/* * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "classfile/classLoader.hpp" #include "classfile/javaAssertions.hpp" #include "classfile/stringTable.hpp" #include "classfile/symbolTable.hpp" #include "compiler/compilerOracle.hpp" #include "gc/shared/cardTableRS.hpp" #include "gc/shared/genCollectedHeap.hpp" #include "gc/shared/referenceProcessor.hpp" #include "gc/shared/taskqueue.hpp" #include "memory/allocation.inline.hpp" #include "memory/universe.inline.hpp" #include "oops/oop.inline.hpp" #include "prims/jvmtiExport.hpp" #include "runtime/arguments.hpp" #include "runtime/arguments_ext.hpp" #include "runtime/commandLineFlagConstraintList.hpp" #include "runtime/commandLineFlagRangeList.hpp" #include "runtime/globals.hpp" #include "runtime/globals_extension.hpp" #include "runtime/java.hpp" #include "runtime/os.hpp" #include "runtime/vm_version.hpp" #include "services/management.hpp" #include "services/memTracker.hpp" #include "utilities/defaultStream.hpp" #include "utilities/macros.hpp" #include "utilities/stringUtils.hpp" #if INCLUDE_ALL_GCS #include "gc/cms/compactibleFreeListSpace.hpp" #include "gc/g1/g1CollectedHeap.inline.hpp" #include "gc/parallel/parallelScavengeHeap.hpp" #endif // INCLUDE_ALL_GCS // Note: This is a special bug reporting site for the JVM #define DEFAULT_VENDOR_URL_BUG "http://bugreport.java.com/bugreport/crash.jsp" #define DEFAULT_JAVA_LAUNCHER "generic" #define UNSUPPORTED_GC_OPTION(gc) \ do { \ if (gc) { \ if (FLAG_IS_CMDLINE(gc)) { \ warning(#gc " is not supported in this VM. Using Serial GC."); \ } \ FLAG_SET_DEFAULT(gc, false); \ } \ } while(0) char** Arguments::_jvm_flags_array = NULL; int Arguments::_num_jvm_flags = 0; char** Arguments::_jvm_args_array = NULL; int Arguments::_num_jvm_args = 0; char* Arguments::_java_command = NULL; SystemProperty* Arguments::_system_properties = NULL; const char* Arguments::_gc_log_filename = NULL; bool Arguments::_has_profile = false; size_t Arguments::_conservative_max_heap_alignment = 0; size_t Arguments::_min_heap_size = 0; uintx Arguments::_min_heap_free_ratio = 0; uintx Arguments::_max_heap_free_ratio = 0; Arguments::Mode Arguments::_mode = _mixed; bool Arguments::_java_compiler = false; bool Arguments::_xdebug_mode = false; const char* Arguments::_java_vendor_url_bug = DEFAULT_VENDOR_URL_BUG; const char* Arguments::_sun_java_launcher = DEFAULT_JAVA_LAUNCHER; int Arguments::_sun_java_launcher_pid = -1; bool Arguments::_sun_java_launcher_is_altjvm = false; // These parameters are reset in method parse_vm_init_args(JavaVMInitArgs*) bool Arguments::_AlwaysCompileLoopMethods = AlwaysCompileLoopMethods; bool Arguments::_UseOnStackReplacement = UseOnStackReplacement; bool Arguments::_BackgroundCompilation = BackgroundCompilation; bool Arguments::_ClipInlining = ClipInlining; intx Arguments::_Tier3InvokeNotifyFreqLog = Tier3InvokeNotifyFreqLog; intx Arguments::_Tier4InvocationThreshold = Tier4InvocationThreshold; char* Arguments::SharedArchivePath = NULL; AgentLibraryList Arguments::_libraryList; AgentLibraryList Arguments::_agentList; abort_hook_t Arguments::_abort_hook = NULL; exit_hook_t Arguments::_exit_hook = NULL; vfprintf_hook_t Arguments::_vfprintf_hook = NULL; SystemProperty *Arguments::_sun_boot_library_path = NULL; SystemProperty *Arguments::_java_library_path = NULL; SystemProperty *Arguments::_java_home = NULL; SystemProperty *Arguments::_java_class_path = NULL; SystemProperty *Arguments::_sun_boot_class_path = NULL; char* Arguments::_ext_dirs = NULL; // Check if head of 'option' matches 'name', and sets 'tail' to the remaining // part of the option string. static bool match_option(const JavaVMOption *option, const char* name, const char** tail) { int len = (int)strlen(name); if (strncmp(option->optionString, name, len) == 0) { *tail = option->optionString + len; return true; } else { return false; } } // Check if 'option' matches 'name'. No "tail" is allowed. static bool match_option(const JavaVMOption *option, const char* name) { const char* tail = NULL; bool result = match_option(option, name, &tail); if (tail != NULL && *tail == '\0') { return result; } else { return false; } } // Return true if any of the strings in null-terminated array 'names' matches. // If tail_allowed is true, then the tail must begin with a colon; otherwise, // the option must match exactly. static bool match_option(const JavaVMOption* option, const char** names, const char** tail, bool tail_allowed) { for (/* empty */; *names != NULL; ++names) { if (match_option(option, *names, tail)) { if (**tail == '\0' || tail_allowed && **tail == ':') { return true; } } } return false; } static void logOption(const char* opt) { if (PrintVMOptions) { jio_fprintf(defaultStream::output_stream(), "VM option '%s'\n", opt); } } // Process java launcher properties. void Arguments::process_sun_java_launcher_properties(JavaVMInitArgs* args) { // See if sun.java.launcher, sun.java.launcher.is_altjvm or // sun.java.launcher.pid is defined. // Must do this before setting up other system properties, // as some of them may depend on launcher type. for (int index = 0; index < args->nOptions; index++) { const JavaVMOption* option = args->options + index; const char* tail; if (match_option(option, "-Dsun.java.launcher=", &tail)) { process_java_launcher_argument(tail, option->extraInfo); continue; } if (match_option(option, "-Dsun.java.launcher.is_altjvm=", &tail)) { if (strcmp(tail, "true") == 0) { _sun_java_launcher_is_altjvm = true; } continue; } if (match_option(option, "-Dsun.java.launcher.pid=", &tail)) { _sun_java_launcher_pid = atoi(tail); continue; } } } // Initialize system properties key and value. void Arguments::init_system_properties() { PropertyList_add(&_system_properties, new SystemProperty("java.vm.specification.name", "Java Virtual Machine Specification", false)); PropertyList_add(&_system_properties, new SystemProperty("java.vm.version", VM_Version::vm_release(), false)); PropertyList_add(&_system_properties, new SystemProperty("java.vm.name", VM_Version::vm_name(), false)); PropertyList_add(&_system_properties, new SystemProperty("java.vm.info", VM_Version::vm_info_string(), true)); // Following are JVMTI agent writable properties. // Properties values are set to NULL and they are // os specific they are initialized in os::init_system_properties_values(). _sun_boot_library_path = new SystemProperty("sun.boot.library.path", NULL, true); _java_library_path = new SystemProperty("java.library.path", NULL, true); _java_home = new SystemProperty("java.home", NULL, true); _sun_boot_class_path = new SystemProperty("sun.boot.class.path", NULL, true); _java_class_path = new SystemProperty("java.class.path", "", true); // Add to System Property list. PropertyList_add(&_system_properties, _sun_boot_library_path); PropertyList_add(&_system_properties, _java_library_path); PropertyList_add(&_system_properties, _java_home); PropertyList_add(&_system_properties, _java_class_path); PropertyList_add(&_system_properties, _sun_boot_class_path); // Set OS specific system properties values os::init_system_properties_values(); } // Update/Initialize System properties after JDK version number is known void Arguments::init_version_specific_system_properties() { enum { bufsz = 16 }; char buffer[bufsz]; const char* spec_vendor = "Sun Microsystems Inc."; uint32_t spec_version = 0; spec_vendor = "Oracle Corporation"; spec_version = JDK_Version::current().major_version(); jio_snprintf(buffer, bufsz, "1." UINT32_FORMAT, spec_version); PropertyList_add(&_system_properties, new SystemProperty("java.vm.specification.vendor", spec_vendor, false)); PropertyList_add(&_system_properties, new SystemProperty("java.vm.specification.version", buffer, false)); PropertyList_add(&_system_properties, new SystemProperty("java.vm.vendor", VM_Version::vm_vendor(), false)); } /** * Provide a slightly more user-friendly way of eliminating -XX flags. * When a flag is eliminated, it can be added to this list in order to * continue accepting this flag on the command-line, while issuing a warning * and ignoring the value. Once the JDK version reaches the 'accept_until' * limit, we flatly refuse to admit the existence of the flag. This allows * a flag to die correctly over JDK releases using HSX. * But now that HSX is no longer supported only options with a future * accept_until value need to be listed, and the list can be pruned * on each major release. */ typedef struct { const char* name; JDK_Version obsoleted_in; // when the flag went away JDK_Version accept_until; // which version to start denying the existence } ObsoleteFlag; static ObsoleteFlag obsolete_jvm_flags[] = { { "UseOldInlining", JDK_Version::jdk(9), JDK_Version::jdk(10) }, { "SafepointPollOffset", JDK_Version::jdk(9), JDK_Version::jdk(10) }, { "UseBoundThreads", JDK_Version::jdk(9), JDK_Version::jdk(10) }, { "DefaultThreadPriority", JDK_Version::jdk(9), JDK_Version::jdk(10) }, { "NoYieldsInMicrolock", JDK_Version::jdk(9), JDK_Version::jdk(10) }, { "BackEdgeThreshold", JDK_Version::jdk(9), JDK_Version::jdk(10) }, { "UseNewReflection", JDK_Version::jdk(9), JDK_Version::jdk(10) }, { "ReflectionWrapResolutionErrors",JDK_Version::jdk(9), JDK_Version::jdk(10) }, { "VerifyReflectionBytecodes", JDK_Version::jdk(9), JDK_Version::jdk(10) }, { "AutoShutdownNMT", JDK_Version::jdk(9), JDK_Version::jdk(10) }, { "NmethodSweepFraction", JDK_Version::jdk(9), JDK_Version::jdk(10) }, { "NmethodSweepCheckInterval", JDK_Version::jdk(9), JDK_Version::jdk(10) }, { "CodeCacheMinimumFreeSpace", JDK_Version::jdk(9), JDK_Version::jdk(10) }, #ifndef ZERO { "UseFastAccessorMethods", JDK_Version::jdk(9), JDK_Version::jdk(10) }, { "UseFastEmptyMethods", JDK_Version::jdk(9), JDK_Version::jdk(10) }, #endif // ZERO { "UseCompilerSafepoints", JDK_Version::jdk(9), JDK_Version::jdk(10) }, { "AdaptiveSizePausePolicy", JDK_Version::jdk(9), JDK_Version::jdk(10) }, { "ParallelGCRetainPLAB", JDK_Version::jdk(9), JDK_Version::jdk(10) }, { "ThreadSafetyMargin", JDK_Version::jdk(9), JDK_Version::jdk(10) }, { NULL, JDK_Version(0), JDK_Version(0) } }; // Returns true if the flag is obsolete and fits into the range specified // for being ignored. In the case that the flag is ignored, the 'version' // value is filled in with the version number when the flag became // obsolete so that that value can be displayed to the user. bool Arguments::is_newly_obsolete(const char *s, JDK_Version* version) { int i = 0; assert(version != NULL, "Must provide a version buffer"); while (obsolete_jvm_flags[i].name != NULL) { const ObsoleteFlag& flag_status = obsolete_jvm_flags[i]; // =xxx form // [-|+] form size_t len = strlen(flag_status.name); if ((strncmp(flag_status.name, s, len) == 0) && (strlen(s) == len)){ if (JDK_Version::current().compare(flag_status.accept_until) == -1) { *version = flag_status.obsoleted_in; return true; } } i++; } return false; } // Constructs the system class path (aka boot class path) from the following // components, in order: // // prefix // from -Xbootclasspath/p:... // base // from os::get_system_properties() or -Xbootclasspath= // suffix // from -Xbootclasspath/a:... // // This could be AllStatic, but it isn't needed after argument processing is // complete. class SysClassPath: public StackObj { public: SysClassPath(const char* base); ~SysClassPath(); inline void set_base(const char* base); inline void add_prefix(const char* prefix); inline void add_suffix_to_prefix(const char* suffix); inline void add_suffix(const char* suffix); inline void reset_path(const char* base); inline const char* get_base() const { return _items[_scp_base]; } inline const char* get_prefix() const { return _items[_scp_prefix]; } inline const char* get_suffix() const { return _items[_scp_suffix]; } // Combine all the components into a single c-heap-allocated string; caller // must free the string if/when no longer needed. char* combined_path(); private: // Utility routines. static char* add_to_path(const char* path, const char* str, bool prepend); static char* add_jars_to_path(char* path, const char* directory); inline void reset_item_at(int index); // Array indices for the items that make up the sysclasspath. All except the // base are allocated in the C heap and freed by this class. enum { _scp_prefix, // from -Xbootclasspath/p:... _scp_base, // the default sysclasspath _scp_suffix, // from -Xbootclasspath/a:... _scp_nitems // the number of items, must be last. }; const char* _items[_scp_nitems]; }; SysClassPath::SysClassPath(const char* base) { memset(_items, 0, sizeof(_items)); _items[_scp_base] = base; } SysClassPath::~SysClassPath() { // Free everything except the base. for (int i = 0; i < _scp_nitems; ++i) { if (i != _scp_base) reset_item_at(i); } } inline void SysClassPath::set_base(const char* base) { _items[_scp_base] = base; } inline void SysClassPath::add_prefix(const char* prefix) { _items[_scp_prefix] = add_to_path(_items[_scp_prefix], prefix, true); } inline void SysClassPath::add_suffix_to_prefix(const char* suffix) { _items[_scp_prefix] = add_to_path(_items[_scp_prefix], suffix, false); } inline void SysClassPath::add_suffix(const char* suffix) { _items[_scp_suffix] = add_to_path(_items[_scp_suffix], suffix, false); } inline void SysClassPath::reset_item_at(int index) { assert(index < _scp_nitems && index != _scp_base, "just checking"); if (_items[index] != NULL) { FREE_C_HEAP_ARRAY(char, _items[index]); _items[index] = NULL; } } inline void SysClassPath::reset_path(const char* base) { // Clear the prefix and suffix. reset_item_at(_scp_prefix); reset_item_at(_scp_suffix); set_base(base); } //------------------------------------------------------------------------------ // Combine the bootclasspath elements, some of which may be null, into a single // c-heap-allocated string. char* SysClassPath::combined_path() { assert(_items[_scp_base] != NULL, "empty default sysclasspath"); size_t lengths[_scp_nitems]; size_t total_len = 0; const char separator = *os::path_separator(); // Get the lengths. int i; for (i = 0; i < _scp_nitems; ++i) { if (_items[i] != NULL) { lengths[i] = strlen(_items[i]); // Include space for the separator char (or a NULL for the last item). total_len += lengths[i] + 1; } } assert(total_len > 0, "empty sysclasspath not allowed"); // Copy the _items to a single string. char* cp = NEW_C_HEAP_ARRAY(char, total_len, mtInternal); char* cp_tmp = cp; for (i = 0; i < _scp_nitems; ++i) { if (_items[i] != NULL) { memcpy(cp_tmp, _items[i], lengths[i]); cp_tmp += lengths[i]; *cp_tmp++ = separator; } } *--cp_tmp = '\0'; // Replace the extra separator. return cp; } // Note: path must be c-heap-allocated (or NULL); it is freed if non-null. char* SysClassPath::add_to_path(const char* path, const char* str, bool prepend) { char *cp; assert(str != NULL, "just checking"); if (path == NULL) { size_t len = strlen(str) + 1; cp = NEW_C_HEAP_ARRAY(char, len, mtInternal); memcpy(cp, str, len); // copy the trailing null } else { const char separator = *os::path_separator(); size_t old_len = strlen(path); size_t str_len = strlen(str); size_t len = old_len + str_len + 2; if (prepend) { cp = NEW_C_HEAP_ARRAY(char, len, mtInternal); char* cp_tmp = cp; memcpy(cp_tmp, str, str_len); cp_tmp += str_len; *cp_tmp = separator; memcpy(++cp_tmp, path, old_len + 1); // copy the trailing null FREE_C_HEAP_ARRAY(char, path); } else { cp = REALLOC_C_HEAP_ARRAY(char, path, len, mtInternal); char* cp_tmp = cp + old_len; *cp_tmp = separator; memcpy(++cp_tmp, str, str_len + 1); // copy the trailing null } } return cp; } // Scan the directory and append any jar or zip files found to path. // Note: path must be c-heap-allocated (or NULL); it is freed if non-null. char* SysClassPath::add_jars_to_path(char* path, const char* directory) { DIR* dir = os::opendir(directory); if (dir == NULL) return path; char dir_sep[2] = { '\0', '\0' }; size_t directory_len = strlen(directory); const char fileSep = *os::file_separator(); if (directory[directory_len - 1] != fileSep) dir_sep[0] = fileSep; /* Scan the directory for jars/zips, appending them to path. */ struct dirent *entry; char *dbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(directory), mtInternal); while ((entry = os::readdir(dir, (dirent *) dbuf)) != NULL) { const char* name = entry->d_name; const char* ext = name + strlen(name) - 4; bool isJarOrZip = ext > name && (os::file_name_strcmp(ext, ".jar") == 0 || os::file_name_strcmp(ext, ".zip") == 0); if (isJarOrZip) { char* jarpath = NEW_C_HEAP_ARRAY(char, directory_len + 2 + strlen(name), mtInternal); sprintf(jarpath, "%s%s%s", directory, dir_sep, name); path = add_to_path(path, jarpath, false); FREE_C_HEAP_ARRAY(char, jarpath); } } FREE_C_HEAP_ARRAY(char, dbuf); os::closedir(dir); return path; } // Parses a memory size specification string. static bool atomull(const char *s, julong* result) { julong n = 0; int args_read = 0; bool is_hex = false; // Skip leading 0[xX] for hexadecimal if (*s =='0' && (*(s+1) == 'x' || *(s+1) == 'X')) { s += 2; is_hex = true; args_read = sscanf(s, JULONG_FORMAT_X, &n); } else { args_read = sscanf(s, JULONG_FORMAT, &n); } if (args_read != 1) { return false; } while (*s != '\0' && (isdigit(*s) || (is_hex && isxdigit(*s)))) { s++; } // 4705540: illegal if more characters are found after the first non-digit if (strlen(s) > 1) { return false; } switch (*s) { case 'T': case 't': *result = n * G * K; // Check for overflow. if (*result/((julong)G * K) != n) return false; return true; case 'G': case 'g': *result = n * G; if (*result/G != n) return false; return true; case 'M': case 'm': *result = n * M; if (*result/M != n) return false; return true; case 'K': case 'k': *result = n * K; if (*result/K != n) return false; return true; case '\0': *result = n; return true; default: return false; } } Arguments::ArgsRange Arguments::check_memory_size(julong size, julong min_size) { if (size < min_size) return arg_too_small; // Check that size will fit in a size_t (only relevant on 32-bit) if (size > max_uintx) return arg_too_big; return arg_in_range; } // Describe an argument out of range error void Arguments::describe_range_error(ArgsRange errcode) { switch(errcode) { case arg_too_big: jio_fprintf(defaultStream::error_stream(), "The specified size exceeds the maximum " "representable size.