/* * Copyright 2001-2006 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * */ class TaskQueueSuper: public CHeapObj { protected: // The first free element after the last one pushed (mod _n). // (For now we'll assume only 32-bit CAS). volatile juint _bottom; // log2 of the size of the queue. enum SomeProtectedConstants { Log_n = 14 }; // Size of the queue. juint n() { return (1 << Log_n); } // For computing "x mod n" efficiently. juint n_mod_mask() { return n() - 1; } struct Age { jushort _top; jushort _tag; jushort tag() const { return _tag; } jushort top() const { return _top; } Age() { _tag = 0; _top = 0; } friend bool operator ==(const Age& a1, const Age& a2) { return a1.tag() == a2.tag() && a1.top() == a2.top(); } }; Age _age; // These make sure we do single atomic reads and writes. Age get_age() { jint res = *(volatile jint*)(&_age); return *(Age*)(&res); } void set_age(Age a) { *(volatile jint*)(&_age) = *(int*)(&a); } jushort get_top() { return get_age().top(); } // These both operate mod _n. juint increment_index(juint ind) { return (ind + 1) & n_mod_mask(); } juint decrement_index(juint ind) { return (ind - 1) & n_mod_mask(); } // Returns a number in the range [0.._n). If the result is "n-1", it // should be interpreted as 0. juint dirty_size(juint bot, juint top) { return ((jint)bot - (jint)top) & n_mod_mask(); } // Returns the size corresponding to the given "bot" and "top". juint size(juint bot, juint top) { juint sz = dirty_size(bot, top); // Has the queue "wrapped", so that bottom is less than top? // There's a complicated special case here. A pair of threads could // perform pop_local and pop_global operations concurrently, starting // from a state in which _bottom == _top+1. The pop_local could // succeed in decrementing _bottom, and the pop_global in incrementing // _top (in which case the pop_global will be awarded the contested // queue element.) The resulting state must be interpreted as an empty // queue. (We only need to worry about one such event: only the queue // owner performs pop_local's, and several concurrent threads // attempting to perform the pop_global will all perform the same CAS, // and only one can succeed. Any stealing thread that reads after // either the increment or decrement will seen an empty queue, and will // not join the competitors. The "sz == -1 || sz == _n-1" state will // not be modified by concurrent queues, so the owner thread can reset // the state to _bottom == top so subsequent pushes will be performed // normally. if (sz == (n()-1)) return 0; else return sz; } public: TaskQueueSuper() : _bottom(0), _age() {} // Return "true" if the TaskQueue contains any tasks. bool peek(); // Return an estimate of the number of elements in the queue. // The "careful" version admits the possibility of pop_local/pop_global // races. juint size() { return size(_bottom, get_top()); } juint dirty_size() { return dirty_size(_bottom, get_top()); } // Maximum number of elements allowed in the queue. This is two less // than the actual queue size, for somewhat complicated reasons. juint max_elems() { return n() - 2; } }; template class GenericTaskQueue: public TaskQueueSuper { private: // Slow paths for push, pop_local. (pop_global has no fast path.) bool push_slow(E t, juint dirty_n_elems); bool pop_local_slow(juint localBot, Age oldAge); public: // Initializes the queue to empty. GenericTaskQueue(); void initialize(); // Push the task "t" on the queue. Returns "false" iff the queue is // full. inline bool push(E t); // If succeeds in claiming a task (from the 'local' end, that is, the // most recently pushed task), returns "true" and sets "t" to that task. // Otherwise, the queue is empty and returns false. inline bool pop_local(E& t); // If succeeds in claiming a task (from the 'global' end, that is, the // least