/* * Copyright 2000-2010 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * */ class BlockBegin; class BlockList; class LIR_Assembler; class CodeEmitInfo; class CodeStub; class CodeStubList; class ArrayCopyStub; class LIR_Op; class ciType; class ValueType; class LIR_OpVisitState; class FpuStackSim; //--------------------------------------------------------------------- // LIR Operands // LIR_OprDesc // LIR_OprPtr // LIR_Const // LIR_Address //--------------------------------------------------------------------- class LIR_OprDesc; class LIR_OprPtr; class LIR_Const; class LIR_Address; class LIR_OprVisitor; typedef LIR_OprDesc* LIR_Opr; typedef int RegNr; define_array(LIR_OprArray, LIR_Opr) define_stack(LIR_OprList, LIR_OprArray) define_array(LIR_OprRefArray, LIR_Opr*) define_stack(LIR_OprRefList, LIR_OprRefArray) define_array(CodeEmitInfoArray, CodeEmitInfo*) define_stack(CodeEmitInfoList, CodeEmitInfoArray) define_array(LIR_OpArray, LIR_Op*) define_stack(LIR_OpList, LIR_OpArray) // define LIR_OprPtr early so LIR_OprDesc can refer to it class LIR_OprPtr: public CompilationResourceObj { public: bool is_oop_pointer() const { return (type() == T_OBJECT); } bool is_float_kind() const { BasicType t = type(); return (t == T_FLOAT) || (t == T_DOUBLE); } virtual LIR_Const* as_constant() { return NULL; } virtual LIR_Address* as_address() { return NULL; } virtual BasicType type() const = 0; virtual void print_value_on(outputStream* out) const = 0; }; // LIR constants class LIR_Const: public LIR_OprPtr { private: JavaValue _value; void type_check(BasicType t) const { assert(type() == t, "type check"); } void type_check(BasicType t1, BasicType t2) const { assert(type() == t1 || type() == t2, "type check"); } public: LIR_Const(jint i) { _value.set_type(T_INT); _value.set_jint(i); } LIR_Const(jlong l) { _value.set_type(T_LONG); _value.set_jlong(l); } LIR_Const(jfloat f) { _value.set_type(T_FLOAT); _value.set_jfloat(f); } LIR_Const(jdouble d) { _value.set_type(T_DOUBLE); _value.set_jdouble(d); } LIR_Const(jobject o) { _value.set_type(T_OBJECT); _value.set_jobject(o); } LIR_Const(void* p) { #ifdef _LP64 assert(sizeof(jlong) >= sizeof(p), "too small");; _value.set_type(T_LONG); _value.set_jlong((jlong)p); #else assert(sizeof(jint) >= sizeof(p), "too small");; _value.set_type(T_INT); _value.set_jint((jint)p); #endif } virtual BasicType type() const { return _value.get_type(); } virtual LIR_Const* as_constant() { return this; } jint as_jint() const { type_check(T_INT ); return _value.get_jint(); } jlong as_jlong() const { type_check(T_LONG ); return _value.get_jlong(); } jfloat as_jfloat() const { type_check(T_FLOAT ); return _value.get_jfloat(); } jdouble as_jdouble() const { type_check(T_DOUBLE); return _value.get_jdouble(); } jobject as_jobject() const { type_check(T_OBJECT); return _value.get_jobject(); } jint as_jint_lo() const { type_check(T_LONG ); return low(_value.get_jlong()); } jint as_jint_hi() const { type_check(T_LONG ); return high(_value.get_jlong()); } #ifdef _LP64 address as_pointer() const { type_check(T_LONG ); return (address)_value.get_jlong(); } #else address as_pointer() const { type_check(T_INT ); return (address)_value.get_jint(); } #endif jint as_jint_bits() const { type_check(T_FLOAT, T_INT); return _value.get_jint(); } jint as_jint_lo_bits() const { if (type() == T_DOUBLE) { return low(jlong_cast(_value.get_jdouble())); } else { return as_jint_lo(); } } jint as_jint_hi_bits() const { if (type() == T_DOUBLE) { return high(jlong_cast(_value.get_jdouble())); } else { return as_jint_hi(); } } jlong as_jlong_bits() const { if (type() == T_DOUBLE) { return jlong_cast(_value.get_jdouble()); } else { return as_jlong(); } } virtual void print_value_on(outputStream* out) const PRODUCT_RETURN; bool is_zero_float() { jfloat f = as_jfloat(); jfloat ok = 0.0f; return