\n"); break; case arg_too_small: case arg_unreadable: case arg_in_range: // do nothing for now break; default: ShouldNotReachHere(); } } static bool set_bool_flag(char* name, bool value, Flag::Flags origin) { if (CommandLineFlags::boolAtPut(name, &value, origin) == Flag::SUCCESS) { return true; } else { return false; } } static bool set_fp_numeric_flag(char* name, char* value, Flag::Flags origin) { double v; if (sscanf(value, "%lf", &v) != 1) { return false; } if (CommandLineFlags::doubleAtPut(name, &v, origin) == Flag::SUCCESS) { return true; } return false; } static bool set_numeric_flag(char* name, char* value, Flag::Flags origin) { julong v; int int_v; intx intx_v; bool is_neg = false; // Check the sign first since atomull() parses only unsigned values. if (*value == '-') { if ((CommandLineFlags::intxAt(name, &intx_v) != Flag::SUCCESS) && (CommandLineFlags::intAt(name, &int_v) != Flag::SUCCESS)) { return false; } value++; is_neg = true; } if (!atomull(value, &v)) { return false; } int_v = (int) v; if (is_neg) { int_v = -int_v; } if (CommandLineFlags::intAtPut(name, &int_v, origin) == Flag::SUCCESS) { return true; } uint uint_v = (uint) v; if (!is_neg && CommandLineFlags::uintAtPut(name, &uint_v, origin) == Flag::SUCCESS) { return true; } intx_v = (intx) v; if (is_neg) { intx_v = -intx_v; } if (CommandLineFlags::intxAtPut(name, &intx_v, origin) == Flag::SUCCESS) { return true; } uintx uintx_v = (uintx) v; if (!is_neg && (CommandLineFlags::uintxAtPut(name, &uintx_v, origin) == Flag::SUCCESS)) { return true; } uint64_t uint64_t_v = (uint64_t) v; if (!is_neg && (CommandLineFlags::uint64_tAtPut(name, &uint64_t_v, origin) == Flag::SUCCESS)) { return true; } size_t size_t_v = (size_t) v; if (!is_neg && (CommandLineFlags::size_tAtPut(name, &size_t_v, origin) == Flag::SUCCESS)) { return true; } return false; } static bool set_string_flag(char* name, const char* value, Flag::Flags origin) { if (CommandLineFlags::ccstrAtPut(name, &value, origin) != Flag::SUCCESS) return false; // Contract: CommandLineFlags always returns a pointer that needs freeing. FREE_C_HEAP_ARRAY(char, value); return true; } static bool append_to_string_flag(char* name, const char* new_value, Flag::Flags origin) { const char* old_value = ""; if (CommandLineFlags::ccstrAt(name, &old_value) != Flag::SUCCESS) return false; size_t old_len = old_value != NULL ? strlen(old_value) : 0; size_t new_len = strlen(new_value); const char* value; char* free_this_too = NULL; if (old_len == 0) { value = new_value; } else if (new_len == 0) { value = old_value; } else { char* buf = NEW_C_HEAP_ARRAY(char, old_len + 1 + new_len + 1, mtInternal); // each new setting adds another LINE to the switch: sprintf(buf, "%s\n%s", old_value, new_value); value = buf; free_this_too = buf; } (void) CommandLineFlags::ccstrAtPut(name, &value, origin); // CommandLineFlags always returns a pointer that needs freeing. FREE_C_HEAP_ARRAY(char, value); if (free_this_too != NULL) { // CommandLineFlags made its own copy, so I must delete my own temp. buffer. FREE_C_HEAP_ARRAY(char, free_this_too); } return true; } bool Arguments::parse_argument(const char* arg, Flag::Flags origin) { // range of acceptable characters spelled out for portability reasons #define NAME_RANGE "[abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_]" #define BUFLEN 255 char name[BUFLEN+1]; char dummy; if (sscanf(arg, "-%" XSTR(BUFLEN) NAME_RANGE "%c", name, &dummy) == 1) { return set_bool_flag(name, false, origin); } if (sscanf(arg, "+%" XSTR(BUFLEN) NAME_RANGE "%c", name, &dummy) == 1) { return set_bool_flag(name, true, origin); } char punct; if (sscanf(arg, "%" XSTR(BUFLEN) NAME_RANGE "%c", name, &punct) == 2 && punct == '=') { const char* value = strchr(arg, '=') + 1; Flag* flag = Flag::find_flag(name, strlen(name)); if (flag != NULL && flag->is_ccstr()) { if (flag->ccstr_accumulates()) { return append_to_string_flag(name, value, origin); } else { if (value[0] == '\0') { value = NULL; } return set_string_flag(name, value, origin); } } } if (sscanf(arg, "%" XSTR(BUFLEN) NAME_RANGE ":%c", name, &punct) == 2 && punct == '=') { const char* value = strchr(arg, '=') + 1; // -XX:Foo:=xxx will reset the string flag to the given value. if (value[0] == '\0') { value = NULL; } return set_string_flag(name, value, origin); } #define SIGNED_FP_NUMBER_RANGE "[-0123456789.]" #define SIGNED_NUMBER_RANGE "[-0123456789]" #define NUMBER_RANGE "[0123456789]" char value[BUFLEN + 1]; char value2[BUFLEN + 1]; if (sscanf(arg, "%" XSTR(BUFLEN) NAME_RANGE "=" "%" XSTR(BUFLEN) SIGNED_NUMBER_RANGE "." "%" XSTR(BUFLEN) NUMBER_RANGE "%c", name, value, value2, &dummy) == 3) { // Looks like a floating-point number -- try again with more lenient format string if (sscanf(arg, "%" XSTR(BUFLEN) NAME_RANGE "=" "%" XSTR(BUFLEN) SIGNED_FP_NUMBER_RANGE "%c", name, value, &dummy) == 2) { return set_fp_numeric_flag(name, value, origin); } } #define VALUE_RANGE "[-kmgtxKMGTX0123456789abcdefABCDEF]" if (sscanf(arg, "%" XSTR(BUFLEN) NAME_RANGE "=" "%" XSTR(BUFLEN) VALUE_RANGE "%c", name, value, &dummy) == 2) { return set_numeric_flag(name, value, origin); } return false; } void Arguments::add_string(char*** bldarray, int* count, const char* arg) { assert(bldarray != NULL, "illegal argument"); if (arg == NULL) { return; } int new_count = *count + 1; // expand the array and add arg to the last element if (*bldarray == NULL) { *bldarray = NEW_C_HEAP_ARRAY(char*, new_count, mtInternal); } else { *bldarray = REALLOC_C_HEAP_ARRAY(char*, *bldarray, new_count, mtInternal); } (*bldarray)[*count] = os::strdup_check_oom(arg); *count = new_count; } void Arguments::build_jvm_args(const char* arg) { add_string(&_jvm_args_array, &_num_jvm_args, arg); } void Arguments::build_jvm_flags(const char* arg) { add_string(&_jvm_flags_array, &_num_jvm_flags, arg); } // utility function to return a string that concatenates all // strings in a given char** array const char* Arguments::build_resource_string(char** args, int count) { if (args == NULL || count == 0) { return NULL; } size_t length = strlen(args[0]) + 1; // add 1 for the null terminator for (int i = 1; i < count; i++) { length += strlen(args[i]) + 1; // add 1 for a space } char* s = NEW_RESOURCE_ARRAY(char, length); strcpy(s, args[0]); for (int j = 1; j < count; j++) { strcat(s, " "); strcat(s, args[j]); } return (const char*) s; } void Arguments::print_on(outputStream* st) { st->print_cr("VM Arguments:"); if (num_jvm_flags() > 0) { st->print("jvm_flags: "); print_jvm_flags_on(st); } if (num_jvm_args() > 0) { st->print("jvm_args: "); print_jvm_args_on(st); } st->print_cr("java_command: %s", java_command() ? java_command() : ""); if (_java_class_path != NULL) { char* path = _java_class_path->value(); st->print_cr("java_class_path (initial): %s", strlen(path) == 0 ? "" : path ); } st->print_cr("Launcher Type: %s", _sun_java_launcher); } void Arguments::print_jvm_flags_on(outputStream* st) { if (_num_jvm_flags > 0) { for (int i=0; i < _num_jvm_flags; i++) { st->print("%s ", _jvm_flags_array[i]); } st->cr(); } } void Arguments::print_jvm_args_on(outputStream* st) { if (_num_jvm_args > 0) { for (int i=0; i < _num_jvm_args; i++) { st->print("%s ", _jvm_args_array[i]); } st->cr(); } } bool Arguments::process_argument(const char* arg, jboolean ignore_unrecognized, Flag::Flags origin) { JDK_Version since = JDK_Version(); if (parse_argument(arg, origin) || ignore_unrecognized) { return true; } // Determine if the flag has '+', '-', or '=' characters. bool has_plus_minus = (*arg == '+' || *arg == '-'); const char* const argname = has_plus_minus ? arg + 1 : arg; size_t arg_len; const char* equal_sign = strchr(argname, '='); if (equal_sign == NULL) { arg_len = strlen(argname); } else { arg_len = equal_sign - argname; } // Construct a string which consists only of the argument name without '+', '-', or '='. char stripped_argname[256]; strncpy(stripped_argname, argname, arg_len); stripped_argname[arg_len] = '\0'; //strncpy doesn't null terminate. if (is_newly_obsolete(stripped_argname, &since)) { char version[256]; since.to_string(version, sizeof(version)); warning("ignoring option %s; support was removed in %s", stripped_argname, version); return true; } // For locked flags, report a custom error message if available. // Otherwise, report the standard unrecognized VM option. Flag* found_flag = Flag::find_flag((const char*)argname, arg_len, true, true); if (found_flag != NULL) { char locked_message_buf[BUFLEN]; found_flag->get_locked_message(locked_message_buf, BUFLEN); if (strlen(locked_message_buf) == 0) { if (found_flag->is_bool() && !has_plus_minus) { jio_fprintf(defaultStream::error_stream(), "Missing +/- setting for VM option '%s'\n", argname); } else if (!found_flag->is_bool() && has_plus_minus) { jio_fprintf(defaultStream::error_stream(), "Unexpected +/- setting in VM option '%s'\n", argname); } else { jio_fprintf(defaultStream::error_stream(), "Improperly specified VM option '%s'\n", argname); } } else { jio_fprintf(defaultStream::error_stream(), "%s", locked_message_buf); } } else { jio_fprintf(defaultStream::error_stream(), "Unrecognized VM option '%s'\n", argname); Flag* fuzzy_matched = Flag::fuzzy_match((const char*)argname, arg_len, true); if (fuzzy_matched != NULL) { jio_fprintf(defaultStream::error_stream(), "Did you mean '%s%s%s'? ", (fuzzy_matched->is_bool()) ? "(+/-)" : "", fuzzy_matched->_name, (fuzzy_matched->is_bool()) ? "" : "="); } } // allow for commandline "commenting out" options like -XX:#+Verbose return arg[0] == '#'; } bool Arguments::process_settings_file(const char* file_name, bool should_exist, jboolean ignore_unrecognized) { FILE* stream = fopen(file_name, "rb"); if (stream == NULL) { if (should_exist) { jio_fprintf(defaultStream::error_stream(), "Could not open settings file %s\n", file_name); return false; } else { return true; } } char token[1024]; int pos = 0; bool in_white_space = true; bool in_comment = false; bool in_quote = false; char quote_c = 0; bool result = true; int c = getc(stream); while(c != EOF && pos < (int)(sizeof(token)-1)) { if (in_white_space) { if (in_comment) { if (c == '\n') in_comment = false; } else { if (c == '#') in_comment = true; else if (!isspace(c)) { in_white_space = false; token[pos++] = c; } } } else { if (c == '\n' || (!in_quote && isspace(c))) { // token ends at newline, or at unquoted whitespace // this allows a way to include spaces in string-valued options token[pos] = '\0'; logOption(token); result &= process_argument(token, ignore_unrecognized, Flag::CONFIG_FILE); build_jvm_flags(token); pos = 0; in_white_space = true; in_quote = false; } else if (!in_quote && (c == '\'' || c == '"')) { in_quote = true; quote_c = c; } else if (in_quote && (c == quote_c)) { in_quote = false; } else { token[pos++] = c; } } c = getc(stream); } if (pos > 0) { token[pos] = '\0'; result &= process_argument(token, ignore_unrecognized, Flag::CONFIG_FILE); build_jvm_flags(token); } fclose(stream); return result; } //============================================================================================================= // Parsing of properties (-D) const char* Arguments::get_property(const char* key) { return PropertyList_get_value(system_properties(), key); } bool Arguments::add_property(const char* prop) { const char* eq = strchr(prop, '='); char* key; // ns must be static--its address may be stored in a SystemProperty object. const static char ns[1] = {0}; char* value = (char *)ns; size_t key_len = (eq == NULL) ? strlen(prop) : (eq - prop); key = AllocateHeap(key_len + 1, mtInternal); strncpy(key, prop, key_len); key[key_len] = '\0'; if (eq != NULL) { size_t value_len = strlen(prop) - key_len - 1; value = AllocateHeap(value_len + 1, mtInternal); strncpy(value, &prop[key_len + 1], value_len + 1); } if (strcmp(key, "java.compiler") == 0) { process_java_compiler_argument(value); FreeHeap(key); if (eq != NULL) { FreeHeap(value); } return true; } else if (strcmp(key, "sun.java.command") == 0) { _java_command = value; // Record value in Arguments, but let it get passed to Java. } else if (strcmp(key, "sun.java.launcher.is_altjvm") == 0 || strcmp(key, "sun.java.launcher.pid") == 0) { // sun.java.launcher.is_altjvm and sun.java.launcher.pid property are // private and are processed in process_sun_java_launcher_properties(); // the sun.java.launcher property is passed on to the java application FreeHeap(key); if (eq != NULL) { FreeHeap(value); } return true; } else if (strcmp(key, "java.vendor.url.bug") == 0) { // save it in _java_vendor_url_bug, so JVM fatal error handler can access // its value without going through the property list or making a Java call. _java_vendor_url_bug = value; } else if (strcmp(key, "sun.boot.library.path") == 0) { PropertyList_unique_add(&_system_properties, key, value, true); return true; } // Create new property and add at the end of the list PropertyList_unique_add(&_system_properties, key, value); return true; } //=========================================================================================================== // Setting int/mixed/comp mode flags void Arguments::set_mode_flags(Mode mode) { // Set up default values for all flags. // If you add a flag to any of the branches below, // add a default value for it here. set_java_compiler(false); _mode = mode; // Ensure Agent_OnLoad has the correct initial values. // This may not be the final mode; mode may change later in onload phase. PropertyList_unique_add(&_system_properties, "java.vm.info", (char*)VM_Version::vm_info_string(), false); UseInterpreter = true; UseCompiler = true; UseLoopCounter = true; // Default values may be platform/compiler dependent - // use the saved values ClipInlining = Arguments::_ClipInlining; AlwaysCompileLoopMethods = Arguments::_AlwaysCompileLoopMethods; UseOnStackReplacement = Arguments::_UseOnStackReplacement; BackgroundCompilation = Arguments::_BackgroundCompilation; if (TieredCompilation) { if (FLAG_IS_DEFAULT(Tier3InvokeNotifyFreqLog)) { Tier3InvokeNotifyFreqLog = Arguments::_Tier3InvokeNotifyFreqLog; } if (FLAG_IS_DEFAULT(Tier4InvocationThreshold)) { Tier4InvocationThreshold = Arguments::_Tier4InvocationThreshold; } } // Change from defaults based on mode switch (mode) { default: ShouldNotReachHere(); break; case _int: UseCompiler = false; UseLoopCounter = false; AlwaysCompileLoopMethods = false; UseOnStackReplacement = false; break; case _mixed: // same as default break; case _comp: UseInterpreter = false; BackgroundCompilation = false; ClipInlining = false; // Be much more aggressive in tiered mode with -Xcomp and exercise C2 more. // We will first compile a level 3 version (C1 with full profiling), then do one invocation of it and // compile a level 4 (C2) and then continue executing it. if (TieredCompilation) { Tier3InvokeNotifyFreqLog = 0; Tier4InvocationThreshold = 0; } break; } } #if defined(COMPILER2) || defined(_LP64) || !INCLUDE_CDS // Conflict: required to use shared spaces (-Xshare:on), but // incompatible command line options were chosen. static void no_shared_spaces(const char* message) { if (RequireSharedSpaces) { jio_fprintf(defaultStream::error_stream(), "Class data sharing is inconsistent with other specified options.