recently pushed task), returns "true" and sets "t" to that task. // Otherwise, the queue is empty and returns false. bool pop_global(E& t); // Delete any resource associated with the queue. ~GenericTaskQueue(); private: // Element array. volatile E* _elems; }; template GenericTaskQueue::GenericTaskQueue():TaskQueueSuper() { assert(sizeof(Age) == sizeof(jint), "Depends on this."); } template void GenericTaskQueue::initialize() { _elems = NEW_C_HEAP_ARRAY(E, n()); guarantee(_elems != NULL, "Allocation failed."); } template bool GenericTaskQueue::push_slow(E t, juint dirty_n_elems) { if (dirty_n_elems == n() - 1) { // Actually means 0, so do the push. juint localBot = _bottom; _elems[localBot] = t; _bottom = increment_index(localBot); return true; } else return false; } template bool GenericTaskQueue:: pop_local_slow(juint localBot, Age oldAge) { // This queue was observed to contain exactly one element; either this // thread will claim it, or a competing "pop_global". In either case, // the queue will be logically empty afterwards. Create a new Age value // that represents the empty queue for the given value of "_bottom". (We // must also increment "tag" because of the case where "bottom == 1", // "top == 0". A pop_global could read the queue element in that case, // then have the owner thread do a pop followed by another push. Without // the incrementing of "tag", the pop_global's CAS could succeed, // allowing it to believe it has claimed the stale element.) Age newAge; newAge._top = localBot; newAge._tag = oldAge.tag() + 1; // Perhaps a competing pop_global has already incremented "top", in which // case it wins the element. if (localBot == oldAge.top()) { Age tempAge; // No competing pop_global has yet incremented "top"; we'll try to // install new_age, thus claiming the element. assert(sizeof(Age) == sizeof(jint) && sizeof(jint) == sizeof(juint), "Assumption about CAS unit."); *(jint*)&tempAge = Atomic::cmpxchg(*(jint*)&newAge, (volatile jint*)&_age, *(jint*)&oldAge); if (tempAge == oldAge) { // We win. assert(dirty_size(localBot, get_top()) != n() - 1, "Shouldn't be possible..."); return true; } } // We fail; a completing pop_global gets the element. But the queue is // empty (and top is greater than bottom.) Fix this representation of // the empty queue to become the canonical one. set_age(newAge); assert(dirty_size(localBot, get_top()) != n() - 1, "Shouldn't be possible..."); return false; } template bool GenericTaskQueue::pop_global(E& t) { Age newAge; Age oldAge = get_age(); juint localBot = _bottom; juint n_elems = size(localBot, oldAge.top()); if (n_elems == 0) { return false; } t = _elems[oldAge.top()]; newAge = oldAge; newAge._top = increment_index(newAge.top()); if ( newAge._top == 0 ) newAge._tag++; Age resAge; *(jint*)&resAge = Atomic::cmpxchg(*(jint*)&newAge, (volatile jint*)&_age, *(jint*)&oldAge); // Note that using "_bottom" here might fail, since a pop_local might // have decremented it. assert(dirty_size(localBot, newAge._top) != n() - 1, "Shouldn't be possible..."); return (resAge == oldAge); } template GenericTaskQueue::~GenericTaskQueue() { FREE_C_HEAP_ARRAY(E, _elems); } // Inherits the typedef of "Task" from above. class TaskQueueSetSuper: public CHeapObj { protected: static int randomParkAndMiller(int* seed0); public: // Returns "true" if some TaskQueue in the set contains a task. virtual bool peek() = 0; }; template class GenericTaskQueueSet: public TaskQueueSetSuper { private: int _n; GenericTaskQueue** _queues; public: GenericTaskQueueSet(int n) : _n(n) { typedef GenericTaskQueue* GenericTaskQueuePtr; _queues = NEW_C_HEAP_ARRAY(GenericTaskQueuePtr, n); guarantee(_queues != NULL, "Allocation failure."); for (int i = 0; i < n; i++) { _queues[i] = NULL; } } bool steal_1_random(int queue_num, int* seed, E& t); bool steal_best_of_2(int