jint_cast(f) == jint_cast(ok); } bool is_one_float() { jfloat f = as_jfloat(); return !g_isnan(f) && g_isfinite(f) && f == 1.0; } bool is_zero_double() { jdouble d = as_jdouble(); jdouble ok = 0.0; return jlong_cast(d) == jlong_cast(ok); } bool is_one_double() { jdouble d = as_jdouble(); return !g_isnan(d) && g_isfinite(d) && d == 1.0; } }; //---------------------LIR Operand descriptor------------------------------------ // // The class LIR_OprDesc represents a LIR instruction operand; // it can be a register (ALU/FPU), stack location or a constant; // Constants and addresses are represented as resource area allocated // structures (see above). // Registers and stack locations are inlined into the this pointer // (see value function). class LIR_OprDesc: public CompilationResourceObj { public: // value structure: // data opr-type opr-kind // +--------------+-------+-------+ // [max...........|7 6 5 4|3 2 1 0] // ^ // is_pointer bit // // lowest bit cleared, means it is a structure pointer // we need 4 bits to represent types private: friend class LIR_OprFact; // Conversion intptr_t value() const { return (intptr_t) this; } bool check_value_mask(intptr_t mask, intptr_t masked_value) const { return (value() & mask) == masked_value; } enum OprKind { pointer_value = 0 , stack_value = 1 , cpu_register = 3 , fpu_register = 5 , illegal_value = 7 }; enum OprBits { pointer_bits = 1 , kind_bits = 3 , type_bits = 4 , size_bits = 2 , destroys_bits = 1 , virtual_bits = 1 , is_xmm_bits = 1 , last_use_bits = 1 , is_fpu_stack_offset_bits = 1 // used in assertion checking on x86 for FPU stack slot allocation , non_data_bits = kind_bits + type_bits + size_bits + destroys_bits + last_use_bits + is_fpu_stack_offset_bits + virtual_bits + is_xmm_bits , data_bits = BitsPerInt - non_data_bits , reg_bits = data_bits / 2 // for two registers in one value encoding }; enum OprShift { kind_shift = 0 , type_shift = kind_shift + kind_bits , size_shift = type_shift + type_bits , destroys_shift = size_shift + size_bits , last_use_shift = destroys_shift + destroys_bits , is_fpu_stack_offset_shift = last_use_shift + last_use_bits , virtual_shift = is_fpu_stack_offset_shift + is_fpu_stack_offset_bits , is_xmm_shift = virtual_shift + virtual_bits , data_shift = is_xmm_shift + is_xmm_bits , reg1_shift = data_shift , reg2_shift = data_shift + reg_bits }; enum OprSize { single_size = 0 << size_shift , double_size = 1 << size_shift }; enum OprMask { kind_mask = right_n_bits(kind_bits) , type_mask = right_n_bits(type_bits) << type_shift , size_mask = right_n_bits(size_bits) << size_shift , last_use_mask = right_n_bits(last_use_bits) << last_use_shift , is_fpu_stack_offset_mask = right_n_bits(is_fpu_stack_offset_bits) << is_fpu_stack_offset_shift , virtual_mask = right_n_bits(virtual_bits) << virtual_shift , is_xmm_mask = right_n_bits(is_xmm_bits) << is_xmm_shift , pointer_mask = right_n_bits(pointer_bits) , lower_reg_mask = right_n_bits(reg_bits) , no_type_mask = (int)(~(type_mask | last_use_mask | is_fpu_stack_offset_mask)) }; uintptr_t data() const { return value() >> data_shift; } int lo_reg_half() const { return data() & lower_reg_mask; } int hi_reg_half() const { return (data() >> reg_bits) & lower_reg_mask; } OprKind kind_field() const { return (OprKind)(value() & kind_mask); } OprSize size_field() const { return (OprSize)(value() & size_mask); } static char type_char(BasicType t); public: enum { vreg_base = ConcreteRegisterImpl::number_of_registers, vreg_max = (1 << data_bits) - 1 }; static inline LIR_Opr illegalOpr(); enum OprType { unknown_type = 0 << type_shift // means: not set (catch uninitialized types) , int_type = 1 << type_shift , long_type = 2 << type_shift , object_type = 3 << type_shift , pointer_type = 4 << type_shift , float_type = 5 << type_shift , double_type = 6 << type_shift }; friend OprType as_OprType(BasicType