\n"); vm_exit_during_initialization("Unable to use shared archive.", message); } else { FLAG_SET_DEFAULT(UseSharedSpaces, false); } } #endif // Returns threshold scaled with the value of scale. // If scale < 0.0, threshold is returned without scaling. intx Arguments::scaled_compile_threshold(intx threshold, double scale) { if (scale == 1.0 || scale < 0.0) { return threshold; } else { return (intx)(threshold * scale); } } // Returns freq_log scaled with the value of scale. // Returned values are in the range of [0, InvocationCounter::number_of_count_bits + 1]. // If scale < 0.0, freq_log is returned without scaling. intx Arguments::scaled_freq_log(intx freq_log, double scale) { // Check if scaling is necessary or if negative value was specified. if (scale == 1.0 || scale < 0.0) { return freq_log; } // Check values to avoid calculating log2 of 0. if (scale == 0.0 || freq_log == 0) { return 0; } // Determine the maximum notification frequency value currently supported. // The largest mask value that the interpreter/C1 can handle is // of length InvocationCounter::number_of_count_bits. Mask values are always // one bit shorter then the value of the notification frequency. Set // max_freq_bits accordingly. intx max_freq_bits = InvocationCounter::number_of_count_bits + 1; intx scaled_freq = scaled_compile_threshold((intx)1 << freq_log, scale); if (scaled_freq == 0) { // Return 0 right away to avoid calculating log2 of 0. return 0; } else if (scaled_freq > nth_bit(max_freq_bits)) { return max_freq_bits; } else { return log2_intptr(scaled_freq); } } void Arguments::set_tiered_flags() { // With tiered, set default policy to AdvancedThresholdPolicy, which is 3. if (FLAG_IS_DEFAULT(CompilationPolicyChoice)) { FLAG_SET_DEFAULT(CompilationPolicyChoice, 3); } if (CompilationPolicyChoice < 2) { vm_exit_during_initialization( "Incompatible compilation policy selected", NULL); } // Increase the code cache size - tiered compiles a lot more. if (FLAG_IS_DEFAULT(ReservedCodeCacheSize)) { FLAG_SET_ERGO(uintx, ReservedCodeCacheSize, MIN2(CODE_CACHE_DEFAULT_LIMIT, ReservedCodeCacheSize * 5)); } // Enable SegmentedCodeCache if TieredCompilation is enabled and ReservedCodeCacheSize >= 240M if (FLAG_IS_DEFAULT(SegmentedCodeCache) && ReservedCodeCacheSize >= 240*M) { FLAG_SET_ERGO(bool, SegmentedCodeCache, true); if (FLAG_IS_DEFAULT(ReservedCodeCacheSize)) { // Multiply sizes by 5 but fix NonNMethodCodeHeapSize (distribute among non-profiled and profiled code heap) if (FLAG_IS_DEFAULT(ProfiledCodeHeapSize)) { FLAG_SET_ERGO(uintx, ProfiledCodeHeapSize, ProfiledCodeHeapSize * 5 + NonNMethodCodeHeapSize * 2); } if (FLAG_IS_DEFAULT(NonProfiledCodeHeapSize)) { FLAG_SET_ERGO(uintx, NonProfiledCodeHeapSize, NonProfiledCodeHeapSize * 5 + NonNMethodCodeHeapSize * 2); } // Check consistency of code heap sizes if ((NonNMethodCodeHeapSize + NonProfiledCodeHeapSize + ProfiledCodeHeapSize) != ReservedCodeCacheSize) { jio_fprintf(defaultStream::error_stream(), "Invalid code heap sizes: NonNMethodCodeHeapSize(%dK) + ProfiledCodeHeapSize(%dK) + NonProfiledCodeHeapSize(%dK) = %dK. Must be equal to ReservedCodeCacheSize = %uK.\n", NonNMethodCodeHeapSize/K, ProfiledCodeHeapSize/K, NonProfiledCodeHeapSize/K, (NonNMethodCodeHeapSize + ProfiledCodeHeapSize + NonProfiledCodeHeapSize)/K, ReservedCodeCacheSize/K); vm_exit(1); } } } if (!UseInterpreter) { // -Xcomp Tier3InvokeNotifyFreqLog = 0; Tier4InvocationThreshold = 0; } if (CompileThresholdScaling < 0) { vm_exit_during_initialization("Negative value specified for CompileThresholdScaling", NULL); } // Scale tiered compilation thresholds. // CompileThresholdScaling == 0.0 is equivalent to -Xint and leaves compilation thresholds unchanged. if (!FLAG_IS_DEFAULT(CompileThresholdScaling) && CompileThresholdScaling > 0.0) { FLAG_SET_ERGO(intx, Tier0InvokeNotifyFreqLog, scaled_freq_log(Tier0InvokeNotifyFreqLog)); FLAG_SET_ERGO(intx, Tier0BackedgeNotifyFreqLog, scaled_freq_log(Tier0BackedgeNotifyFreqLog)); FLAG_SET_ERGO(intx, Tier3InvocationThreshold, scaled_compile_threshold(Tier3InvocationThreshold)); FLAG_SET_ERGO(intx, Tier3MinInvocationThreshold, scaled_compile_threshold(Tier3MinInvocationThreshold)); FLAG_SET_ERGO(intx, Tier3CompileThreshold, scaled_compile_threshold(Tier3CompileThreshold)); FLAG_SET_ERGO(intx, Tier3BackEdgeThreshold, scaled_compile_threshold(Tier3BackEdgeThreshold)); // Tier2{Invocation,MinInvocation,Compile,Backedge}Threshold should be scaled here // once these thresholds become supported. FLAG_SET_ERGO(intx, Tier2InvokeNotifyFreqLog, scaled_freq_log(Tier2InvokeNotifyFreqLog)); FLAG_SET_ERGO(intx, Tier2BackedgeNotifyFreqLog, scaled_freq_log(Tier2BackedgeNotifyFreqLog)); FLAG_SET_ERGO(intx, Tier3InvokeNotifyFreqLog, scaled_freq_log(Tier3InvokeNotifyFreqLog)); FLAG_SET_ERGO(intx, Tier3BackedgeNotifyFreqLog, scaled_freq_log(Tier3BackedgeNotifyFreqLog)); FLAG_SET_ERGO(intx, Tier23InlineeNotifyFreqLog, scaled_freq_log(Tier23InlineeNotifyFreqLog)); FLAG_SET_ERGO(intx, Tier4InvocationThreshold, scaled_compile_threshold(Tier4InvocationThreshold)); FLAG_SET_ERGO(intx, Tier4MinInvocationThreshold, scaled_compile_threshold(Tier4MinInvocationThreshold)); FLAG_SET_ERGO(intx, Tier4CompileThreshold, scaled_compile_threshold(Tier4CompileThreshold)); FLAG_SET_ERGO(intx, Tier4BackEdgeThreshold, scaled_compile_threshold(Tier4BackEdgeThreshold)); } } /** * Returns the minimum number of compiler threads needed to run the JVM. The following * configurations are possible. * * 1) The JVM is build using an interpreter only. As a result, the minimum number of * compiler threads is 0. * 2) The JVM is build using the compiler(s) and tiered compilation is disabled. As * a result, either C1 or C2 is used, so the minimum number of compiler threads is 1. * 3) The JVM is build using the compiler(s) and tiered compilation is enabled. However, * the option "TieredStopAtLevel < CompLevel_full_optimization". As a result, only * C1 can be used, so the minimum number of compiler threads is 1. * 4) The JVM is build using the compilers and tiered compilation is enabled. The option * 'TieredStopAtLevel = CompLevel_full_optimization' (the default value). As a result, * the minimum number of compiler threads is 2. */ int Arguments::get_min_number_of_compiler_threads() { #if !defined(COMPILER1) && !defined(COMPILER2) && !defined(SHARK) return 0; // case 1 #else if (!TieredCompilation || (TieredStopAtLevel < CompLevel_full_optimization)) { return 1; // case 2 or case 3 } return 2; // case 4 (tiered) #endif } #if INCLUDE_ALL_GCS static void disable_adaptive_size_policy(const char* collector_name) { if (UseAdaptiveSizePolicy) { if (FLAG_IS_CMDLINE(UseAdaptiveSizePolicy)) { warning("disabling UseAdaptiveSizePolicy; it is incompatible with %s.", collector_name); } FLAG_SET_DEFAULT(UseAdaptiveSizePolicy, false); } } void Arguments::set_parnew_gc_flags() { assert(!UseSerialGC && !UseParallelOldGC && !UseParallelGC && !UseG1GC, "control point invariant"); assert(UseConcMarkSweepGC, "CMS is expected to be on here"); assert(UseParNewGC, "ParNew should always be used with CMS"); if (FLAG_IS_DEFAULT(ParallelGCThreads)) { FLAG_SET_DEFAULT(ParallelGCThreads, Abstract_VM_Version::parallel_worker_threads()); assert(ParallelGCThreads > 0, "We should always have at least one thread by default"); } else if (ParallelGCThreads == 0) { jio_fprintf(defaultStream::error_stream(), "The ParNew GC can not be combined with -XX:ParallelGCThreads=0\n"); vm_exit(1); } // By default YoungPLABSize and OldPLABSize are set to 4096 and 1024 respectively, // these settings are default for Parallel Scavenger. For ParNew+Tenured configuration // we set them to 1024 and 1024. // See CR 6362902. if (FLAG_IS_DEFAULT(YoungPLABSize)) { FLAG_SET_DEFAULT(YoungPLABSize, (intx)1024); } if (FLAG_IS_DEFAULT(OldPLABSize)) { FLAG_SET_DEFAULT(OldPLABSize, (intx)1024); } // When using compressed oops, we use local overflow stacks, // rather than using a global overflow list chained through // the klass word of the object's pre-image. if (UseCompressedOops && !ParGCUseLocalOverflow) { if (!FLAG_IS_DEFAULT(ParGCUseLocalOverflow)) { warning("Forcing +ParGCUseLocalOverflow: needed if using compressed references"); } FLAG_SET_DEFAULT(ParGCUseLocalOverflow, true); } assert(ParGCUseLocalOverflow || !UseCompressedOops, "Error"); } // Adjust some sizes to suit CMS and/or ParNew needs; these work well on // sparc/solaris for certain applications, but would gain from // further optimization and tuning efforts, and would almost // certainly gain from analysis of platform and environment. void Arguments::set_cms_and_parnew_gc_flags() { assert(!UseSerialGC && !UseParallelOldGC && !UseParallelGC, "Error"); assert(UseConcMarkSweepGC, "CMS is expected to be on here"); assert(UseParNewGC, "ParNew should always be used with CMS"); // Turn off AdaptiveSizePolicy by default for cms until it is complete. disable_adaptive_size_policy("UseConcMarkSweepGC"); set_parnew_gc_flags(); size_t max_heap = align_size_down(MaxHeapSize, CardTableRS::ct_max_alignment_constraint()); // Now make adjustments for CMS intx tenuring_default = (intx)6; size_t young_gen_per_worker = CMSYoungGenPerWorker; // Preferred young gen size for "short" pauses: // upper bound depends on # of threads and NewRatio. const size_t preferred_max_new_size_unaligned = MIN2(max_heap/(NewRatio+1), ScaleForWordSize(young_gen_per_worker * ParallelGCThreads)); size_t preferred_max_new_size = align_size_up(preferred_max_new_size_unaligned, os::vm_page_size()); // Unless explicitly requested otherwise, size young gen // for "short" pauses ~ CMSYoungGenPerWorker*ParallelGCThreads // If either MaxNewSize or NewRatio is set on the command line, // assume the user is trying to set the size of the young gen. if (FLAG_IS_DEFAULT(MaxNewSize) && FLAG_IS_DEFAULT(NewRatio)) { // Set MaxNewSize to our calculated preferred_max_new_size unless // NewSize was set on the command line and it is larger than // preferred_max_new_size. if (!FLAG_IS_DEFAULT(NewSize)) { // NewSize explicitly set at command-line FLAG_SET_ERGO(size_t, MaxNewSize, MAX2(NewSize, preferred_max_new_size)); } else { FLAG_SET_ERGO(size_t, MaxNewSize, preferred_max_new_size); } if (PrintGCDetails && Verbose) { // Too early to use gclog_or_tty tty->print_cr("CMS ergo set MaxNewSize: " SIZE_FORMAT, MaxNewSize); } // Code along this path potentially sets NewSize and OldSize if (PrintGCDetails && Verbose) { // Too early to use gclog_or_tty tty->print_cr("CMS set min_heap_size: " SIZE_FORMAT " initial_heap_size: " SIZE_FORMAT " max_heap: " SIZE_FORMAT, min_heap_size(), InitialHeapSize, max_heap); } size_t min_new = preferred_max_new_size; if (FLAG_IS_CMDLINE(NewSize)) { min_new = NewSize; } if (max_heap > min_new && min_heap_size() > min_new) { // Unless explicitly requested otherwise, make young gen // at least min_new, and at most preferred_max_new_size. if (FLAG_IS_DEFAULT(NewSize)) { FLAG_SET_ERGO(size_t, NewSize, MAX2(NewSize, min_new)); FLAG_SET_ERGO(size_t, NewSize, MIN2(preferred_max_new_size, NewSize)); if (PrintGCDetails && Verbose) { // Too early to use gclog_or_tty tty->print_cr("CMS ergo set NewSize: " SIZE_FORMAT, NewSize); } } // Unless explicitly requested otherwise, size old gen // so it's NewRatio x of NewSize. if (FLAG_IS_DEFAULT(OldSize)) { if (max_heap > NewSize) { FLAG_SET_ERGO(size_t, OldSize, MIN2(NewRatio*NewSize, max_heap - NewSize)); if (PrintGCDetails && Verbose) { // Too early to use gclog_or_tty tty->print_cr("CMS ergo set OldSize: " SIZE_FORMAT, OldSize); } } } } } // Unless explicitly requested otherwise, definitely // promote all objects surviving "tenuring_default" scavenges. if (FLAG_IS_DEFAULT(MaxTenuringThreshold) && FLAG_IS_DEFAULT(SurvivorRatio)) { FLAG_SET_ERGO(uintx, MaxTenuringThreshold, tenuring_default); } // If we decided above (or user explicitly requested) // `promote all' (via MaxTenuringThreshold := 0), // prefer minuscule survivor spaces so as not to waste // space for (non-existent) survivors if (FLAG_IS_DEFAULT(SurvivorRatio) && MaxTenuringThreshold == 0) { FLAG_SET_ERGO(uintx, SurvivorRatio, MAX2((uintx)1024, SurvivorRatio)); } // OldPLABSize is interpreted in CMS as not the size of the PLAB in words, // but rather the number of free blocks of a given size that are used when // replenishing the local per-worker free list caches. if (FLAG_IS_DEFAULT(OldPLABSize)) { if (!FLAG_IS_DEFAULT(ResizeOldPLAB) && !ResizeOldPLAB) { // OldPLAB sizing manually turned off: Use a larger default setting, // unless it was manually specified. This is because a too-low value // will slow down scavenges. FLAG_SET_ERGO(size_t, OldPLABSize, CFLS_LAB::_default_static_old_plab_size); // default value before 6631166 } else { FLAG_SET_DEFAULT(OldPLABSize, CFLS_LAB::_default_dynamic_old_plab_size); // old CMSParPromoteBlocksToClaim default } } // If either of the static initialization defaults have changed, note this // modification. if (!FLAG_IS_DEFAULT(OldPLABSize) || !FLAG_IS_DEFAULT(OldPLABWeight)) { CFLS_LAB::modify_initialization(OldPLABSize, OldPLABWeight); } if (!ClassUnloading) { FLAG_SET_CMDLINE(bool, CMSClassUnloadingEnabled, false); FLAG_SET_CMDLINE(bool, ExplicitGCInvokesConcurrentAndUnloadsClasses, false); } if (PrintGCDetails && Verbose) { tty->print_cr("MarkStackSize: %uk MarkStackSizeMax: %uk", (unsigned int) (MarkStackSize / K), (uint) (MarkStackSizeMax / K)); tty->print_cr("ConcGCThreads: %u", ConcGCThreads); } } #endif // INCLUDE_ALL_GCS void set_object_alignment() { // Object alignment. assert(is_power_of_2(ObjectAlignmentInBytes), "ObjectAlignmentInBytes must be power of 2"); MinObjAlignmentInBytes = ObjectAlignmentInBytes; assert(MinObjAlignmentInBytes >= HeapWordsPerLong * HeapWordSize, "ObjectAlignmentInBytes value is too small"); MinObjAlignment = MinObjAlignmentInBytes / HeapWordSize; assert(MinObjAlignmentInBytes == MinObjAlignment * HeapWordSize, "ObjectAlignmentInBytes value is incorrect"); MinObjAlignmentInBytesMask = MinObjAlignmentInBytes - 1; LogMinObjAlignmentInBytes = exact_log2(ObjectAlignmentInBytes); LogMinObjAlignment = LogMinObjAlignmentInBytes - LogHeapWordSize; // Oop encoding heap max OopEncodingHeapMax = (uint64_t(max_juint) + 1) << LogMinObjAlignmentInBytes; if (SurvivorAlignmentInBytes == 0) { SurvivorAlignmentInBytes = ObjectAlignmentInBytes; } #if INCLUDE_ALL_GCS // Set CMS global values CompactibleFreeListSpace::set_cms_values(); #endif // INCLUDE_ALL_GCS } size_t Arguments::max_heap_for_compressed_oops() { // Avoid sign flip. assert(OopEncodingHeapMax > (uint64_t)os::vm_page_size(), "Unusual page size"); // We need to fit both the NULL page and the heap into the memory budget, while // keeping alignment constraints of the heap. To guarantee the latter, as the // NULL page is located before the heap, we pad the NULL page to the conservative // maximum alignment that the GC may ever impose upon the heap. size_t displacement_due_to_null_page = align_size_up_(os::vm_page_size(), _conservative_max_heap_alignment); LP64_ONLY(return OopEncodingHeapMax - displacement_due_to_null_page); NOT_LP64(ShouldNotReachHere(); return 0); } bool Arguments::should_auto_select_low_pause_collector() { if (UseAutoGCSelectPolicy && !FLAG_IS_DEFAULT(MaxGCPauseMillis) && (MaxGCPauseMillis <= AutoGCSelectPauseMillis)) { if (PrintGCDetails) { // Cannot use gclog_or_tty yet. tty->print_cr("Automatic selection of the low pause collector" " based on pause goal of %d (ms)", (int) MaxGCPauseMillis); } return true; } return false; } void Arguments::set_use_compressed_oops() { #ifndef ZERO #ifdef _LP64 // MaxHeapSize is not set up properly at this point, but // the only value that can override MaxHeapSize if we are // to use UseCompressedOops is InitialHeapSize. size_t max_heap_size = MAX2(MaxHeapSize, InitialHeapSize); if (max_heap_size <= max_heap_for_compressed_oops()) { #if !defined(COMPILER1) || defined(TIERED) if (FLAG_IS_DEFAULT(UseCompressedOops)) { FLAG_SET_ERGO(bool, UseCompressedOops, true); } #endif } else { if (UseCompressedOops && !FLAG_IS_DEFAULT(UseCompressedOops)) { warning("Max heap size too large for Compressed Oops"); FLAG_SET_DEFAULT(UseCompressedOops, false); FLAG_SET_DEFAULT(UseCompressedClassPointers, false); } } #endif // _LP64 #endif // ZERO } // NOTE: set_use_compressed_klass_ptrs() must be called after calling // set_use_compressed_oops(). void Arguments::set_use_compressed_klass_ptrs() { #ifndef ZERO #ifdef _LP64 // UseCompressedOops must be on for UseCompressedClassPointers to be on. if (!UseCompressedOops) { if (UseCompressedClassPointers) { warning("UseCompressedClassPointers requires UseCompressedOops"); } FLAG_SET_DEFAULT(UseCompressedClassPointers, false); } else { // Turn on UseCompressedClassPointers too if (FLAG_IS_DEFAULT(UseCompressedClassPointers)) { FLAG_SET_ERGO(bool, UseCompressedClassPointers, true); } // Check the CompressedClassSpaceSize to make sure we use compressed klass ptrs. if (UseCompressedClassPointers) { if (CompressedClassSpaceSize > KlassEncodingMetaspaceMax) { warning("CompressedClassSpaceSize is too large for UseCompressedClassPointers"); FLAG_SET_DEFAULT(UseCompressedClassPointers, false); } } } #endif // _LP64 #endif // !ZERO } void Arguments::set_conservative_max_heap_alignment() { // The conservative maximum required alignment for the heap is the maximum of // the alignments imposed by several sources: any requirements from the heap // itself, the collector policy and the maximum page size we may run the VM // with. size_t heap_alignment = GenCollectedHeap::conservative_max_heap_alignment(); #if INCLUDE_ALL_GCS if (UseParallelGC) { heap_alignment = ParallelScavengeHeap::conservative_max_heap_alignment(); } else if (UseG1GC) { heap_alignment = G1CollectedHeap::conservative_max_heap_alignment(); } #endif // INCLUDE_ALL_GCS _conservative_max_heap_alignment = MAX4(heap_alignment, (size_t)os::vm_allocation_granularity(), os::max_page_size(), CollectorPolicy::compute_heap_alignment()); } void Arguments::select_gc_ergonomically() { if (os::is_server_class_machine()) { if (should_auto_select_low_pause_collector()) { FLAG_SET_ERGO(bool, UseConcMarkSweepGC, true); } else { #if defined(JAVASE_EMBEDDED) FLAG_SET_ERGO(bool, UseParallelGC, true); #else FLAG_SET_ERGO(bool, UseG1GC, true); #endif } } else { FLAG_SET_ERGO(bool, UseSerialGC, true); } } void Arguments::select_gc() { if (!gc_selected()) { select_gc_ergonomically(); guarantee(gc_selected(), "No GC selected"); } } void Arguments::set_ergonomics_flags() { select_gc(); #ifdef COMPILER2 // Shared spaces work fine with other GCs but causes bytecode rewriting // to be disabled, which hurts interpreter performance and decreases // server performance. When -server is specified, keep the default off // unless it is asked for. Future work: either add bytecode rewriting // at link time, or rewrite bytecodes in non-shared methods. if (!DumpSharedSpaces && !RequireSharedSpaces && (FLAG_IS_DEFAULT(UseSharedSpaces) || !UseSharedSpaces)) { no_shared_spaces("COMPILER2 default: -Xshare:auto | off, have to manually setup to on."); } #endif set_conservative_max_heap_alignment(); #ifndef ZERO #ifdef _LP64 set_use_compressed_oops(); // set_use_compressed_klass_ptrs() must be called after calling // set_use_compressed_oops(). set_use_compressed_klass_ptrs(); // Also checks that certain machines are slower with compressed oops // in vm_version initialization code. #endif // _LP64 #endif // !ZERO } void Arguments::set_parallel_gc_flags() { assert(UseParallelGC || UseParallelOldGC, "Error"); // Enable ParallelOld unless it was explicitly disabled (cmd line or rc file). if (FLAG_IS_DEFAULT(UseParallelOldGC)) { FLAG_SET_DEFAULT(UseParallelOldGC, true); } FLAG_SET_DEFAULT(UseParallelGC, true); // If no heap maximum was requested explicitly, use some reasonable fraction // of the physical memory, up to a maximum of 1GB. FLAG_SET_DEFAULT(ParallelGCThreads, Abstract_VM_Version::parallel_worker_threads()); if (ParallelGCThreads == 0) { jio_fprintf(defaultStream::error_stream(), "The Parallel GC can not be combined with -XX:ParallelGCThreads=0\n"); vm_exit(1); } if (UseAdaptiveSizePolicy) { // We don't want to limit adaptive heap sizing's freedom to adjust the heap // unless the user actually sets these flags. if (FLAG_IS_DEFAULT(MinHeapFreeRatio)) { FLAG_SET_DEFAULT(MinHeapFreeRatio, 0); _min_heap_free_ratio = MinHeapFreeRatio; } if (FLAG_IS_DEFAULT(MaxHeapFreeRatio)) { FLAG_SET_DEFAULT(MaxHeapFreeRatio, 100); _max_heap_free_ratio = MaxHeapFreeRatio; } } // If InitialSurvivorRatio or MinSurvivorRatio were not specified, but the // SurvivorRatio has been set, reset their default values to SurvivorRatio + // 2. By doing this we make SurvivorRatio also work for Parallel Scavenger. // See CR 6362902 for details. if (!FLAG_IS_DEFAULT(SurvivorRatio)) { if (FLAG_IS_DEFAULT(InitialSurvivorRatio)) { FLAG_SET_DEFAULT(InitialSurvivorRatio, SurvivorRatio + 2); } if (FLAG_IS_DEFAULT(MinSurvivorRatio)) { FLAG_SET_DEFAULT(MinSurvivorRatio, SurvivorRatio + 2); } } if (UseParallelOldGC) { // Par compact uses lower default values since they are treated as // minimums. These are different defaults because of the different // interpretation and are not ergonomically set. if (FLAG_IS_DEFAULT(MarkSweepDeadRatio)) { FLAG_SET_DEFAULT(MarkSweepDeadRatio, 1); } } } void Arguments::set_g1_gc_flags() { assert(UseG1GC, "Error"); #ifdef COMPILER1 FastTLABRefill = false; #endif FLAG_SET_DEFAULT(ParallelGCThreads, Abstract_VM_Version::parallel_worker_threads()); if (ParallelGCThreads == 0) { assert(!FLAG_IS_DEFAULT(ParallelGCThreads), "The default value for ParallelGCThreads should not be 0."); vm_exit_during_initialization("The flag -XX:+UseG1GC can not be combined with -XX:ParallelGCThreads=0", NULL); } #if INCLUDE_ALL_GCS if (G1ConcRefinementThreads == 0) { FLAG_SET_DEFAULT(G1ConcRefinementThreads, ParallelGCThreads); } #endif // MarkStackSize will be set (if it hasn't been set by the user) // when concurrent marking is initialized. // Its value will be based upon the number of parallel marking threads. // But we do set the maximum mark stack size here. if (FLAG_IS_DEFAULT(MarkStackSizeMax)) { FLAG_SET_DEFAULT(MarkStackSizeMax, 128 * TASKQUEUE_SIZE); } if (FLAG_IS_DEFAULT(GCTimeRatio) || GCTimeRatio == 0) { // In G1, we want the default GC overhead goal to be higher than // say in PS. So we set it here to 10%. Otherwise the heap might // be expanded more aggressively than we would like it to. In // fact, even 10% seems to not be high enough in some cases // (especially small GC stress tests that the main thing they do // is allocation). We might consider increase it further. FLAG_SET_DEFAULT(GCTimeRatio, 9); } if (PrintGCDetails && Verbose) { tty->print_cr("MarkStackSize: %uk MarkStackSizeMax: %uk", (unsigned int) (MarkStackSize / K), (uint) (MarkStackSizeMax / K)); tty->print_cr("ConcGCThreads: %u", ConcGCThreads); } } #if !INCLUDE_ALL_GCS #ifdef ASSERT static bool verify_serial_gc_flags() { return (UseSerialGC && !(UseParNewGC || (UseConcMarkSweepGC) || UseG1GC || UseParallelGC || UseParallelOldGC)); } #endif // ASSERT #endif // INCLUDE_ALL_GCS void Arguments::set_gc_specific_flags() { #if INCLUDE_ALL_GCS // Set per-collector flags if (UseParallelGC || UseParallelOldGC) { set_parallel_gc_flags(); } else if (UseConcMarkSweepGC) { set_cms_and_parnew_gc_flags(); } else if (UseG1GC) { set_g1_gc_flags(); } check_deprecated_gc_flags(); if (AssumeMP && !UseSerialGC) { if (FLAG_IS_DEFAULT(ParallelGCThreads) && ParallelGCThreads == 1) { warning("If the number of processors is expected to increase from one, then" " you should configure the number of parallel GC threads appropriately" " using -XX:ParallelGCThreads=N"); } } if (MinHeapFreeRatio == 100) { // Keeping the heap 100% free is hard ;-) so limit it to 99%. FLAG_SET_ERGO(uintx, MinHeapFreeRatio, 99); } #else // INCLUDE_ALL_GCS assert(verify_serial_gc_flags(), "SerialGC unset"); #endif // INCLUDE_ALL_GCS } julong Arguments::limit_by_allocatable_memory(julong limit) { julong max_allocatable; julong result = limit; if (os::has_allocatable_memory_limit(&max_allocatable)) { result = MIN2(result, max_allocatable / MaxVirtMemFraction); } return result; } // Use static initialization to get the default before parsing static const size_t DefaultHeapBaseMinAddress = HeapBaseMinAddress; void Arguments::set_heap_size() { if (!FLAG_IS_DEFAULT(DefaultMaxRAMFraction)) { // Deprecated flag FLAG_SET_CMDLINE(uintx, MaxRAMFraction, DefaultMaxRAMFraction); } const julong phys_mem = FLAG_IS_DEFAULT(MaxRAM) ? MIN2(os::physical_memory(), (julong)MaxRAM) : (julong)MaxRAM; // If the maximum heap size has not been set with -Xmx, // then set it as fraction of the size of physical memory, // respecting the maximum and minimum sizes of the heap. if (FLAG_IS_DEFAULT(MaxHeapSize)) { julong reasonable_max = phys_mem / MaxRAMFraction; if (phys_mem <= MaxHeapSize * MinRAMFraction) { // Small physical memory, so use a minimum fraction of it for the heap reasonable_max = phys_mem / MinRAMFraction; } else { // Not-small physical memory, so require a heap at least // as large as MaxHeapSize reasonable_max = MAX2(reasonable_max, (julong)MaxHeapSize); } if (!FLAG_IS_DEFAULT(ErgoHeapSizeLimit) && ErgoHeapSizeLimit != 0) { // Limit the heap size to ErgoHeapSizeLimit reasonable_max = MIN2(reasonable_max, (julong)ErgoHeapSizeLimit); } if (UseCompressedOops) { // Limit the heap size to the maximum possible when using compressed oops julong max_coop_heap = (julong)max_heap_for_compressed_oops(); // HeapBaseMinAddress can be greater than default but not less than. if (!FLAG_IS_DEFAULT(HeapBaseMinAddress)) { if (HeapBaseMinAddress < DefaultHeapBaseMinAddress) { // matches compressed oops printing flags if (PrintCompressedOopsMode || (PrintMiscellaneous && Verbose)) { jio_fprintf(defaultStream::error_stream(), "HeapBaseMinAddress must be at least " SIZE_FORMAT " (" SIZE_FORMAT "G) which is greater than value given " SIZE_FORMAT "\n", DefaultHeapBaseMinAddress, DefaultHeapBaseMinAddress/G, HeapBaseMinAddress); } FLAG_SET_ERGO(size_t, HeapBaseMinAddress, DefaultHeapBaseMinAddress); } } if (HeapBaseMinAddress + MaxHeapSize < max_coop_heap) { // Heap should be above HeapBaseMinAddress to get zero based compressed oops // but it should be not less than default MaxHeapSize. max_coop_heap -= HeapBaseMinAddress; } reasonable_max = MIN2(reasonable_max, max_coop_heap); } reasonable_max = limit_by_allocatable_memory(reasonable_max); if (!FLAG_IS_DEFAULT(InitialHeapSize)) { // An initial heap size was specified on the command line, // so be sure that the maximum size is consistent. Done // after call to limit_by_allocatable_memory because that // method might reduce the allocation size. reasonable_max = MAX2(reasonable_max, (julong)InitialHeapSize); } if (PrintGCDetails && Verbose) { // Cannot use gclog_or_tty yet. tty->print_cr(" Maximum heap size " SIZE_FORMAT, (size_t) reasonable_max); } FLAG_SET_ERGO(size_t, MaxHeapSize, (size_t)reasonable_max); } // If the minimum or initial heap_size have not been set or requested to be set // ergonomically, set them accordingly. if (InitialHeapSize == 0 || min_heap_size() == 0) { julong reasonable_minimum = (julong)(OldSize + NewSize); reasonable_minimum = MIN2(reasonable_minimum, (julong)MaxHeapSize); reasonable_minimum = limit_by_allocatable_memory(reasonable_minimum); if (InitialHeapSize == 0) { julong reasonable_initial = phys_mem / InitialRAMFraction; reasonable_initial = MAX3(reasonable_initial, reasonable_minimum, (julong)min_heap_size()); reasonable_initial = MIN2(reasonable_initial, (julong)MaxHeapSize); reasonable_initial = limit_by_allocatable_memory(reasonable_initial); if (PrintGCDetails && Verbose) { // Cannot use gclog_or_tty yet. tty->print_cr(" Initial heap size " SIZE_FORMAT, (size_t)reasonable_initial); } FLAG_SET_ERGO(size_t, InitialHeapSize, (size_t)reasonable_initial); } // If the minimum heap size has not been set (via -Xms), // synchronize with InitialHeapSize to avoid errors with the default value. if (min_heap_size() == 0) { set_min_heap_size(MIN2((size_t)reasonable_minimum, InitialHeapSize)); if (PrintGCDetails && Verbose) { // Cannot use gclog_or_tty yet. tty->print_cr(" Minimum heap size " SIZE_FORMAT, min_heap_size()); } } } } // This must be called after ergonomics. void Arguments::set_bytecode_flags() { if (!RewriteBytecodes) { FLAG_SET_DEFAULT(RewriteFrequentPairs, false); } } // Aggressive optimization flags -XX:+AggressiveOpts void Arguments::set_aggressive_opts_flags() { #ifdef COMPILER2 if (AggressiveUnboxing) { if (FLAG_IS_DEFAULT(EliminateAutoBox)) { FLAG_SET_DEFAULT(EliminateAutoBox, true); } else if (!EliminateAutoBox) { // warning("AggressiveUnboxing is disabled because EliminateAutoBox is disabled"); AggressiveUnboxing = false; } if (FLAG_IS_DEFAULT(DoEscapeAnalysis)) { FLAG_SET_DEFAULT(DoEscapeAnalysis, true); } else if (!DoEscapeAnalysis) { // warning("AggressiveUnboxing is disabled because DoEscapeAnalysis is disabled"); AggressiveUnboxing = false; } } if (AggressiveOpts || !FLAG_IS_DEFAULT(AutoBoxCacheMax)) { if (FLAG_IS_DEFAULT(EliminateAutoBox)) { FLAG_SET_DEFAULT(EliminateAutoBox, true); } if (FLAG_IS_DEFAULT(AutoBoxCacheMax)) { FLAG_SET_DEFAULT(AutoBoxCacheMax, 20000); } // Feed the cache size setting into the JDK char buffer[1024]; sprintf(buffer, "java.lang.Integer.IntegerCache.high=" INTX_FORMAT, AutoBoxCacheMax); add_property(buffer); } if (AggressiveOpts && FLAG_IS_DEFAULT(BiasedLockingStartupDelay)) { FLAG_SET_DEFAULT(BiasedLockingStartupDelay, 500); } #endif if (AggressiveOpts) { // Sample flag setting code // if (FLAG_IS_DEFAULT(EliminateZeroing)) { // FLAG_SET_DEFAULT(EliminateZeroing, true); // } } } //=========================================================================================================== // Parsing of java.compiler property void Arguments::process_java_compiler_argument(char* arg) { // For backwards compatibility, Djava.compiler=NONE or "" // causes us to switch to -Xint mode UNLESS -Xdebug // is also specified. if (strlen(arg) == 0 || strcasecmp(arg, "NONE") == 0) { set_java_compiler(true); // "-Djava.compiler[=...]" most recently seen. } } void Arguments::process_java_launcher_argument(const char* launcher, void* extra_info) { _sun_java_launcher = os::strdup_check_oom(launcher); } bool Arguments::created_by_java_launcher() { assert(_sun_java_launcher != NULL, "property must have value"); return strcmp(DEFAULT_JAVA_LAUNCHER, _sun_java_launcher) != 0; } bool Arguments::sun_java_launcher_is_altjvm() { return _sun_java_launcher_is_altjvm; } //=========================================================================================================== // Parsing of main arguments // check if do gclog rotation // +UseGCLogFileRotation is a must, // no gc log rotation when log file not supplied or // NumberOfGCLogFiles is 0 void check_gclog_consistency() { if (UseGCLogFileRotation) { if ((Arguments::gc_log_filename() == NULL) || (NumberOfGCLogFiles == 0)) { jio_fprintf(defaultStream::output_stream(), "To enable GC log rotation, use -Xloggc: -XX:+UseGCLogFileRotation -XX:NumberOfGCLogFiles=\n" "where num_of_file > 0\n" "GC log rotation is turned off\n"); UseGCLogFileRotation = false; } } if (UseGCLogFileRotation && (GCLogFileSize != 0) && (GCLogFileSize < 8*K)) { if (FLAG_SET_CMDLINE(size_t, GCLogFileSize, 8*K) == Flag::SUCCESS) { jio_fprintf(defaultStream::output_stream(), "GCLogFileSize changed to minimum 8K\n"); } } } // This function is called for -Xloggc:, it can be used // to check if a given file name(or string) conforms to the following // specification: // A valid string only contains "[A-Z][a-z][0-9].