfstat_reset = NULL; static fun_wpar_getcid_t g_fun_wpar_getcid = NULL; bool libperfstat::init() { // Dynamically load the libperfstat porting library. g_libhandle = dlopen("/usr/lib/libperfstat.a(shr_64.o)", RTLD_MEMBER | RTLD_NOW); if (!g_libhandle) { trcVerbose("Cannot load libperfstat.a (dlerror: %s)", dlerror()); return false; } // Resolve function pointers #define RESOLVE_FUN_NO_ERROR(name) \ g_fun_##name = (fun_##name##_t) dlsym(g_libhandle, #name); #define RESOLVE_FUN(name) \ RESOLVE_FUN_NO_ERROR(name) \ if (!g_fun_##name) { \ trcVerbose("Cannot resolve " #name "() from libperfstat.a\n" \ " (dlerror: %s)", dlerror()); \ return false; \ } // These functions may or may not be there depending on the OS release. RESOLVE_FUN_NO_ERROR(perfstat_partition_total); RESOLVE_FUN_NO_ERROR(perfstat_wpar_total); RESOLVE_FUN_NO_ERROR(wpar_getcid); // These functions are required for every release. RESOLVE_FUN(perfstat_cpu_total); RESOLVE_FUN(perfstat_memory_total); RESOLVE_FUN(perfstat_reset); trcVerbose("libperfstat loaded."); return true; } void libperfstat::cleanup() { if (g_libhandle) { dlclose(g_libhandle); g_libhandle = NULL; } g_fun_perfstat_cpu_total = NULL; g_fun_perfstat_memory_total = NULL; g_fun_perfstat_partition_total = NULL; g_fun_perfstat_wpar_total = NULL; g_fun_perfstat_reset = NULL; g_fun_wpar_getcid = NULL; } int libperfstat::perfstat_memory_total(perfstat_id_t *name, perfstat_memory_total_t* userbuff, int sizeof_userbuff, int desired_number) { if (g_fun_perfstat_memory_total == NULL) { return -1; } return g_fun_perfstat_memory_total(name, userbuff, sizeof_userbuff, desired_number); } int libperfstat::perfstat_cpu_total(perfstat_id_t *name, PERFSTAT_CPU_TOTAL_T_LATEST* userbuff, int sizeof_userbuff, int desired_number) { if (g_fun_perfstat_cpu_total == NULL) { return -1; } return g_fun_perfstat_cpu_total(name, userbuff, sizeof_userbuff, desired_number); } int libperfstat::perfstat_partition_total(perfstat_id_t *name, PERFSTAT_PARTITON_TOTAL_T_LATEST* userbuff, int sizeof_userbuff, int desired_number) { if (g_fun_perfstat_partition_total == NULL) { return -1; } return g_fun_perfstat_partition_total(name, userbuff, sizeof_userbuff, desired_number); } int libperfstat::perfstat_wpar_total(perfstat_id_wpar_t *name, PERFSTAT_WPAR_TOTAL_T_LATEST* userbuff, int sizeof_userbuff, int desired_number) { if (g_fun_perfstat_wpar_total == NULL) { return -1; } return g_fun_perfstat_wpar_total(name, userbuff, sizeof_userbuff, desired_number); } void libperfstat::perfstat_reset() { if (g_fun_perfstat_reset != NULL) { g_fun_perfstat_reset(); } } cid_t libperfstat::wpar_getcid() { if (g_fun_wpar_getcid == NULL) { return (cid_t) -1; } return g_fun_wpar_getcid(); } //////////////////// convenience functions, release-independent ///////////////////////////// // Retrieve global cpu information. bool libperfstat::get_cpuinfo(cpuinfo_t* pci) { assert(pci, "get_cpuinfo: invalid parameter"); memset(pci, 0, sizeof(cpuinfo_t)); PERFSTAT_CPU_TOTAL_T_LATEST psct; memset (&psct, '\0', sizeof(psct)); if (-1 == libperfstat::perfstat_cpu_total(NULL, &psct, sizeof(PERFSTAT_CPU_TOTAL_T_LATEST), 1)) { if (-1 == libperfstat::perfstat_cpu_total(NULL, &psct, sizeof(perfstat_cpu_total_t_71), 1)) { if (-1 == libperfstat::perfstat_cpu_total(NULL, &psct, sizeof(perfstat_cpu_total_t_61), 1)) { if (-1 == libperfstat::perfstat_cpu_total(NULL, &psct, sizeof(perfstat_cpu_total_t_53), 1)) { trcVerbose("perfstat_cpu_total() failed (errno=%d)", errno); return false; } } } } // Global cpu information. strcpy(pci->description, psct.description); pci->processorHZ = psct.processorHZ; pci->ncpus = psct.ncpus; for (int i = 0; i < 3; i++) { pci->loadavg[i] = (double) psct.loadavg[i] / (1 << SBITS); } pci->user_clock_ticks = psct.user; pci->sys_clock_ticks = psct.sys; pci->idle_clock_ticks = psct.idle; pci->wait_clock_ticks = psct.wait; return true; } // Retrieve partition information. bool libperfstat::get_partitioninfo(partitioninfo_t* ppi) { assert(ppi, "get_partitioninfo: invalid parameter"); memset(ppi, 0, sizeof(partitioninfo_t)); PERFSTAT_PARTITON_TOTAL_T_LATEST pspt; memset(&pspt, '\0', sizeof(pspt)); bool ame_details = true; if (-1 == libperfstat::perfstat_partition_total(NULL, &pspt, sizeof(PERFSTAT_PARTITON_TOTAL_T_LATEST), 1)) { if (-1 == libperfstat::perfstat_partition_total(NULL, &pspt, sizeof(perfstat_partition_total_t_71), 1)) { ame_details = false; if (-1 == libperfstat::perfstat_partition_total(NULL, &pspt, sizeof(perfstat_partition_total_t_61), 1)) { if (-1 == libperfstat::perfstat_partition_total(NULL, &pspt, sizeof(perfstat_partition_total_t_53), 1)) { if (-1 == libperfstat::perfstat_partition_total(NULL, &pspt, sizeof(perfstat_partition_total_t_53_5), 1)) { trcVerbose("perfstat_partition_total() failed (errno=%d)", errno); return false; } } } } } // partition type info ppi->shared_enabled = pspt.type.b.shared_enabled; ppi->smt_capable = pspt.type.b.smt_capable; ppi->smt_enabled = pspt.type.b.smt_enabled; ppi->lpar_capable = pspt.type.b.lpar_capable; ppi->lpar_enabled = pspt.type.b.lpar_enabled; ppi->dlpar_capable = pspt.type.b.dlpar_capable; ppi->capped = pspt.type.b.capped; ppi->kernel_is_64 = pspt.type.b.kernel_is_64; ppi->pool_util_authority = pspt.type.b.pool_util_authority; ppi->donate_capable = pspt.type.b.donate_capable; ppi->donate_enabled = pspt.type.b.donate_enabled; ppi->ams_capable = pspt.type.b.ams_capable; ppi->ams_enabled = pspt.type.b.ams_enabled; ppi->power_save = pspt.type.b.power_save; ppi->ame_enabled = pspt.type.b.ame_enabled; // partition total info ppi->online_cpus = pspt.online_cpus; ppi->entitled_proc_capacity = pspt.entitled_proc_capacity; ppi->var_proc_capacity_weight = pspt.var_proc_capacity_weight; ppi->phys_cpus_pool = pspt.phys_cpus_pool; ppi->pool_id = pspt.pool_id; ppi->entitled_pool_capacity = pspt.entitled_pool_capacity; strcpy(ppi->name, pspt.name); // Added values to ppi that we need for later computation of cpu utilization // ( pool authorization needed for pool_idle_time ??? ) ppi->timebase_last = pspt.timebase_last; ppi->pool_idle_time = pspt.pool_idle_time; ppi->pcpu_tics_user = pspt.puser; ppi->pcpu_tics_sys = pspt.psys; ppi->pcpu_tics_idle = pspt.pidle; ppi->pcpu_tics_wait = pspt.pwait; // Additional AME information. if (ame_details) { ppi->true_memory = pspt.true_memory * 4096; ppi->expanded_memory = pspt.expanded_memory * 4096; ppi->target_memexp_factr = pspt.target_memexp_factr; ppi->current_memexp_factr = pspt.current_memexp_factr; ppi->cmcs_total_time = pspt.cmcs_total_time; } return true; } // Retrieve wpar information. bool libperfstat::get_wparinfo(wparinfo_t* pwi) { assert(pwi, "get_wparinfo: invalid parameter"); memset(pwi, 0, sizeof(wparinfo_t)); if (libperfstat::wpar_getcid() <= 0) { return false; } PERFSTAT_WPAR_TOTAL_T_LATEST pswt; memset (&pswt, '\0', sizeof(pswt)); if (-1 == libperfstat::perfstat_wpar_total(NULL, &pswt, sizeof(PERFSTAT_WPAR_TOTAL_T_LATEST), 1)) { if (-1 == libperfstat::perfstat_wpar_total(NULL, &pswt, sizeof(perfstat_wpar_total_t_61), 1)) { trcVerbose("perfstat_wpar_total() failed (errno=%d)", errno); return false; } } // WPAR type info. pwi->app_wpar = pswt.type.b.app_wpar; pwi->cpu_rset = pswt.type.b.cpu_rset; pwi->cpu_xrset = pswt.type.b.cpu_xrset; pwi->cpu_limits = pswt.type.b.cpu_limits; pwi->mem_limits = pswt.type.b.mem_limits; // WPAR total info. strcpy(pwi->name, pswt.name); pwi->wpar_id = pswt.wpar_id; pwi->cpu_limit = pswt.cpu_limit; pwi->mem_limit = pswt.mem_limit; return true; }