t); friend BasicType as_BasicType(OprType t); OprType type_field_valid() const { assert(is_register() || is_stack(), "should not be called otherwise"); return (OprType)(value() & type_mask); } OprType type_field() const { return is_illegal() ? unknown_type : (OprType)(value() & type_mask); } static OprSize size_for(BasicType t) { switch (t) { case T_LONG: case T_DOUBLE: return double_size; break; case T_FLOAT: case T_BOOLEAN: case T_CHAR: case T_BYTE: case T_SHORT: case T_INT: case T_OBJECT: case T_ARRAY: return single_size; break; default: ShouldNotReachHere(); return single_size; } } void validate_type() const PRODUCT_RETURN; BasicType type() const { if (is_pointer()) { return pointer()->type(); } return as_BasicType(type_field()); } ValueType* value_type() const { return as_ValueType(type()); } char type_char() const { return type_char((is_pointer()) ? pointer()->type() : type()); } bool is_equal(LIR_Opr opr) const { return this == opr; } // checks whether types are same bool is_same_type(LIR_Opr opr) const { assert(type_field() != unknown_type && opr->type_field() != unknown_type, "shouldn't see unknown_type"); return type_field() == opr->type_field(); } bool is_same_register(LIR_Opr opr) { return (is_register() && opr->is_register() && kind_field() == opr->kind_field() && (value() & no_type_mask) == (opr->value() & no_type_mask)); } bool is_pointer() const { return check_value_mask(pointer_mask, pointer_value); } bool is_illegal() const { return kind_field() == illegal_value; } bool is_valid() const { return kind_field() != illegal_value; } bool is_register() const { return is_cpu_register() || is_fpu_register(); } bool is_virtual() const { return is_virtual_cpu() || is_virtual_fpu(); } bool is_constant() const { return is_pointer() && pointer()->as_constant() != NULL; } bool is_address() const { return is_pointer() && pointer()->as_address() != NULL; } bool is_float_kind() const { return is_pointer() ? pointer()->is_float_kind() : (kind_field() == fpu_register); } bool is_oop() const; // semantic for fpu- and xmm-registers: // * is_float and is_double return true for xmm_registers // (so is_single_fpu and is_single_xmm are true) // * So you must always check for is_???_xmm prior to is_???_fpu to // distinguish between fpu- and xmm-registers bool is_stack() const { validate_type(); return check_value_mask(kind_mask, stack_value); } bool is_single_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask, stack_value | single_size); } bool is_double_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask, stack_value | double_size); } bool is_cpu_register() const { validate_type(); return check_value_mask(kind_mask, cpu_register); } bool is_virtual_cpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register | virtual_mask); } bool is_fixed_cpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register); } bool is_single_cpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, cpu_register | single_size); } bool is_double_cpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, cpu_register | double_size); } bool is_fpu_register() const { validate_type(); return check_value_mask(kind_mask, fpu_register); } bool is_virtual_fpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register | virtual_mask); } bool is_fixed_fpu() const { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register); } bool is_single_fpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, fpu_register | single_size); } bool is_double_fpu() const { validate_type(); return check_value_mask(kind_mask | size_mask, fpu_register | double_size); } bool is_xmm_register() const { validate_type(); return check_value_mask(kind_mask | is_xmm_mask, fpu_register | is_xmm_mask); } bool is_single_xmm() const { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | single_size | is_xmm_mask); } bool