-_%[p|t]" // %p and %t only allowed once. We only limit usage of filename not path bool is_filename_valid(const char *file_name) { const char* p = file_name; char file_sep = os::file_separator()[0]; const char* cp; // skip prefix path for (cp = file_name; *cp != '\0'; cp++) { if (*cp == '/' || *cp == file_sep) { p = cp + 1; } } int count_p = 0; int count_t = 0; while (*p != '\0') { if ((*p >= '0' && *p <= '9') || (*p >= 'A' && *p <= 'Z') || (*p >= 'a' && *p <= 'z') || *p == '-' || *p == '_' || *p == '.') { p++; continue; } if (*p == '%') { if(*(p + 1) == 'p') { p += 2; count_p ++; continue; } if (*(p + 1) == 't') { p += 2; count_t ++; continue; } } return false; } return count_p < 2 && count_t < 2; } // Check consistency of GC selection bool Arguments::check_gc_consistency() { check_gclog_consistency(); // Ensure that the user has not selected conflicting sets // of collectors. uint i = 0; if (UseSerialGC) i++; if (UseConcMarkSweepGC) i++; if (UseParallelGC || UseParallelOldGC) i++; if (UseG1GC) i++; if (i > 1) { jio_fprintf(defaultStream::error_stream(), "Conflicting collector combinations in option list; " "please refer to the release notes for the combinations " "allowed\n"); return false; } if (UseConcMarkSweepGC && !UseParNewGC) { jio_fprintf(defaultStream::error_stream(), "It is not possible to combine the DefNew young collector with the CMS collector.\n"); return false; } if (UseParNewGC && !UseConcMarkSweepGC) { jio_fprintf(defaultStream::error_stream(), "It is not possible to combine the ParNew young collector with any collector other than CMS.\n"); return false; } return true; } void Arguments::check_deprecated_gc_flags() { if (FLAG_IS_CMDLINE(UseParNewGC)) { warning("The UseParNewGC flag is deprecated and will likely be removed in a future release"); } if (FLAG_IS_CMDLINE(MaxGCMinorPauseMillis)) { warning("Using MaxGCMinorPauseMillis as minor pause goal is deprecated" "and will likely be removed in future release"); } if (FLAG_IS_CMDLINE(DefaultMaxRAMFraction)) { warning("DefaultMaxRAMFraction is deprecated and will likely be removed in a future release. " "Use MaxRAMFraction instead."); } } // Check the consistency of vm_init_args bool Arguments::check_vm_args_consistency() { // Method for adding checks for flag consistency. // The intent is to warn the user of all possible conflicts, // before returning an error. // Note: Needs platform-dependent factoring. bool status = true; if (TLABRefillWasteFraction == 0) { jio_fprintf(defaultStream::error_stream(), "TLABRefillWasteFraction should be a denominator, " "not " SIZE_FORMAT "\n", TLABRefillWasteFraction); status = false; } if (FullGCALot && FLAG_IS_DEFAULT(MarkSweepAlwaysCompactCount)) { MarkSweepAlwaysCompactCount = 1; // Move objects every gc. } if (UseParallelOldGC && ParallelOldGCSplitALot) { // Settings to encourage splitting. if (!FLAG_IS_CMDLINE(NewRatio)) { if (FLAG_SET_CMDLINE(uintx, NewRatio, 2) != Flag::SUCCESS) { status = false; } } if (!FLAG_IS_CMDLINE(ScavengeBeforeFullGC)) { if (FLAG_SET_CMDLINE(bool, ScavengeBeforeFullGC, false) != Flag::SUCCESS) { status = false; } } } if (!(UseParallelGC || UseParallelOldGC) && FLAG_IS_DEFAULT(ScavengeBeforeFullGC)) { FLAG_SET_DEFAULT(ScavengeBeforeFullGC, false); } if (GCTimeLimit == 100) { // Turn off gc-overhead-limit-exceeded checks FLAG_SET_DEFAULT(UseGCOverheadLimit, false); } status = status && check_gc_consistency(); // CMS space iteration, which FLSVerifyAllHeapreferences entails, // insists that we hold the requisite locks so that the iteration is // MT-safe. For the verification at start-up and shut-down, we don't // yet have a good way of acquiring and releasing these locks, // which are not visible at the CollectedHeap level. We want to // be able to acquire these locks and then do the iteration rather // than just disable the lock verification. This will be fixed under // bug 4788986. if (UseConcMarkSweepGC && FLSVerifyAllHeapReferences) { if (VerifyDuringStartup) { warning("Heap verification at start-up disabled " "(due to current incompatibility with FLSVerifyAllHeapReferences)"); VerifyDuringStartup = false; // Disable verification at start-up } if (VerifyBeforeExit) { warning("Heap verification at shutdown disabled " "(due to current incompatibility with FLSVerifyAllHeapReferences)"); VerifyBeforeExit = false; // Disable verification at shutdown } } // Note: only executed in non-PRODUCT mode if (!UseAsyncConcMarkSweepGC && (ExplicitGCInvokesConcurrent || ExplicitGCInvokesConcurrentAndUnloadsClasses)) { jio_fprintf(defaultStream::error_stream(), "error: +ExplicitGCInvokesConcurrent[AndUnloadsClasses] conflicts" " with -UseAsyncConcMarkSweepGC"); status = false; } if (PrintNMTStatistics) { #if INCLUDE_NMT if (MemTracker::tracking_level() == NMT_off) { #endif // INCLUDE_NMT warning("PrintNMTStatistics is disabled, because native memory tracking is not enabled"); PrintNMTStatistics = false; #if INCLUDE_NMT } #endif } // Check lower bounds of the code cache // Template Interpreter code is approximately 3X larger in debug builds. uint min_code_cache_size = CodeCacheMinimumUseSpace DEBUG_ONLY(* 3); if (InitialCodeCacheSize < (uintx)os::vm_page_size()) { jio_fprintf(defaultStream::error_stream(), "Invalid InitialCodeCacheSize=%dK. Must be at least %dK.\n", InitialCodeCacheSize/K, os::vm_page_size()/K); status = false; } else if (ReservedCodeCacheSize < InitialCodeCacheSize) { jio_fprintf(defaultStream::error_stream(), "Invalid ReservedCodeCacheSize: %dK. Must be at least InitialCodeCacheSize=%dK.\n", ReservedCodeCacheSize/K, InitialCodeCacheSize/K); status = false; } else if (ReservedCodeCacheSize < min_code_cache_size) { jio_fprintf(defaultStream::error_stream(), "Invalid ReservedCodeCacheSize=%dK. Must be at least %uK.\n", ReservedCodeCacheSize/K, min_code_cache_size/K); status = false; } else if (ReservedCodeCacheSize > CODE_CACHE_SIZE_LIMIT) { // Code cache size larger than CODE_CACHE_SIZE_LIMIT is not supported. jio_fprintf(defaultStream::error_stream(), "Invalid ReservedCodeCacheSize=%dM. Must be at most %uM.\n", ReservedCodeCacheSize/M, CODE_CACHE_SIZE_LIMIT/M); status = false; } else if (NonNMethodCodeHeapSize < min_code_cache_size){ jio_fprintf(defaultStream::error_stream(), "Invalid NonNMethodCodeHeapSize=%dK. Must be at least %uK.\n", NonNMethodCodeHeapSize/K, min_code_cache_size/K); status = false; } else if ((!FLAG_IS_DEFAULT(NonNMethodCodeHeapSize) || !FLAG_IS_DEFAULT(ProfiledCodeHeapSize) || !FLAG_IS_DEFAULT(NonProfiledCodeHeapSize)) && (NonNMethodCodeHeapSize + NonProfiledCodeHeapSize + ProfiledCodeHeapSize) != ReservedCodeCacheSize) { jio_fprintf(defaultStream::error_stream(), "Invalid code heap sizes: NonNMethodCodeHeapSize(%dK) + ProfiledCodeHeapSize(%dK) + NonProfiledCodeHeapSize(%dK) = %dK. Must be equal to ReservedCodeCacheSize = %uK.\n", NonNMethodCodeHeapSize/K, ProfiledCodeHeapSize/K, NonProfiledCodeHeapSize/K, (NonNMethodCodeHeapSize + ProfiledCodeHeapSize + NonProfiledCodeHeapSize)/K, ReservedCodeCacheSize/K); status = false; } int min_number_of_compiler_threads = get_min_number_of_compiler_threads(); // The default CICompilerCount's value is CI_COMPILER_COUNT. assert(min_number_of_compiler_threads <= CI_COMPILER_COUNT, "minimum should be less or equal default number"); if (!FLAG_IS_DEFAULT(CICompilerCount) && !FLAG_IS_DEFAULT(CICompilerCountPerCPU) && CICompilerCountPerCPU) { warning("The VM option CICompilerCountPerCPU overrides CICompilerCount."); } return status; } bool Arguments::is_bad_option(const JavaVMOption* option, jboolean ignore, const char* option_type) { if (ignore) return false; const char* spacer = " "; if (option_type == NULL) { option_type = ++spacer; // Set both to the empty string. } if (os::obsolete_option(option)) { jio_fprintf(defaultStream::error_stream(), "Obsolete %s%soption: %s\n", option_type, spacer, option->optionString); return false; } else { jio_fprintf(defaultStream::error_stream(), "Unrecognized %s%soption: %s\n", option_type, spacer, option->optionString); return true; } } static const char* user_assertion_options[] = { "-da", "-ea", "-disableassertions", "-enableassertions", 0 }; static const char* system_assertion_options[] = { "-dsa", "-esa", "-disablesystemassertions", "-enablesystemassertions", 0 }; bool Arguments::parse_uintx(const char* value, uintx* uintx_arg, uintx min_size) { // Check the sign first since atomull() parses only unsigned values. bool value_is_positive = !(*value == '-'); if (value_is_positive) { julong n; bool good_return = atomull(value, &n); if (good_return) { bool above_minimum = n >= min_size; bool value_is_too_large = n > max_uintx; if (above_minimum && !value_is_too_large) { *uintx_arg = n; return true; } } } return false; } Arguments::ArgsRange Arguments::parse_memory_size(const char* s, julong* long_arg, julong min_size) { if (!atomull(s, long_arg)) return arg_unreadable; return check_memory_size(*long_arg, min_size); } // Parse JavaVMInitArgs structure jint Arguments::parse_vm_init_args(const JavaVMInitArgs* args) { // For components of the system classpath. SysClassPath scp(Arguments::get_sysclasspath()); bool scp_assembly_required = false; // Save default settings for some mode flags Arguments::_AlwaysCompileLoopMethods = AlwaysCompileLoopMethods; Arguments::_UseOnStackReplacement = UseOnStackReplacement; Arguments::_ClipInlining = ClipInlining; Arguments::_BackgroundCompilation = BackgroundCompilation; if (TieredCompilation) { Arguments::_Tier3InvokeNotifyFreqLog = Tier3InvokeNotifyFreqLog; Arguments::_Tier4InvocationThreshold = Tier4InvocationThreshold; } // Setup flags for mixed which is the default set_mode_flags(_mixed); // Parse JAVA_TOOL_OPTIONS environment variable (if present) jint result = parse_java_tool_options_environment_variable(&scp, &scp_assembly_required); if (result != JNI_OK) { return result; } // Parse JavaVMInitArgs structure passed in result = parse_each_vm_init_arg(args, &scp, &scp_assembly_required, Flag::COMMAND_LINE); if (result != JNI_OK) { return result; } // Parse _JAVA_OPTIONS environment variable (if present) (mimics classic VM) result = parse_java_options_environment_variable(&scp, &scp_assembly_required); if (result != JNI_OK) { return result; } // Do final processing now that all arguments have been parsed result = finalize_vm_init_args(&scp, scp_assembly_required); if (result != JNI_OK) { return result; } return JNI_OK; } // Checks if name in command-line argument -agent{lib,path}:name[=options] // represents a valid HPROF of JDWP agent. is_path==true denotes that we // are dealing with -agentpath (case where name is a path), otherwise with // -agentlib bool valid_hprof_or_jdwp_agent(char *name, bool is_path) { char *_name; const char *_hprof = "hprof", *_jdwp = "jdwp"; size_t _len_hprof, _len_jdwp, _len_prefix; if (is_path) { if ((_name = strrchr(name, (int) *os::file_separator())) == NULL) { return false; } _name++; // skip past last path separator _len_prefix = strlen(JNI_LIB_PREFIX); if (strncmp(_name, JNI_LIB_PREFIX, _len_prefix) != 0) { return false; } _name += _len_prefix; _len_hprof = strlen(_hprof); _len_jdwp = strlen(_jdwp); if (strncmp(_name, _hprof, _len_hprof) == 0) { _name += _len_hprof; } else if (strncmp(_name, _jdwp, _len_jdwp) == 0) { _name += _len_jdwp; } else { return false; } if (strcmp(_name, JNI_LIB_SUFFIX) != 0) { return false; } return true; } if (strcmp(name, _hprof) == 0 || strcmp(name, _jdwp) == 0) { return true; } return false; } jint Arguments::parse_each_vm_init_arg(const JavaVMInitArgs* args, SysClassPath* scp_p, bool* scp_assembly_required_p, Flag::Flags origin) { // Remaining part of option string const char* tail; // iterate over arguments for (int index = 0; index < args->nOptions; index++) { bool is_absolute_path = false; // for -agentpath vs -agentlib const JavaVMOption* option = args->options + index; if (!match_option(option, "-Djava.class.path", &tail) && !match_option(option, "-Dsun.java.command", &tail) && !match_option(option, "-Dsun.java.launcher", &tail)) { // add all jvm options to the jvm_args string. This string // is used later to set the java.vm.args PerfData string constant. // the -Djava.class.path and the -Dsun.java.command options are // omitted from jvm_args string as each have their own PerfData // string constant object. build_jvm_args(option->optionString); } // -verbose:[class/gc/jni] if (match_option(option, "-verbose", &tail)) { if (!strcmp(tail, ":class") || !strcmp(tail, "")) { if (FLAG_SET_CMDLINE(bool, TraceClassLoading, true) != Flag::SUCCESS) { return JNI_EINVAL; } if (FLAG_SET_CMDLINE(bool, TraceClassUnloading, true) != Flag::SUCCESS) { return JNI_EINVAL; } } else if (!strcmp(tail, ":gc")) { if (FLAG_SET_CMDLINE(bool, PrintGC, true) != Flag::SUCCESS) { return JNI_EINVAL; } } else if (!strcmp(tail, ":jni")) { if (FLAG_SET_CMDLINE(bool, PrintJNIResolving, true) != Flag::SUCCESS) { return JNI_EINVAL; } } // -da / -ea / -disableassertions / -enableassertions // These accept an optional class/package name separated by a colon, e.g., // -da:java.lang.Thread. } else if (match_option(option, user_assertion_options, &tail, true)) { bool enable = option->optionString[1] == 'e'; // char after '-' is 'e' if (*tail == '\0') { JavaAssertions::setUserClassDefault(enable); } else { assert(*tail == ':', "bogus match by match_option()"); JavaAssertions::addOption(tail + 1, enable); } // -dsa / -esa / -disablesystemassertions / -enablesystemassertions } else if (match_option(option, system_assertion_options, &tail, false)) { bool enable = option->optionString[1] == 'e'; // char after '-' is 'e' JavaAssertions::setSystemClassDefault(enable); // -bootclasspath: } else if (match_option(option, "-Xbootclasspath:", &tail)) { scp_p->reset_path(tail); *scp_assembly_required_p = true; // -bootclasspath/a: } else if (match_option(option, "-Xbootclasspath/a:", &tail)) { scp_p->add_suffix(tail); *scp_assembly_required_p = true; // -bootclasspath/p: } else if (match_option(option, "-Xbootclasspath/p:", &tail)) { scp_p->add_prefix(tail); *scp_assembly_required_p = true; // -Xrun } else if (match_option(option, "-Xrun", &tail)) { if (tail != NULL) { const char* pos = strchr(tail, ':'); size_t len = (pos == NULL) ? strlen(tail) : pos - tail; char* name = (char*)memcpy(NEW_C_HEAP_ARRAY(char, len + 1, mtInternal), tail, len); name[len] = '\0'; char *options = NULL; if(pos != NULL) { size_t len2 = strlen(pos+1) + 1; // options start after ':'. Final zero must be copied. options = (char*)memcpy(NEW_C_HEAP_ARRAY(char, len2, mtInternal), pos+1, len2); } #if !INCLUDE_JVMTI if ((strcmp(name, "hprof") == 0) || (strcmp(name, "jdwp") == 0)) { jio_fprintf(defaultStream::error_stream(), "Profiling and debugging agents are not supported in this VM\n"); return JNI_ERR; } #endif // !INCLUDE_JVMTI add_init_library(name, options); } // -agentlib and -agentpath } else if (match_option(option, "-agentlib:", &tail) || (is_absolute_path = match_option(option, "-agentpath:", &tail))) { if(tail != NULL) { const char* pos = strchr(tail, '='); size_t len = (pos == NULL) ? strlen(tail) : pos - tail; char* name = strncpy(NEW_C_HEAP_ARRAY(char, len + 1, mtInternal), tail, len); name[len] = '\0'; char *options = NULL; if(pos != NULL) { options = os::strdup_check_oom(pos + 1, mtInternal); } #if !INCLUDE_JVMTI if (valid_hprof_or_jdwp_agent(name, is_absolute_path)) { jio_fprintf(defaultStream::error_stream(), "Profiling and debugging agents are not supported in this VM\n"); return JNI_ERR; } #endif // !INCLUDE_JVMTI add_init_agent(name, options, is_absolute_path); } // -javaagent } else if (match_option(option, "-javaagent:", &tail)) { #if !INCLUDE_JVMTI jio_fprintf(defaultStream::error_stream(), "Instrumentation agents are not supported in this VM\n"); return JNI_ERR; #else if(tail != NULL) { char *options = strcpy(NEW_C_HEAP_ARRAY(char, strlen(tail) + 1, mtInternal), tail); add_init_agent("instrument", options, false); } #endif // !INCLUDE_JVMTI // -Xnoclassgc } else if (match_option(option, "-Xnoclassgc")) { if (FLAG_SET_CMDLINE(bool, ClassUnloading, false) != Flag::SUCCESS) { return JNI_EINVAL; } // -Xconcgc } else if (match_option(option, "-Xconcgc")) { if (FLAG_SET_CMDLINE(bool, UseConcMarkSweepGC, true) != Flag::SUCCESS) { return JNI_EINVAL; } // -Xnoconcgc } else if (match_option(option, "-Xnoconcgc")) { if (FLAG_SET_CMDLINE(bool, UseConcMarkSweepGC, false) != Flag::SUCCESS) { return JNI_EINVAL; } // -Xbatch } else if (match_option(option, "-Xbatch")) { if (FLAG_SET_CMDLINE(bool, BackgroundCompilation, false) != Flag::SUCCESS) { return JNI_EINVAL; } // -Xmn for compatibility with other JVM vendors } else if (match_option(option, "-Xmn", &tail)) { julong long_initial_young_size = 0; ArgsRange errcode = parse_memory_size(tail, &long_initial_young_size, 1); if (errcode != arg_in_range) { jio_fprintf(defaultStream::error_stream(), "Invalid initial young generation size: %s\n", option->optionString); describe_range_error(errcode); return JNI_EINVAL; } if (FLAG_SET_CMDLINE(size_t, MaxNewSize, (size_t)long_initial_young_size) != Flag::SUCCESS) { return JNI_EINVAL; } if (FLAG_SET_CMDLINE(size_t, NewSize, (size_t)long_initial_young_size) != Flag::SUCCESS) { return JNI_EINVAL; } // -Xms } else if (match_option(option, "-Xms", &tail)) { julong long_initial_heap_size = 0; // an initial heap size of 0 means automatically determine ArgsRange errcode = parse_memory_size(tail, &long_initial_heap_size, 0); if (errcode != arg_in_range) { jio_fprintf(defaultStream::error_stream(), "Invalid initial heap size: %s\n", option->optionString); describe_range_error(errcode); return JNI_EINVAL; } set_min_heap_size((size_t)long_initial_heap_size); // Currently the minimum size and the initial heap sizes are the same. // Can be overridden with -XX:InitialHeapSize. if (FLAG_SET_CMDLINE(size_t, InitialHeapSize, (size_t)long_initial_heap_size) != Flag::SUCCESS) { return JNI_EINVAL; } // -Xmx } else if (match_option(option, "-Xmx", &tail) || match_option(option, "-XX:MaxHeapSize=", &tail)) { julong long_max_heap_size = 0; ArgsRange errcode = parse_memory_size(tail, &long_max_heap_size, 1); if (errcode != arg_in_range) { jio_fprintf(defaultStream::error_stream(), "Invalid maximum heap size: %s\n", option->optionString); describe_range_error(errcode); return JNI_EINVAL; } if (FLAG_SET_CMDLINE(size_t, MaxHeapSize, (size_t)long_max_heap_size) != Flag::SUCCESS) { return JNI_EINVAL; } // Xmaxf } else if (match_option(option, "-Xmaxf", &tail)) { char* err; int maxf = (int)(strtod(tail, &err) * 100); if (*err != '\0' || *tail == '\0') { jio_fprintf(defaultStream::error_stream(), "Bad max heap free percentage size: %s\n", option->optionString); return JNI_EINVAL; } else { if (FLAG_SET_CMDLINE(uintx, MaxHeapFreeRatio, maxf) != Flag::SUCCESS) { return JNI_EINVAL; } } // Xminf } else if (match_option(option, "-Xminf", &tail)) { char* err; int minf = (int)(strtod(tail, &err) * 100); if (*err != '\0' || *tail == '\0') { jio_fprintf(defaultStream::error_stream(), "Bad min heap free percentage size: %s\n", option->optionString); return JNI_EINVAL; } else { if (FLAG_SET_CMDLINE(uintx, MinHeapFreeRatio, minf) != Flag::SUCCESS) { return JNI_EINVAL; } } // -Xss } else if (match_option(option, "-Xss", &tail)) { julong long_ThreadStackSize = 0; ArgsRange errcode = parse_memory_size(tail, &long_ThreadStackSize, 1000); if (errcode != arg_in_range) { jio_fprintf(defaultStream::error_stream(), "Invalid thread stack size: %s\n", option->optionString); describe_range_error(errcode); return JNI_EINVAL; } // Internally track ThreadStackSize in units of 1024 bytes. if (FLAG_SET_CMDLINE(intx, ThreadStackSize, round_to((int)long_ThreadStackSize, K) / K) != Flag::SUCCESS) { return JNI_EINVAL; } // -Xoss } else if (match_option(option, "-Xoss", &tail)) { // HotSpot does not have separate native and Java stacks, ignore silently for compatibility } else if (match_option(option, "-XX:CodeCacheExpansionSize=", &tail)) { julong long_CodeCacheExpansionSize = 0; ArgsRange errcode = parse_memory_size(tail, &long_CodeCacheExpansionSize, os::vm_page_size()); if (errcode != arg_in_range) { jio_fprintf(defaultStream::error_stream(), "Invalid argument: %s. Must be at least %luK.\n", option->optionString, os::vm_page_size()/K); return JNI_EINVAL; } if (FLAG_SET_CMDLINE(uintx, CodeCacheExpansionSize, (uintx)long_CodeCacheExpansionSize) != Flag::SUCCESS) { return JNI_EINVAL; } } else if (match_option(option, "-Xmaxjitcodesize", &tail) || match_option(option, "-XX:ReservedCodeCacheSize=", &tail)) { julong long_ReservedCodeCacheSize = 0; ArgsRange errcode = parse_memory_size(tail, &long_ReservedCodeCacheSize, 1); if (errcode != arg_in_range) { jio_fprintf(defaultStream::error_stream(), "Invalid maximum code cache size: %s.\n", option->optionString); return JNI_EINVAL; } if (FLAG_SET_CMDLINE(uintx, ReservedCodeCacheSize, (uintx)long_ReservedCodeCacheSize) != Flag::SUCCESS) { return JNI_EINVAL; } // -XX:NonNMethodCodeHeapSize= } else if (match_option(option, "-XX:NonNMethodCodeHeapSize=", &tail)) { julong long_NonNMethodCodeHeapSize = 0; ArgsRange errcode = parse_memory_size(tail, &long_NonNMethodCodeHeapSize, 1); if (errcode != arg_in_range) { jio_fprintf(defaultStream::error_stream(), "Invalid maximum non-nmethod code heap size: %s.\n", option->optionString); return JNI_EINVAL; } if (FLAG_SET_CMDLINE(uintx, NonNMethodCodeHeapSize, (uintx)long_NonNMethodCodeHeapSize) != Flag::SUCCESS) { return JNI_EINVAL; } // -XX:ProfiledCodeHeapSize= } else if (match_option(option, "-XX:ProfiledCodeHeapSize=", &tail)) { julong long_ProfiledCodeHeapSize = 0; ArgsRange errcode = parse_memory_size(tail, &long_ProfiledCodeHeapSize, 1); if (errcode != arg_in_range) { jio_fprintf(defaultStream::error_stream(), "Invalid maximum profiled code heap size: %s.\n", option->optionString); return JNI_EINVAL; } if (FLAG_SET_CMDLINE(uintx, ProfiledCodeHeapSize, (uintx)long_ProfiledCodeHeapSize) != Flag::SUCCESS) { return JNI_EINVAL; } // -XX:NonProfiledCodeHeapSizee= } else if (match_option(option, "-XX:NonProfiledCodeHeapSize=", &tail)) { julong long_NonProfiledCodeHeapSize = 0; ArgsRange errcode = parse_memory_size(tail, &long_NonProfiledCodeHeapSize, 1); if (errcode != arg_in_range) { jio_fprintf(defaultStream::error_stream(), "Invalid maximum non-profiled code heap size: %s.\n", option->optionString); return JNI_EINVAL; } if (FLAG_SET_CMDLINE(uintx, NonProfiledCodeHeapSize, (uintx)long_NonProfiledCodeHeapSize) != Flag::SUCCESS) { return JNI_EINVAL; } // -green } else if (match_option(option, "-green")) { jio_fprintf(defaultStream::error_stream(), "Green threads support not available\n"); return JNI_EINVAL; // -native } else if (match_option(option, "-native")) { // HotSpot always uses native threads, ignore silently for compatibility // -Xsqnopause } else if (match_option(option, "-Xsqnopause")) { // EVM option, ignore silently for compatibility // -Xrs } else if (match_option(option, "-Xrs")) { // Classic/EVM option, new functionality if (FLAG_SET_CMDLINE(bool, ReduceSignalUsage, true) != Flag::SUCCESS) { return JNI_EINVAL; } } else if (match_option(option, "-Xusealtsigs")) { // change default internal VM signals used - lower case for back compat if (FLAG_SET_CMDLINE(bool, UseAltSigs, true) != Flag::SUCCESS) { return JNI_EINVAL; } // -Xoptimize } else if (match_option(option, "-Xoptimize")) { // EVM option, ignore silently for compatibility // -Xprof } else if (match_option(option, "-Xprof")) { #if INCLUDE_FPROF _has_profile = true; #else // INCLUDE_FPROF jio_fprintf(defaultStream::error_stream(), "Flat profiling is not supported in this VM.\n"); return JNI_ERR; #endif // INCLUDE_FPROF // -Xconcurrentio } else if (match_option(option, "-Xconcurrentio")) { if (FLAG_SET_CMDLINE(bool, UseLWPSynchronization, true) != Flag::SUCCESS) { return JNI_EINVAL; } if (FLAG_SET_CMDLINE(bool, BackgroundCompilation, false) != Flag::SUCCESS) { return JNI_EINVAL; } if (FLAG_SET_CMDLINE(intx, DeferThrSuspendLoopCount, 1) != Flag::SUCCESS) { return JNI_EINVAL; } if (FLAG_SET_CMDLINE(bool, UseTLAB, false) != Flag::SUCCESS) { return JNI_EINVAL; } if (FLAG_SET_CMDLINE(size_t, NewSizeThreadIncrease, 16 * K) != Flag::SUCCESS) { // 20Kb per thread added to new generation return JNI_EINVAL; } // -Xinternalversion } else if (match_option(option, "-Xinternalversion")) { jio_fprintf(defaultStream::output_stream(), "%s\n", VM_Version::internal_vm_info_string()); vm_exit(0); #ifndef PRODUCT // -Xprintflags } else if (match_option(option, "-Xprintflags")) { CommandLineFlags::printFlags(tty, false); vm_exit(0); #endif // -D } else if (match_option(option, "-D", &tail)) { const char* value; if (match_option(option, "-Djava.endorsed.dirs=", &value) && *value!= '\0' && strcmp(value, "\"\"") != 0) { // abort if -Djava.endorsed.dirs is set jio_fprintf(defaultStream::output_stream(), "-Djava.endorsed.dirs=%s is not supported. Endorsed standards and standalone APIs\n" "in modular form will be supported via the concept of upgradeable modules.\n", value); return JNI_EINVAL; } if (match_option(option, "-Djava.ext.dirs=", &value) && *value != '\0' && strcmp(value, "\"\"") != 0) { // abort if -Djava.ext.dirs is set jio_fprintf(defaultStream::output_stream(), "-Djava.ext.dirs=%s is not supported. Use -classpath instead.\n", value); return JNI_EINVAL; } if (!add_property(tail)) { return JNI_ENOMEM; } // Out of the box management support if (match_option(option, "-Dcom.sun.management", &tail)) { #if INCLUDE_MANAGEMENT if (FLAG_SET_CMDLINE(bool, ManagementServer, true) != Flag::SUCCESS) { return JNI_EINVAL; } #else jio_fprintf(defaultStream::output_stream(), "-Dcom.sun.management is not supported in this VM.\n"); return JNI_ERR; #endif } // -Xint } else if (match_option(option, "-Xint")) { set_mode_flags(_int); // -Xmixed } else if (match_option(option, "-Xmixed")) { set_mode_flags(_mixed); // -Xcomp } else if (match_option(option, "-Xcomp")) { // for testing the compiler; turn off all flags that inhibit compilation set_mode_flags(_comp); // -Xshare:dump } else if (match_option(option, "-Xshare:dump")) { if (FLAG_SET_CMDLINE(bool, DumpSharedSpaces, true) != Flag::SUCCESS) { return JNI_EINVAL; } set_mode_flags(_int); // Prevent compilation, which creates objects // -Xshare:on } else if (match_option(option, "-Xshare:on")) { if (FLAG_SET_CMDLINE(bool, UseSharedSpaces, true) != Flag::SUCCESS) { return JNI_EINVAL; } if (FLAG_SET_CMDLINE(bool, RequireSharedSpaces, true) != Flag::SUCCESS) { return JNI_EINVAL; } // -Xshare:auto } else if (match_option(option, "-Xshare:auto")) { if (FLAG_SET_CMDLINE(bool, UseSharedSpaces, true) != Flag::SUCCESS) { return JNI_EINVAL; } if (FLAG_SET_CMDLINE(bool, RequireSharedSpaces, false) != Flag::SUCCESS) { return JNI_EINVAL; } // -Xshare:off } else if (match_option(option, "-Xshare:off")) { if (FLAG_SET_CMDLINE(bool, UseSharedSpaces, false) != Flag::SUCCESS) { return JNI_EINVAL; } if (FLAG_SET_CMDLINE(bool, RequireSharedSpaces, false) != Flag::SUCCESS) { return JNI_EINVAL; } // -Xverify } else if (match_option(option, "-Xverify", &tail)) { if (strcmp(tail, ":all") == 0 || strcmp(tail, "") == 0) { if (FLAG_SET_CMDLINE(bool, BytecodeVerificationLocal, true) != Flag::SUCCESS) { return JNI_EINVAL; } if (FLAG_SET_CMDLINE(bool, BytecodeVerificationRemote, true) != Flag::SUCCESS) { return JNI_EINVAL; } } else if (strcmp(tail, ":remote") == 0) { if (FLAG_SET_CMDLINE(bool, BytecodeVerificationLocal, false) != Flag::SUCCESS) { return JNI_EINVAL; } if (FLAG_SET_CMDLINE(bool, BytecodeVerificationRemote, true) != Flag::SUCCESS) { return JNI_EINVAL; } } else if (strcmp(tail, ":none") == 0) { if (FLAG_SET_CMDLINE(bool, BytecodeVerificationLocal, false) != Flag::SUCCESS) { return JNI_EINVAL; } if (FLAG_SET_CMDLINE(bool, BytecodeVerificationRemote, false) != Flag::SUCCESS) { return JNI_EINVAL; } } else if (is_bad_option(option, args->ignoreUnrecognized, "verification")) { return JNI_EINVAL; } // -Xdebug } else if (match_option(option, "-Xdebug")) { // note this flag has been used, then ignore set_xdebug_mode(true); // -Xnoagent } else if (match_option(option, "-Xnoagent")) { // For compatibility with classic. HotSpot refuses to load the old style agent.dll. } else if (match_option(option, "-Xboundthreads")) { // Ignore silently for compatibility } else if (match_option(option, "-Xloggc:", &tail)) { // Redirect GC output to the file. -Xloggc: // ostream_init_log(), when called will use this filename // to initialize a fileStream. _gc_log_filename = os::strdup_check_oom(tail); if (!is_filename_valid(_gc_log_filename)) { jio_fprintf(defaultStream::output_stream(), "Invalid file name for use with -Xloggc: Filename can only contain the " "characters [A-Z][a-z][0-9]-_.%%[p|t] but it has been %s\n" "Note %%p or %%t can only be used once\n", _gc_log_filename); return JNI_EINVAL; } if (FLAG_SET_CMDLINE(bool, PrintGC, true) != Flag::SUCCESS) { return JNI_EINVAL; } if (FLAG_SET_CMDLINE(bool, PrintGCTimeStamps, true) != Flag::SUCCESS) { return JNI_EINVAL; } // JNI hooks } else if (match_option(option, "-Xcheck", &tail)) { if (!strcmp(tail, ":jni")) { #if !INCLUDE_JNI_CHECK warning("JNI CHECKING is not supported in this VM"); #else CheckJNICalls = true; #endif // INCLUDE_JNI_CHECK } else if (is_bad_option(option, args->ignoreUnrecognized, "check")) { return JNI_EINVAL; } } else if (match_option(option, "vfprintf")) { _vfprintf_hook = CAST_TO_FN_PTR(vfprintf_hook_t, option->extraInfo); } else if (match_option(option, "exit")) { _exit_hook = CAST_TO_FN_PTR(exit_hook_t, option->extraInfo); } else if (match_option(option, "abort")) { _abort_hook = CAST_TO_FN_PTR(abort_hook_t, option->extraInfo); // -XX:+AggressiveHeap } else if (match_option(option, "-XX:+AggressiveHeap")) { // This option inspects the machine and attempts to set various // parameters to be optimal for long-running, memory allocation // intensive jobs. It is intended for machines with large // amounts of cpu and memory. // initHeapSize is needed since _initial_heap_size is 4 bytes on a 32 bit // VM, but we may not be able to represent the total physical memory // available (like having 8gb of memory on a box but using a 32bit VM). // Thus, we need to make sure we're using a julong for intermediate // calculations. julong initHeapSize; julong total_memory = os::physical_memory(); if (total_memory < (julong)256*M) { jio_fprintf(defaultStream::error_stream(), "You need at least 256mb of memory to use -XX:+AggressiveHeap\n"); vm_exit(1); } // The heap size is half of available memory, or (at most) // all of possible memory less 160mb (leaving room for the OS // when using ISM). This is the maximum; because adaptive sizing // is turned on below, the actual space used may be smaller. initHeapSize = MIN2(total_memory / (julong)2, total_memory - (julong)160*M); initHeapSize = limit_by_allocatable_memory(initHeapSize); if (FLAG_IS_DEFAULT(MaxHeapSize)) { if (FLAG_SET_CMDLINE(size_t, MaxHeapSize, initHeapSize) != Flag::SUCCESS) { return JNI_EINVAL; } if (FLAG_SET_CMDLINE(size_t, InitialHeapSize, initHeapSize) != Flag::SUCCESS) { return JNI_EINVAL; } // Currently the minimum size and the initial heap sizes are the same. set_min_heap_size(initHeapSize); } if (FLAG_IS_DEFAULT(NewSize)) { // Make the young generation 3/8ths of the total heap. if (FLAG_SET_CMDLINE(size_t, NewSize, ((julong)MaxHeapSize / (julong)8) * (julong)3) != Flag::SUCCESS) { return JNI_EINVAL; } if (FLAG_SET_CMDLINE(size_t, MaxNewSize, NewSize) != Flag::SUCCESS) { return JNI_EINVAL; } } #if !defined(_ALLBSD_SOURCE) && !defined(AIX) // UseLargePages is not yet supported on BSD and AIX. FLAG_SET_DEFAULT(UseLargePages, true); #endif // Increase some data structure sizes for efficiency if (FLAG_SET_CMDLINE(size_t, BaseFootPrintEstimate, MaxHeapSize) != Flag::SUCCESS) { return JNI_EINVAL; } if (FLAG_SET_CMDLINE(bool, ResizeTLAB, false) != Flag::SUCCESS) { return JNI_EINVAL; } if (FLAG_SET_CMDLINE(size_t, TLABSize, 256*K) != Flag::SUCCESS) { return JNI_EINVAL; } // See the OldPLABSize comment below, but replace 'after promotion' // with 'after copying'. YoungPLABSize is the size of the survivor // space per-gc-thread buffers. The default is 4kw. if (FLAG_SET_CMDLINE(size_t, YoungPLABSize, 256*K) != Flag::SUCCESS) { // Note: this is in words return JNI_EINVAL; } // OldPLABSize is the size of the buffers in the old gen that // UseParallelGC uses to promote live data that doesn't fit in the // survivor spaces. At any given time, there's one for each gc thread. // The default size is 1kw. These buffers are rarely used, since the // survivor spaces are usually big enough. For specjbb, however, there // are occasions when there's lots of live data in the young gen // and we end up promoting some of it. We don't have a definite // explanation for why bumping OldPLABSize helps, but the theory // is that a bigger PLAB results in retaining something like the // original allocation order after promotion, which improves mutator // locality. A minor effect may be that larger PLABs reduce the // number of PLAB allocation events during gc. The value of 8kw // was arrived at by experimenting with specjbb. if (FLAG_SET_CMDLINE(size_t, OldPLABSize, 8*K) != Flag::SUCCESS) { // Note: this is in words return JNI_EINVAL; } // Enable parallel GC and adaptive generation sizing if (FLAG_SET_CMDLINE(bool, UseParallelGC, true) != Flag::SUCCESS) { return JNI_EINVAL; } FLAG_SET_DEFAULT(ParallelGCThreads, Abstract_VM_Version::parallel_worker_threads()); // Encourage steady state memory management if (FLAG_SET_CMDLINE(uintx, ThresholdTolerance, 100) != Flag::SUCCESS) { return