queue_num, int* seed, E& t); bool steal_best_of_all(int queue_num, int* seed, E& t); void register_queue(int i, GenericTaskQueue* q); GenericTaskQueue* queue(int n); // The thread with queue number "queue_num" (and whose random number seed // is at "seed") is trying to steal a task from some other queue. (It // may try several queues, according to some configuration parameter.) // If some steal succeeds, returns "true" and sets "t" the stolen task, // otherwise returns false. bool steal(int queue_num, int* seed, E& t); bool peek(); }; template void GenericTaskQueueSet::register_queue(int i, GenericTaskQueue* q) { assert(0 <= i && i < _n, "index out of range."); _queues[i] = q; } template GenericTaskQueue* GenericTaskQueueSet::queue(int i) { return _queues[i]; } template bool GenericTaskQueueSet::steal(int queue_num, int* seed, E& t) { for (int i = 0; i < 2 * _n; i++) if (steal_best_of_2(queue_num, seed, t)) return true; return false; } template bool GenericTaskQueueSet::steal_best_of_all(int queue_num, int* seed, E& t) { if (_n > 2) { int best_k; jint best_sz = 0; for (int k = 0; k < _n; k++) { if (k == queue_num) continue; jint sz = _queues[k]->size(); if (sz > best_sz) { best_sz = sz; best_k = k; } } return best_sz > 0 && _queues[best_k]->pop_global(t); } else if (_n == 2) { // Just try the other one. int k = (queue_num + 1) % 2; return _queues[k]->pop_global(t); } else { assert(_n == 1, "can't be zero."); return false; } } template bool GenericTaskQueueSet::steal_1_random(int queue_num, int* seed, E& t) { if (_n > 2) { int k = queue_num; while (k == queue_num) k = randomParkAndMiller(seed) % _n; return _queues[2]->pop_global(t); } else if (_n == 2) { // Just try the other one. int k = (queue_num + 1) % 2; return _queues[k]->pop_global(t); } else { assert(_n == 1, "can't be zero."); return false; } } template bool GenericTaskQueueSet::steal_best_of_2(int queue_num, int* seed, E& t) { if (_n > 2) { int k1 = queue_num; while (k1 == queue_num) k1 = randomParkAndMiller(seed) % _n; int k2 = queue_num; while (k2 == queue_num || k2 == k1) k2 = randomParkAndMiller(seed) % _n; // Sample both and try the larger. juint sz1 = _queues[k1]->size(); juint sz2 = _queues[k2]->size(); if (sz2 > sz1) return _queues[k2]->pop_global(t); else return _queues[k1]->pop_global(t); } else if (_n == 2) { // Just try the other one. int k = (queue_num + 1) % 2; return _queues[k]->pop_global(t); } else { assert(_n == 1, "can't be zero."); return false; } } template bool GenericTaskQueueSet::peek() { // Try all the queues. for (int j = 0; j < _n; j++) { if (_queues[j]->peek()) return true; } return false; } // A class to aid in the termination of a set of parallel tasks using // TaskQueueSet's for work stealing. class ParallelTaskTerminator: public StackObj { private: int _n_threads; TaskQueueSetSuper* _queue_set; jint _offered_termination; bool peek_in_queue_set(); protected: virtual void yield(); void sleep(uint millis); public: // "n_threads" is the number of threads to be terminated. "queue_set" is a // queue sets of work queues of other threads. ParallelTaskTerminator(int n_threads, TaskQueueSetSuper* queue_set); // The current thread has no work, and is ready to terminate if everyone // else is. If returns "true", all threads are terminated. If returns // "false", available work has been observed in one of the task queues, // so the global task is not complete. bool offer_termination(); // Reset the terminator, so that it may be reused again. // The caller is responsible for ensuring that this is done // in an MT-safe manner, once the previous round of use of // the terminator is finished. void reset_for_reuse(); }; #define SIMPLE_STACK 0 template inline bool GenericTaskQueue::push(E t) { #if SIMPLE_STACK juint localBot = _bottom; if (_bottom < max_elems()) { _elems[localBot] = t; _bottom = localBot + 1; return true; } else { return false; } #else juint localBot = _bottom; assert((localBot >= 0) && (localBot < n()), "_bottom out of range."); jushort top = get_top(); juint dirty_n_elems = dirty_size(localBot, top); assert((dirty_n_elems >= 0) && (dirty_n_elems < n()), "n_elems out of range."); if (dirty_n_elems < max_elems()) { _elems[localBot] = t; _bottom = increment_index(localBot); return true; } else { return push_slow(t, dirty_n_elems); } #endif } template inline bool GenericTaskQueue::pop_local(E& t) { #if SIMPLE_STACK juint localBot = _bottom; assert(localBot > 0, "precondition."); localBot--; t = _elems[localBot]; _bottom = localBot; return true; #else juint localBot = _bottom; // This value cannot be n-1. That can only occur as a result of // the assignment to bottom in this method. If it does, this method // resets the size( to 0 before the next call (which is sequential, // since this is pop_local.) juint dirty_n_elems = dirty_size(localBot, get_top()); assert(dirty_n_elems != n() - 1, "Shouldn't be possible..."); if (dirty_n_elems == 0) return false; localBot = decrement_index(localBot); _bottom = localBot; // This is necessary to prevent any read below from being reordered // before the store just above. OrderAccess::fence(); t = _elems[localBot]; // This is a second read of "age"; the "size()" above is the first. // If there's still at least one element in the queue, based on the // "_bottom" and "age" we've read, then there can be no interference with // a "pop_global" operation, and we're done. juint tp = get_top(); if (size(localBot, tp) > 0) { assert(dirty_size(localBot, tp) != n() - 1, "Shouldn't be possible..."); return true; } else { // Otherwise, the queue contained exactly one element; we take the slow // path. return pop_local_slow(localBot, get_age()); } #endif } typedef oop Task; typedef GenericTaskQueue OopTaskQueue; typedef GenericTaskQueueSet OopTaskQueueSet; #define COMPRESSED_OOP_MASK 1 // This is a container class for either an oop* or a narrowOop*. // Both are pushed onto a task queue and the consumer will test is_narrow() // to determine which should be processed. class StarTask { void* _holder; // either union oop* or narrowOop* public: StarTask(narrowOop *p) { _holder = (void *)((uintptr_t)p | COMPRESSED_OOP_MASK); } StarTask(oop *p) { _holder = (void*)p; } StarTask() { _holder = NULL; } operator oop*() { return (oop*)_holder; } operator narrowOop*() { return (narrowOop*)((uintptr_t)_holder & ~COMPRESSED_OOP_MASK); } // Operators to preserve const/volatile in assignments required by gcc void operator=(const volatile StarTask& t) volatile { _holder = t._holder; } bool is_narrow() const { return (((uintptr_t)_holder & COMPRESSED_OOP_MASK) != 0); } }; typedef GenericTaskQueue OopStarTaskQueue; typedef GenericTaskQueueSet OopStarTaskQueueSet; typedef size_t ChunkTask; // index for chunk typedef GenericTaskQueue ChunkTaskQueue; typedef GenericTaskQueueSet ChunkTaskQueueSet; class ChunkTaskQueueWithOverflow: public CHeapObj { protected: ChunkTaskQueue _chunk_queue; GrowableArray* _overflow_stack; public: ChunkTaskQueueWithOverflow() : _overflow_stack(NULL) {} // Initialize both stealable queue and overflow void initialize(); // Save first to stealable queue and then to overflow void save(ChunkTask t); // Retrieve first from overflow and then from stealable queue bool retrieve(ChunkTask& chunk_index); // Retrieve from stealable queue bool retrieve_from_stealable_queue(ChunkTask& chunk_index); // Retrieve from overflow bool retrieve_from_overflow(ChunkTask& chunk_index); bool is_empty(); bool stealable_is_empty(); bool overflow_is_empty(); juint stealable_size() { return _chunk_queue.size(); } ChunkTaskQueue* task_queue() { return &_chunk_queue; } }; #define USE_ChunkTaskQueueWithOverflow