is_double_xmm() const { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | double_size | is_xmm_mask); } // fast accessor functions for special bits that do not work for pointers // (in this functions, the check for is_pointer() is omitted) bool is_single_word() const { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, single_size); } bool is_double_word() const { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, double_size); } bool is_virtual_register() const { assert(is_register(), "type check"); return check_value_mask(virtual_mask, virtual_mask); } bool is_oop_register() const { assert(is_register() || is_stack(), "type check"); return type_field_valid() == object_type; } BasicType type_register() const { assert(is_register() || is_stack(), "type check"); return as_BasicType(type_field_valid()); } bool is_last_use() const { assert(is_register(), "only works for registers"); return (value() & last_use_mask) != 0; } bool is_fpu_stack_offset() const { assert(is_register(), "only works for registers"); return (value() & is_fpu_stack_offset_mask) != 0; } LIR_Opr make_last_use() { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | last_use_mask); } LIR_Opr make_fpu_stack_offset() { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | is_fpu_stack_offset_mask); } int single_stack_ix() const { assert(is_single_stack() && !is_virtual(), "type check"); return (int)data(); } int double_stack_ix() const { assert(is_double_stack() && !is_virtual(), "type check"); return (int)data(); } RegNr cpu_regnr() const { assert(is_single_cpu() && !is_virtual(), "type check"); return (RegNr)data(); } RegNr cpu_regnrLo() const { assert(is_double_cpu() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); } RegNr cpu_regnrHi() const { assert(is_double_cpu() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); } RegNr fpu_regnr() const { assert(is_single_fpu() && !is_virtual(), "type check"); return (RegNr)data(); } RegNr fpu_regnrLo() const { assert(is_double_fpu() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); } RegNr fpu_regnrHi() const { assert(is_double_fpu() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); } RegNr xmm_regnr() const { assert(is_single_xmm() && !is_virtual(), "type check"); return (RegNr)data(); } RegNr xmm_regnrLo() const { assert(is_double_xmm() && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); } RegNr xmm_regnrHi() const { assert(is_double_xmm() && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); } int vreg_number() const { assert(is_virtual(), "type check"); return (RegNr)data(); } LIR_OprPtr* pointer() const { assert(is_pointer(), "type check"); return (LIR_OprPtr*)this; } LIR_Const* as_constant_ptr() const { return pointer()->as_constant(); } LIR_Address* as_address_ptr() const { return pointer()->as_address(); } Register as_register() const; Register as_register_lo() const; Register as_register_hi() const; Register as_pointer_register() { #ifdef _LP64 if (is_double_cpu()) { assert(as_register_lo() == as_register_hi(), "should be a single register"); return as_register_lo(); } #endif return as_register(); } #ifdef X86 XMMRegister as_xmm_float_reg() const; XMMRegister as_xmm_double_reg() const; // for compatibility with RInfo int fpu () const { return lo_reg_half(); } #endif // X86 #ifdef SPARC FloatRegister as_float_reg () const; FloatRegister as_double_reg () const; #endif jint as_jint() const { return as_constant_ptr()->as_jint(); } jlong as_jlong() const { return as_constant_ptr()->as_jlong(); } jfloat as_jfloat() const { return as_constant_ptr()->as_jfloat(); } jdouble as_jdouble() const { return as_constant_ptr()->as_jdouble(); } jobject as_jobject() const { return as_constant_ptr()->as_jobject(); } void print() const PRODUCT_RETURN; void print(outputStream* out) const PRODUCT_RETURN; }; inline LIR_OprDesc::OprType as_OprType(BasicType