JNI_EINVAL; } // This appears to improve mutator locality if (FLAG_SET_CMDLINE(bool, ScavengeBeforeFullGC, false) != Flag::SUCCESS) { return JNI_EINVAL; } // Get around early Solaris scheduling bug // (affinity vs other jobs on system) // but disallow DR and offlining (5008695). if (FLAG_SET_CMDLINE(bool, BindGCTaskThreadsToCPUs, true) != Flag::SUCCESS) { return JNI_EINVAL; } // Need to keep consistency of MaxTenuringThreshold and AlwaysTenure/NeverTenure; // and the last option wins. } else if (match_option(option, "-XX:+NeverTenure")) { if (FLAG_SET_CMDLINE(bool, NeverTenure, true) != Flag::SUCCESS) { return JNI_EINVAL; } if (FLAG_SET_CMDLINE(bool, AlwaysTenure, false) != Flag::SUCCESS) { return JNI_EINVAL; } if (FLAG_SET_CMDLINE(uintx, MaxTenuringThreshold, markOopDesc::max_age + 1) != Flag::SUCCESS) { return JNI_EINVAL; } } else if (match_option(option, "-XX:+AlwaysTenure")) { if (FLAG_SET_CMDLINE(bool, NeverTenure, false) != Flag::SUCCESS) { return JNI_EINVAL; } if (FLAG_SET_CMDLINE(bool, AlwaysTenure, true) != Flag::SUCCESS) { return JNI_EINVAL; } if (FLAG_SET_CMDLINE(uintx, MaxTenuringThreshold, 0) != Flag::SUCCESS) { return JNI_EINVAL; } } else if (match_option(option, "-XX:MaxTenuringThreshold=", &tail)) { uintx max_tenuring_thresh = 0; if (!parse_uintx(tail, &max_tenuring_thresh, 0)) { jio_fprintf(defaultStream::error_stream(), "Improperly specified VM option \'MaxTenuringThreshold=%s\'\n", tail); return JNI_EINVAL; } if (FLAG_SET_CMDLINE(uintx, MaxTenuringThreshold, max_tenuring_thresh) != Flag::SUCCESS) { return JNI_EINVAL; } if (MaxTenuringThreshold == 0) { if (FLAG_SET_CMDLINE(bool, NeverTenure, false) != Flag::SUCCESS) { return JNI_EINVAL; } if (FLAG_SET_CMDLINE(bool, AlwaysTenure, true) != Flag::SUCCESS) { return JNI_EINVAL; } } else { if (FLAG_SET_CMDLINE(bool, NeverTenure, false) != Flag::SUCCESS) { return JNI_EINVAL; } if (FLAG_SET_CMDLINE(bool, AlwaysTenure, false) != Flag::SUCCESS) { return JNI_EINVAL; } } } else if (match_option(option, "-XX:+DisplayVMOutputToStderr")) { if (FLAG_SET_CMDLINE(bool, DisplayVMOutputToStdout, false) != Flag::SUCCESS) { return JNI_EINVAL; } if (FLAG_SET_CMDLINE(bool, DisplayVMOutputToStderr, true) != Flag::SUCCESS) { return JNI_EINVAL; } } else if (match_option(option, "-XX:+DisplayVMOutputToStdout")) { if (FLAG_SET_CMDLINE(bool, DisplayVMOutputToStderr, false) != Flag::SUCCESS) { return JNI_EINVAL; } if (FLAG_SET_CMDLINE(bool, DisplayVMOutputToStdout, true) != Flag::SUCCESS) { return JNI_EINVAL; } } else if (match_option(option, "-XX:+ExtendedDTraceProbes")) { #if defined(DTRACE_ENABLED) if (FLAG_SET_CMDLINE(bool, ExtendedDTraceProbes, true) != Flag::SUCCESS) { return JNI_EINVAL; } if (FLAG_SET_CMDLINE(bool, DTraceMethodProbes, true) != Flag::SUCCESS) { return JNI_EINVAL; } if (FLAG_SET_CMDLINE(bool, DTraceAllocProbes, true) != Flag::SUCCESS) { return JNI_EINVAL; } if (FLAG_SET_CMDLINE(bool, DTraceMonitorProbes, true) != Flag::SUCCESS) { return JNI_EINVAL; } #else // defined(DTRACE_ENABLED) jio_fprintf(defaultStream::error_stream(), "ExtendedDTraceProbes flag is not applicable for this configuration\n"); return JNI_EINVAL; #endif // defined(DTRACE_ENABLED) #ifdef ASSERT } else if (match_option(option, "-XX:+FullGCALot")) { if (FLAG_SET_CMDLINE(bool, FullGCALot, true) != Flag::SUCCESS) { return JNI_EINVAL; } // disable scavenge before parallel mark-compact if (FLAG_SET_CMDLINE(bool, ScavengeBeforeFullGC, false) != Flag::SUCCESS) { return JNI_EINVAL; } #endif } else if (match_option(option, "-XX:CMSMarkStackSize=", &tail) || match_option(option, "-XX:G1MarkStackSize=", &tail)) { julong stack_size = 0; ArgsRange errcode = parse_memory_size(tail, &stack_size, 1); if (errcode != arg_in_range) { jio_fprintf(defaultStream::error_stream(), "Invalid mark stack size: %s\n", option->optionString); describe_range_error(errcode); return JNI_EINVAL; } jio_fprintf(defaultStream::error_stream(), "Please use -XX:MarkStackSize in place of " "-XX:CMSMarkStackSize or -XX:G1MarkStackSize in the future\n"); if (FLAG_SET_CMDLINE(size_t, MarkStackSize, stack_size) != Flag::SUCCESS) { return JNI_EINVAL; } } else if (match_option(option, "-XX:CMSMarkStackSizeMax=", &tail)) { julong max_stack_size = 0; ArgsRange errcode = parse_memory_size(tail, &max_stack_size, 1); if (errcode != arg_in_range) { jio_fprintf(defaultStream::error_stream(), "Invalid maximum mark stack size: %s\n", option->optionString); describe_range_error(errcode); return JNI_EINVAL; } jio_fprintf(defaultStream::error_stream(), "Please use -XX:MarkStackSizeMax in place of " "-XX:CMSMarkStackSizeMax in the future\n"); if (FLAG_SET_CMDLINE(size_t, MarkStackSizeMax, max_stack_size) != Flag::SUCCESS) { return JNI_EINVAL; } } else if (match_option(option, "-XX:ParallelMarkingThreads=", &tail) || match_option(option, "-XX:ParallelCMSThreads=", &tail)) { uintx conc_threads = 0; if (!parse_uintx(tail, &conc_threads, 1)) { jio_fprintf(defaultStream::error_stream(), "Invalid concurrent threads: %s\n", option->optionString); return JNI_EINVAL; } jio_fprintf(defaultStream::error_stream(), "Please use -XX:ConcGCThreads in place of " "-XX:ParallelMarkingThreads or -XX:ParallelCMSThreads in the future\n"); if (FLAG_SET_CMDLINE(uint, ConcGCThreads, conc_threads) != Flag::SUCCESS) { return JNI_EINVAL; } } else if (match_option(option, "-XX:MaxDirectMemorySize=", &tail)) { julong max_direct_memory_size = 0; ArgsRange errcode = parse_memory_size(tail, &max_direct_memory_size, 0); if (errcode != arg_in_range) { jio_fprintf(defaultStream::error_stream(), "Invalid maximum direct memory size: %s\n", option->optionString); describe_range_error(errcode); return JNI_EINVAL; } if (FLAG_SET_CMDLINE(size_t, MaxDirectMemorySize, max_direct_memory_size) != Flag::SUCCESS) { return JNI_EINVAL; } #if !INCLUDE_MANAGEMENT } else if (match_option(option, "-XX:+ManagementServer")) { jio_fprintf(defaultStream::error_stream(), "ManagementServer is not supported in this VM.\n"); return JNI_ERR; #endif // INCLUDE_MANAGEMENT // CreateMinidumpOnCrash is removed, and replaced by CreateCoredumpOnCrash } else if (match_option(option, "-XX:+CreateMinidumpOnCrash")) { if (FLAG_SET_CMDLINE(bool, CreateCoredumpOnCrash, true) != Flag::SUCCESS) { return JNI_EINVAL; } jio_fprintf(defaultStream::output_stream(), "CreateMinidumpOnCrash is replaced by CreateCoredumpOnCrash: CreateCoredumpOnCrash is on\n"); } else if (match_option(option, "-XX:-CreateMinidumpOnCrash")) { if (FLAG_SET_CMDLINE(bool, CreateCoredumpOnCrash, false) != Flag::SUCCESS) { return JNI_EINVAL; } jio_fprintf(defaultStream::output_stream(), "CreateMinidumpOnCrash is replaced by CreateCoredumpOnCrash: CreateCoredumpOnCrash is off\n"); } else if (match_option(option, "-XX:", &tail)) { // -XX:xxxx // Skip -XX:Flags= since that case has already been handled if (strncmp(tail, "Flags=", strlen("Flags=")) != 0) { if (!process_argument(tail, args->ignoreUnrecognized, origin)) { return JNI_EINVAL; } } // Unknown option } else if (is_bad_option(option, args->ignoreUnrecognized)) { return JNI_ERR; } } // PrintSharedArchiveAndExit will turn on // -Xshare:on // -XX:+TraceClassPaths if (PrintSharedArchiveAndExit) { if (FLAG_SET_CMDLINE(bool, UseSharedSpaces, true) != Flag::SUCCESS) { return JNI_EINVAL; } if (FLAG_SET_CMDLINE(bool, RequireSharedSpaces, true) != Flag::SUCCESS) { return JNI_EINVAL; } if (FLAG_SET_CMDLINE(bool, TraceClassPaths, true) != Flag::SUCCESS) { return JNI_EINVAL; } } // Change the default value for flags which have different default values // when working with older JDKs. #ifdef LINUX if (JDK_Version::current().compare_major(6) <= 0 && FLAG_IS_DEFAULT(UseLinuxPosixThreadCPUClocks)) { FLAG_SET_DEFAULT(UseLinuxPosixThreadCPUClocks, false); } #endif // LINUX fix_appclasspath(); return JNI_OK; } // Remove all empty paths from the app classpath (if IgnoreEmptyClassPaths is enabled) // // This is necessary because some apps like to specify classpath like -cp foo.jar:${XYZ}:bar.jar // in their start-up scripts. If XYZ is empty, the classpath will look like "-cp foo.jar::bar.jar". // Java treats such empty paths as if the user specified "-cp foo.jar:.:bar.jar". I.e., an empty // path is treated as the current directory. // // This causes problems with CDS, which requires that all directories specified in the classpath // must be empty. In most cases, applications do NOT want to load classes from the current // directory anyway. Adding -XX:+IgnoreEmptyClassPaths will make these applications' start-up // scripts compatible with CDS. void Arguments::fix_appclasspath() { if (IgnoreEmptyClassPaths) { const char separator = *os::path_separator(); const char* src = _java_class_path->value(); // skip over all the leading empty paths while (*src == separator) { src ++; } char* copy = os::strdup_check_oom(src, mtInternal); // trim all trailing empty paths for (char* tail = copy + strlen(copy) - 1; tail >= copy && *tail == separator; tail--) { *tail = '\0'; } char from[3] = {separator, separator, '\0'}; char to [2] = {separator, '\0'}; while (StringUtils::replace_no_expand(copy, from, to) > 0) { // Keep replacing "::" -> ":" until we have no more "::" (non-windows) // Keep replacing ";;" -> ";" until we have no more ";;" (windows) } _java_class_path->set_value(copy); FreeHeap(copy); // a copy was made by set_value, so don't need this anymore } if (!PrintSharedArchiveAndExit) { ClassLoader::trace_class_path("[classpath: ", _java_class_path->value()); } } static bool has_jar_files(const char* directory) { DIR* dir = os::opendir(directory); if (dir == NULL) return false; struct dirent *entry; char *dbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(directory), mtInternal); bool hasJarFile = false; while (!hasJarFile && (entry = os::readdir(dir, (dirent *) dbuf)) != NULL) { const char* name = entry->d_name; const char* ext = name + strlen(name) - 4; hasJarFile = ext > name && (os::file_name_strcmp(ext, ".jar") == 0); } FREE_C_HEAP_ARRAY(char, dbuf); os::closedir(dir); return hasJarFile ; } static int check_non_empty_dirs(const char* path) { const char separator = *os::path_separator(); const char* const end = path + strlen(path); int nonEmptyDirs = 0; while (path < end) { const char* tmp_end = strchr(path, separator); if (tmp_end == NULL) { if (has_jar_files(path)) { nonEmptyDirs++; jio_fprintf(defaultStream::output_stream(), "Non-empty directory: %s\n", path); } path = end; } else { char* dirpath = NEW_C_HEAP_ARRAY(char, tmp_end - path + 1, mtInternal); memcpy(dirpath, path, tmp_end - path); dirpath[tmp_end - path] = '\0'; if (has_jar_files(dirpath)) { nonEmptyDirs++; jio_fprintf(defaultStream::output_stream(), "Non-empty directory: %s\n", dirpath); } FREE_C_HEAP_ARRAY(char, dirpath); path = tmp_end + 1; } } return nonEmptyDirs; } jint Arguments::finalize_vm_init_args(SysClassPath* scp_p, bool scp_assembly_required) { // check if the default lib/endorsed directory exists; if so, error char path[JVM_MAXPATHLEN]; const char* fileSep = os::file_separator(); sprintf(path, "%s%slib%sendorsed", Arguments::get_java_home(), fileSep, fileSep); if (CheckEndorsedAndExtDirs) { int nonEmptyDirs = 0; // check endorsed directory nonEmptyDirs += check_non_empty_dirs(path); // check the extension directories nonEmptyDirs += check_non_empty_dirs(Arguments::get_ext_dirs()); if (nonEmptyDirs > 0) { return JNI_ERR; } } DIR* dir = os::opendir(path); if (dir != NULL) { jio_fprintf(defaultStream::output_stream(), "/lib/endorsed is not supported. Endorsed standards and standalone APIs\n" "in modular form will be supported via the concept of upgradeable modules.\n"); os::closedir(dir); return JNI_ERR; } sprintf(path, "%s%slib%sext", Arguments::get_java_home(), fileSep, fileSep); dir = os::opendir(path); if (dir != NULL) { jio_fprintf(defaultStream::output_stream(), "/lib/ext exists, extensions mechanism no longer supported; " "Use -classpath instead.\n."); os::closedir(dir); return JNI_ERR; } if (scp_assembly_required) { // Assemble the bootclasspath elements into the final path. Arguments::set_sysclasspath(scp_p->combined_path()); } // This must be done after all arguments have been processed. // java_compiler() true means set to "NONE" or empty. if (java_compiler() && !xdebug_mode()) { // For backwards compatibility, we switch to interpreted mode if // -Djava.compiler="NONE" or "" is specified AND "-Xdebug" was // not specified. set_mode_flags(_int); } // CompileThresholdScaling == 0.0 is same as -Xint: Disable compilation (enable interpreter-only mode), // but like -Xint, leave compilation thresholds unaffected. // With tiered compilation disabled, setting CompileThreshold to 0 disables compilation as well. if ((CompileThresholdScaling == 0.0) || (!TieredCompilation && CompileThreshold == 0)) { set_mode_flags(_int); } // eventually fix up InitialTenuringThreshold if only MaxTenuringThreshold is set if (FLAG_IS_DEFAULT(InitialTenuringThreshold) && (InitialTenuringThreshold > MaxTenuringThreshold)) { FLAG_SET_ERGO(uintx, InitialTenuringThreshold, MaxTenuringThreshold); } #ifndef COMPILER2 // Don't degrade server performance for footprint if (FLAG_IS_DEFAULT(UseLargePages) && MaxHeapSize < LargePageHeapSizeThreshold) { // No need for large granularity pages w/small heaps. // Note that large pages are enabled/disabled for both the // Java heap and the code cache. FLAG_SET_DEFAULT(UseLargePages, false); } #else if (!FLAG_IS_DEFAULT(OptoLoopAlignment) && FLAG_IS_DEFAULT(MaxLoopPad)) { FLAG_SET_DEFAULT(MaxLoopPad, OptoLoopAlignment-1); } #endif #ifndef TIERED // Tiered compilation is undefined. UNSUPPORTED_OPTION(TieredCompilation, "TieredCompilation"); #endif // If we are running in a headless jre, force java.awt.headless property // to be true unless the property has already been set. // Also allow the OS environment variable JAVA_AWT_HEADLESS to set headless state. if (os::is_headless_jre()) { const char* headless = Arguments::get_property("java.awt.headless"); if (headless == NULL) { const char *headless_env = ::getenv("JAVA_AWT_HEADLESS"); if (headless_env == NULL) { if (!add_property("java.awt.headless=true")) { return JNI_ENOMEM; } } else { char buffer[256]; jio_snprintf(buffer, sizeof(buffer), "java.awt.headless=%s", headless_env); if (!add_property(buffer)) { return JNI_ENOMEM; } } } } if (UseConcMarkSweepGC && FLAG_IS_DEFAULT(UseParNewGC) && !UseParNewGC) { // CMS can only be used with ParNew FLAG_SET_ERGO(bool, UseParNewGC, true); } if (!check_vm_args_consistency()) { return JNI_ERR; } return JNI_OK; } jint Arguments::parse_java_options_environment_variable(SysClassPath* scp_p, bool* scp_assembly_required_p) { return parse_options_environment_variable("_JAVA_OPTIONS", scp_p, scp_assembly_required_p); } jint Arguments::parse_java_tool_options_environment_variable(SysClassPath* scp_p, bool* scp_assembly_required_p) { return parse_options_environment_variable("JAVA_TOOL_OPTIONS", scp_p, scp_assembly_required_p); } jint Arguments::parse_options_environment_variable(const char* name, SysClassPath* scp_p, bool* scp_assembly_required_p) { char *buffer = ::getenv(name); // Don't check this variable if user has special privileges // (e.g. unix su command). if (buffer == NULL || os::have_special_privileges()) { return JNI_OK; } if ((buffer = os::strdup(buffer)) == NULL) { return JNI_ENOMEM; } GrowableArray *options = new (ResourceObj::C_HEAP, mtInternal) GrowableArray(2, true); // Construct option array jio_fprintf(defaultStream::error_stream(), "Picked up %s: %s\n", name, buffer); char* rd = buffer; // pointer to the input string (rd) while (true) { // repeat for all options in the input string while (isspace(*rd)) rd++; // skip whitespace if (*rd == 0) break; // we re done when the input string is read completely // The output, option string, overwrites the input string. // Because of quoting, the pointer to the option string (wrt) may lag the pointer to // input string (rd). char* wrt = rd; JavaVMOption option; option.optionString = wrt; options->append(option); // Fill in option while (*rd != 0 && !isspace(*rd)) { // unquoted strings terminate with a space or NULL if (*rd == '\'' || *rd == '"') { // handle a quoted string int quote = *rd; // matching quote to look for rd++; // don't copy open quote while (*rd != quote) { // include everything (even spaces) up until quote if (*rd == 0) { // string termination means unmatched string jio_fprintf(defaultStream::error_stream(), "Unmatched quote in %s\n", name); delete options; os::free(buffer); return