type) { switch (type) { case T_INT: return LIR_OprDesc::int_type; case T_LONG: return LIR_OprDesc::long_type; case T_FLOAT: return LIR_OprDesc::float_type; case T_DOUBLE: return LIR_OprDesc::double_type; case T_OBJECT: case T_ARRAY: return LIR_OprDesc::object_type; case T_ILLEGAL: // fall through default: ShouldNotReachHere(); return LIR_OprDesc::unknown_type; } } inline BasicType as_BasicType(LIR_OprDesc::OprType t) { switch (t) { case LIR_OprDesc::int_type: return T_INT; case LIR_OprDesc::long_type: return T_LONG; case LIR_OprDesc::float_type: return T_FLOAT; case LIR_OprDesc::double_type: return T_DOUBLE; case LIR_OprDesc::object_type: return T_OBJECT; case LIR_OprDesc::unknown_type: // fall through default: ShouldNotReachHere(); return T_ILLEGAL; } } // LIR_Address class LIR_Address: public LIR_OprPtr { friend class LIR_OpVisitState; public: // NOTE: currently these must be the log2 of the scale factor (and // must also be equivalent to the ScaleFactor enum in // assembler_i486.hpp) enum Scale { times_1 = 0, times_2 = 1, times_4 = 2, times_8 = 3 }; private: LIR_Opr _base; LIR_Opr _index; Scale _scale; intx _disp; BasicType _type; public: LIR_Address(LIR_Opr base, LIR_Opr index, BasicType type): _base(base) , _index(index) , _scale(times_1) , _type(type) , _disp(0) { verify(); } LIR_Address(LIR_Opr base, int disp, BasicType type): _base(base) , _index(LIR_OprDesc::illegalOpr()) , _scale(times_1) , _type(type) , _disp(disp) { verify(); } #ifdef X86 LIR_Address(LIR_Opr base, LIR_Opr index, Scale scale, int disp, BasicType type): _base(base) , _index(index) , _scale(scale) , _type(type) , _disp(disp) { verify(); } #endif // X86 LIR_Opr base() const { return _base; } LIR_Opr index() const { return _index; } Scale scale() const { return _scale; } intx disp() const { return _disp; } bool equals(LIR_Address* other) const { return base() == other->base() && index() == other->index() && disp() == other->disp() && scale() == other->scale(); } virtual LIR_Address* as_address() { return this; } virtual BasicType type() const { return _type; } virtual void print_value_on(outputStream* out) const PRODUCT_RETURN; void verify() const PRODUCT_RETURN; static Scale scale(BasicType type); }; // operand factory class LIR_OprFact: public AllStatic { public: static LIR_Opr illegalOpr; static LIR_Opr single_cpu(int reg) { return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) | LIR_OprDesc::int_type | LIR_OprDesc::cpu_register | LIR_OprDesc::single_size); } static LIR_Opr single_cpu_oop(int reg) { return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) | LIR_OprDesc::object_type | LIR_OprDesc::cpu_register | LIR_OprDesc::single_size); } static LIR_Opr double_cpu(int reg1, int reg2) { LP64_ONLY(assert(reg1 == reg2, "must be identical")); return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) | (reg2 << LIR_OprDesc::reg2_shift) | LIR_OprDesc::long_type | LIR_OprDesc::cpu_register | LIR_OprDesc::double_size); } static LIR_Opr single_fpu(int reg) { return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) | LIR_OprDesc::float_type | LIR_OprDesc::fpu_register | LIR_OprDesc::single_size); } #ifdef SPARC static LIR_Opr double_fpu(int reg1, int reg2) { return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) | (reg2 << LIR_OprDesc::reg2_shift) | LIR_OprDesc::double_type | LIR_OprDesc::fpu_register | LIR_OprDesc::double_size); } #endif #ifdef X86 static LIR_Opr double_fpu(int reg) { return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) | (reg << LIR_OprDesc::reg2_shift) | LIR_OprDesc::double_type | LIR_OprDesc::fpu_register | LIR_OprDesc::double_size); } static LIR_Opr single_xmm(int reg) { return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) | LIR_OprDesc::float_type | LIR_OprDesc::fpu_register | LIR_OprDesc::single_size | LIR_OprDesc::is_xmm_mask); } static