JNI_ERR; } *wrt++ = *rd++; // copy to option string } rd++; // don't copy close quote } else { *wrt++ = *rd++; // copy to option string } } // Need to check if we're done before writing a NULL, // because the write could be to the byte that rd is pointing to. if (*rd++ == 0) { *wrt = 0; break; } *wrt = 0; // Zero terminate option } JavaVMOption* options_arr = NEW_C_HEAP_ARRAY_RETURN_NULL(JavaVMOption, options->length(), mtInternal); if (options_arr == NULL) { delete options; os::free(buffer); return JNI_ENOMEM; } for (int i = 0; i < options->length(); i++) { options_arr[i] = options->at(i); } // Construct JavaVMInitArgs structure and parse as if it was part of the command line JavaVMInitArgs vm_args; vm_args.version = JNI_VERSION_1_2; vm_args.options = options_arr; vm_args.nOptions = options->length(); vm_args.ignoreUnrecognized = IgnoreUnrecognizedVMOptions; if (PrintVMOptions) { const char* tail; for (int i = 0; i < vm_args.nOptions; i++) { const JavaVMOption *option = vm_args.options + i; if (match_option(option, "-XX:", &tail)) { logOption(tail); } } } jint result = parse_each_vm_init_arg(&vm_args, scp_p, scp_assembly_required_p, Flag::ENVIRON_VAR); FREE_C_HEAP_ARRAY(JavaVMOption, options_arr); delete options; os::free(buffer); return result; } void Arguments::set_shared_spaces_flags() { if (DumpSharedSpaces) { if (RequireSharedSpaces) { warning("cannot dump shared archive while using shared archive"); } UseSharedSpaces = false; #ifdef _LP64 if (!UseCompressedOops || !UseCompressedClassPointers) { vm_exit_during_initialization( "Cannot dump shared archive when UseCompressedOops or UseCompressedClassPointers is off.", NULL); } } else { if (!UseCompressedOops || !UseCompressedClassPointers) { no_shared_spaces("UseCompressedOops and UseCompressedClassPointers must be on for UseSharedSpaces."); } #endif } } #if !INCLUDE_ALL_GCS static void force_serial_gc() { FLAG_SET_DEFAULT(UseSerialGC, true); UNSUPPORTED_GC_OPTION(UseG1GC); UNSUPPORTED_GC_OPTION(UseParallelGC); UNSUPPORTED_GC_OPTION(UseParallelOldGC); UNSUPPORTED_GC_OPTION(UseConcMarkSweepGC); UNSUPPORTED_GC_OPTION(UseParNewGC); } #endif // INCLUDE_ALL_GCS // Sharing support // Construct the path to the archive static char* get_shared_archive_path() { char *shared_archive_path; if (SharedArchiveFile == NULL) { char jvm_path[JVM_MAXPATHLEN]; os::jvm_path(jvm_path, sizeof(jvm_path)); char *end = strrchr(jvm_path, *os::file_separator()); if (end != NULL) *end = '\0'; size_t jvm_path_len = strlen(jvm_path); size_t file_sep_len = strlen(os::file_separator()); const size_t len = jvm_path_len + file_sep_len + 20; shared_archive_path = NEW_C_HEAP_ARRAY(char, len, mtInternal); if (shared_archive_path != NULL) { jio_snprintf(shared_archive_path, len, "%s%sclasses.jsa", jvm_path, os::file_separator()); } } else { shared_archive_path = os::strdup_check_oom(SharedArchiveFile, mtInternal); } return shared_archive_path; } #ifndef PRODUCT // Determine whether LogVMOutput should be implicitly turned on. static bool use_vm_log() { if (LogCompilation || !FLAG_IS_DEFAULT(LogFile) || PrintCompilation || PrintInlining || PrintDependencies || PrintNativeNMethods || PrintDebugInfo || PrintRelocations || PrintNMethods || PrintExceptionHandlers || PrintAssembly || TraceDeoptimization || TraceDependencies || (VerifyDependencies && FLAG_IS_CMDLINE(VerifyDependencies))) { return true; } #ifdef COMPILER1 if (PrintC1Statistics) { return true; } #endif // COMPILER1 #ifdef COMPILER2 if (PrintOptoAssembly || PrintOptoStatistics) { return true; } #endif // COMPILER2 return false; } #endif // PRODUCT // Parse entry point called from JNI_CreateJavaVM jint Arguments::parse(const JavaVMInitArgs* args) { // Initialize ranges and constraints CommandLineFlagRangeList::init(); CommandLineFlagConstraintList::init(); // Remaining part of option string const char* tail; // If flag "-XX:Flags=flags-file" is used it will be the first option to be processed. const char* hotspotrc = ".hotspotrc"; bool settings_file_specified = false; bool needs_hotspotrc_warning = false; const char* flags_file; int index; for (index = 0; index < args->nOptions; index++) { const JavaVMOption *option = args->options + index; if (ArgumentsExt::process_options(option)) { continue; } if (match_option(option, "-XX:Flags=", &tail)) { flags_file = tail; settings_file_specified = true; continue; } if (match_option(option, "-XX:+PrintVMOptions")) { PrintVMOptions = true; continue; } if (match_option(option, "-XX:-PrintVMOptions")) { PrintVMOptions = false; continue; } if (match_option(option, "-XX:+IgnoreUnrecognizedVMOptions")) { IgnoreUnrecognizedVMOptions = true; continue; } if (match_option(option, "-XX:-IgnoreUnrecognizedVMOptions")) { IgnoreUnrecognizedVMOptions = false; continue; } if (match_option(option, "-XX:+PrintFlagsInitial")) { CommandLineFlags::printFlags(tty, false); vm_exit(0); } if (match_option(option, "-XX:NativeMemoryTracking", &tail)) { #if INCLUDE_NMT // The launcher did not setup nmt environment variable properly. if (!MemTracker::check_launcher_nmt_support(tail)) { warning("Native Memory Tracking did not setup properly, using wrong launcher?"); } // Verify if nmt option is valid. if (MemTracker::verify_nmt_option()) { // Late initialization, still in single-threaded mode. if (MemTracker::tracking_level() >= NMT_summary) { MemTracker::init(); } } else { vm_exit_during_initialization("Syntax error, expecting -XX:NativeMemoryTracking=[off|summary|detail]", NULL); } continue; #else jio_fprintf(defaultStream::error_stream(), "Native Memory Tracking is not supported in this VM\n"); return JNI_ERR; #endif } #ifndef PRODUCT if (match_option(option, "-XX:+PrintFlagsWithComments")) { CommandLineFlags::printFlags(tty, true); vm_exit(0); } #endif } if (IgnoreUnrecognizedVMOptions) { // uncast const to modify the flag args->ignoreUnrecognized *(jboolean*)(&args->ignoreUnrecognized) = true; } // Parse specified settings file if (settings_file_specified) { if (!process_settings_file(flags_file, true, args->ignoreUnrecognized)) { return JNI_EINVAL; } } else { #ifdef ASSERT // Parse default .hotspotrc settings file if (!process_settings_file(".hotspotrc", false, args->ignoreUnrecognized)) { return JNI_EINVAL; } #else struct stat buf; if (os::stat(hotspotrc, &buf) == 0) { needs_hotspotrc_warning = true; } #endif } if (PrintVMOptions) { for (index = 0; index < args->nOptions; index++) { const JavaVMOption *option = args->options + index; if (match_option(option, "-XX:", &tail)) { logOption(tail); } } } // Parse JavaVMInitArgs structure passed in, as well as JAVA_TOOL_OPTIONS and _JAVA_OPTIONS jint result = parse_vm_init_args(args); if (result != JNI_OK) { return result; } // Call get_shared_archive_path() here, after possible SharedArchiveFile option got parsed. SharedArchivePath = get_shared_archive_path(); if (SharedArchivePath == NULL) { return JNI_ENOMEM; } // Set up VerifySharedSpaces if (FLAG_IS_DEFAULT(VerifySharedSpaces) && SharedArchiveFile != NULL) { VerifySharedSpaces = true; } // Delay warning until here so that we've had a chance to process // the -XX:-PrintWarnings flag if (needs_hotspotrc_warning) { warning("%s file is present but has been ignored. " "Run with -XX:Flags=%s to load the file.", hotspotrc, hotspotrc); } #if defined(_ALLBSD_SOURCE) || defined(AIX) // UseLargePages is not yet supported on BSD and AIX. UNSUPPORTED_OPTION(UseLargePages, "-XX:+UseLargePages"); #endif ArgumentsExt::report_unsupported_options(); #ifndef PRODUCT if (TraceBytecodesAt != 0) { TraceBytecodes = true; } if (CountCompiledCalls) { if (UseCounterDecay) { warning("UseCounterDecay disabled because CountCalls is set"); UseCounterDecay = false; } } #endif // PRODUCT if (ScavengeRootsInCode == 0) { if (!FLAG_IS_DEFAULT(ScavengeRootsInCode)) { warning("forcing ScavengeRootsInCode non-zero"); } ScavengeRootsInCode = 1; } if (PrintGCDetails) { // Turn on -verbose:gc options as well PrintGC = true; } // Set object alignment values. set_object_alignment(); #if !INCLUDE_ALL_GCS force_serial_gc(); #endif // INCLUDE_ALL_GCS #if !INCLUDE_CDS if (DumpSharedSpaces || RequireSharedSpaces) { jio_fprintf(defaultStream::error_stream(), "Shared spaces are not supported in this VM\n"); return JNI_ERR; } if ((UseSharedSpaces && FLAG_IS_CMDLINE(UseSharedSpaces)) || PrintSharedSpaces) { warning("Shared spaces are not supported in this VM"); FLAG_SET_DEFAULT(UseSharedSpaces, false); FLAG_SET_DEFAULT(PrintSharedSpaces, false); } no_shared_spaces("CDS Disabled"); #endif // INCLUDE_CDS return JNI_OK; } jint Arguments::apply_ergo() { // Set flags based on ergonomics. set_ergonomics_flags(); set_shared_spaces_flags(); // Check the GC selections again. if (!check_gc_consistency()) { return JNI_EINVAL; } if (TieredCompilation) { set_tiered_flags(); } else { int max_compilation_policy_choice = 1; #ifdef COMPILER2 max_compilation_policy_choice = 2; #endif // Check if the policy is valid. if (CompilationPolicyChoice >= max_compilation_policy_choice) { vm_exit_during_initialization( "Incompatible compilation policy selected", NULL); } // Scale CompileThreshold // CompileThresholdScaling == 0.0 is equivalent to -Xint and leaves CompileThreshold unchanged. if (!FLAG_IS_DEFAULT(CompileThresholdScaling) && CompileThresholdScaling > 0.0) { FLAG_SET_ERGO(intx, CompileThreshold, scaled_compile_threshold(CompileThreshold)); } } #ifdef COMPILER2 #ifndef PRODUCT if (PrintIdealGraphLevel > 0) { FLAG_SET_ERGO(bool, PrintIdealGraph, true); } #endif #endif // Set heap size based on available physical memory set_heap_size(); ArgumentsExt::set_gc_specific_flags(); // Initialize Metaspace flags and alignments Metaspace::ergo_initialize(); // Set bytecode rewriting flags set_bytecode_flags(); // Set flags if Aggressive optimization flags (-XX:+AggressiveOpts) enabled set_aggressive_opts_flags(); // Turn off biased locking for locking debug mode flags, // which are subtly different from each other but neither works with // biased locking if (UseHeavyMonitors #ifdef COMPILER1 || !UseFastLocking #endif // COMPILER1 ) { if (!FLAG_IS_DEFAULT(UseBiasedLocking) && UseBiasedLocking) { // flag set to true on command line; warn the user that they // can't enable biased locking here warning("Biased Locking is not supported with locking debug flags" "; ignoring UseBiasedLocking flag." ); } UseBiasedLocking = false; } #ifdef ZERO // Clear flags not supported on zero. FLAG_SET_DEFAULT(ProfileInterpreter, false); FLAG_SET_DEFAULT(UseBiasedLocking, false); LP64_ONLY(FLAG_SET_DEFAULT(UseCompressedOops, false)); LP64_ONLY(FLAG_SET_DEFAULT(UseCompressedClassPointers, false)); #endif // CC_INTERP #ifdef COMPILER2 if (!EliminateLocks) { EliminateNestedLocks = false; } if (!Inline) { IncrementalInline = false; } #ifndef PRODUCT if (!IncrementalInline) { AlwaysIncrementalInline = false; } #endif if (!UseTypeSpeculation && FLAG_IS_DEFAULT(TypeProfileLevel)) { // nothing to use the profiling, turn if off FLAG_SET_DEFAULT(TypeProfileLevel, 0); } #endif if (PrintAssembly && FLAG_IS_DEFAULT(DebugNonSafepoints)) { warning("PrintAssembly is enabled; turning on DebugNonSafepoints to gain additional output"); DebugNonSafepoints = true; } if (FLAG_IS_CMDLINE(CompressedClassSpaceSize) && !UseCompressedClassPointers) { warning("Setting CompressedClassSpaceSize has no effect when compressed class pointers are not used"); } #ifndef PRODUCT if (!LogVMOutput && FLAG_IS_DEFAULT(LogVMOutput)) { if (use_vm_log()) { LogVMOutput = true; } } #endif // PRODUCT if (PrintCommandLineFlags) { CommandLineFlags::printSetFlags(tty); } // Apply CPU specific policy for the BiasedLocking if (UseBiasedLocking) { if (!VM_Version::use_biased_locking() && !(FLAG_IS_CMDLINE(UseBiasedLocking))) { UseBiasedLocking = false; } } #ifdef COMPILER2 if (!UseBiasedLocking || EmitSync != 0) { UseOptoBiasInlining = false; } #endif return JNI_OK; } jint Arguments::adjust_after_os() { if (UseNUMA) { if (UseParallelGC || UseParallelOldGC) { if (FLAG_IS_DEFAULT(MinHeapDeltaBytes)) { FLAG_SET_DEFAULT(MinHeapDeltaBytes, 64*M); } } // UseNUMAInterleaving is set to ON for all collectors and // platforms when UseNUMA is set to ON. NUMA-aware collectors // such as the parallel collector for Linux and Solaris will // interleave old gen and survivor spaces on top of NUMA // allocation policy for the eden space. // Non NUMA-aware collectors such as CMS, G1 and Serial-GC on // all platforms and ParallelGC on Windows will interleave all // of the heap spaces across NUMA nodes. if (FLAG_IS_DEFAULT(UseNUMAInterleaving)) { FLAG_SET_ERGO(bool, UseNUMAInterleaving, true); } } return JNI_OK; } // Any custom code post the final range and constraint check // can be done here. We pass a flag that specifies whether // the check passed successfully void Arguments::post_final_range_and_constraint_check(bool check_passed) { // This does not set the flag itself, but stores the value in a safe place for later usage. _min_heap_free_ratio = MinHeapFreeRatio; _max_heap_free_ratio = MaxHeapFreeRatio; } int Arguments::PropertyList_count(SystemProperty* pl) { int count = 0; while(pl != NULL) { count++; pl = pl->next(); } return count; } const char* Arguments::PropertyList_get_value(SystemProperty *pl, const char* key) { assert(key != NULL, "just checking"); SystemProperty* prop; for (prop = pl; prop != NULL; prop = prop->next()) { if (strcmp(key, prop->key()) == 0) return prop->value(); } return NULL; } const char* Arguments::PropertyList_get_key_at(SystemProperty *pl, int index) { int count = 0; const char* ret_val = NULL; while(pl != NULL) { if(count >= index) { ret_val = pl->key(); break; } count++; pl = pl->next(); } return ret_val; } char* Arguments::PropertyList_get_value_at(SystemProperty* pl, int index) { int count = 0; char* ret_val = NULL; while(pl != NULL) { if(count >= index) { ret_val = pl->value(); break; } count++; pl = pl->next(); } return ret_val; } void Arguments::PropertyList_add(SystemProperty** plist, SystemProperty *new_p) { SystemProperty* p = *plist; if (p == NULL) { *plist = new_p; } else { while (p->next() != NULL) { p = p->next(); } p->set_next(new_p); } } void Arguments::PropertyList_add(SystemProperty** plist, const char* k, char* v) { if (plist == NULL) return; SystemProperty* new_p = new SystemProperty(k, v, true); PropertyList_add(plist, new_p); } void Arguments::PropertyList_add(SystemProperty *element) { PropertyList_add(&_system_properties, element); } // This add maintains unique property key in the list. void Arguments::PropertyList_unique_add(SystemProperty** plist, const char* k, char* v, jboolean append) { if (plist == NULL) return; // If property key exist then update with new value. SystemProperty* prop; for (prop = *plist; prop != NULL; prop = prop->next()) { if (strcmp(k, prop->key()) == 0) { if (append) { prop->append_value(v); } else { prop->set_value(v); } return; } } PropertyList_add(plist, k, v); } // Copies src into buf, replacing "%%" with "%" and "%p" with pid // Returns true if all of the source pointed by src has been copied over to // the destination buffer pointed by buf. Otherwise, returns false. // Notes: // 1. If the length (buflen) of the destination buffer excluding the // NULL terminator character is not long enough for holding the expanded // pid characters, it also returns false instead of returning the partially // expanded one. // 2. The passed in "buflen" should be large enough to hold the null terminator. bool Arguments::copy_expand_pid(const char* src, size_t srclen, char* buf, size_t buflen) { const char* p = src; char* b = buf; const char* src_end = &src[srclen]; char* buf_end = &buf[buflen - 1]; while (p < src_end && b < buf_end) { if (*p == '%') { switch (*(++p)) { case '%': // "%%" ==> "%" *b++ = *p++; break; case 'p': { // "%p" ==> current process id // buf_end points to the character before the last character so // that we could write '\0' to the end of the buffer. size_t buf_sz = buf_end - b + 1; int ret = jio_snprintf(b, buf_sz, "%d", os::current_process_id()); // if jio_snprintf fails or the buffer is not long enough to hold // the expanded pid, returns false. if (ret < 0 || ret >= (int)buf_sz) { return false; } else { b += ret; assert(*b == '\0', "fail in copy_expand_pid"); if (p == src_end && b == buf_end + 1) { // reach the end of the buffer. return true; } } p++; break; } default : *b++ = '%'; } } else { *b++ = *p++; } } *b = '\0'; return (p == src_end); // return false if not all of the source was copied }