LIR_Opr double_xmm(int reg) { return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) | (reg << LIR_OprDesc::reg2_shift) | LIR_OprDesc::double_type | LIR_OprDesc::fpu_register | LIR_OprDesc::double_size | LIR_OprDesc::is_xmm_mask); } #endif // X86 static LIR_Opr virtual_register(int index, BasicType type) { LIR_Opr res; switch (type) { case T_OBJECT: // fall through case T_ARRAY: res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | LIR_OprDesc::object_type | LIR_OprDesc::cpu_register | LIR_OprDesc::single_size | LIR_OprDesc::virtual_mask); break; case T_INT: res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | LIR_OprDesc::int_type | LIR_OprDesc::cpu_register | LIR_OprDesc::single_size | LIR_OprDesc::virtual_mask); break; case T_LONG: res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | LIR_OprDesc::long_type | LIR_OprDesc::cpu_register | LIR_OprDesc::double_size | LIR_OprDesc::virtual_mask); break; case T_FLOAT: res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | LIR_OprDesc::float_type | LIR_OprDesc::fpu_register | LIR_OprDesc::single_size | LIR_OprDesc::virtual_mask); break; case T_DOUBLE: res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | LIR_OprDesc::double_type | LIR_OprDesc::fpu_register | LIR_OprDesc::double_size | LIR_OprDesc::virtual_mask); break; default: ShouldNotReachHere(); res = illegalOpr; } #ifdef ASSERT res->validate_type(); assert(res->vreg_number() == index, "conversion check"); assert(index >= LIR_OprDesc::vreg_base, "must start at vreg_base"); assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big"); // old-style calculation; check if old and new method are equal LIR_OprDesc::OprType t = as_OprType(type); LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | t | ((type == T_FLOAT || type == T_DOUBLE) ? LIR_OprDesc::fpu_register : LIR_OprDesc::cpu_register) | LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask); assert(res == old_res, "old and new method not equal"); #endif return res; } // 'index' is computed by FrameMap::local_stack_pos(index); do not use other parameters as // the index is platform independent; a double stack useing indeces 2 and 3 has always // index 2. static LIR_Opr stack(int index, BasicType type) { LIR_Opr res; switch (type) { case T_OBJECT: // fall through case T_ARRAY: res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | LIR_OprDesc::object_type | LIR_OprDesc::stack_value | LIR_OprDesc::single_size); break; case T_INT: res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | LIR_OprDesc::int_type | LIR_OprDesc::stack_value | LIR_OprDesc::single_size); break; case T_LONG: res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | LIR_OprDesc::long_type | LIR_OprDesc::stack_value | LIR_OprDesc::double_size); break; case T_FLOAT: res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | LIR_OprDesc::float_type | LIR_OprDesc::stack_value | LIR_OprDesc::single_size); break; case T_DOUBLE: res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | LIR_OprDesc::double_type | LIR_OprDesc::stack_value | LIR_OprDesc::double_size); break; default: ShouldNotReachHere(); res = illegalOpr; } #ifdef ASSERT assert(index >= 0, "index must be positive"); assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big"); LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | LIR_OprDesc::stack_value | as_OprType(type) | LIR_OprDesc::size_for(type)); assert(res == old_res, "old and new method not equal"); #endif return res; } static LIR_Opr intConst(jint i) { return (LIR_Opr)(new LIR_Const(i)); } static LIR_Opr longConst(jlong l) { return (LIR_Opr)(new LIR_Const(l)); } static LIR_Opr floatConst(jfloat f) { return (LIR_Opr)(new LIR_Const(f)); } static LIR_Opr doubleConst(jdouble d) { return (LIR_Opr)(new LIR_Const(d)); } static LIR_Opr oopConst(jobject o) { return (LIR_Opr)(new LIR_Const(o)); } static LIR_Opr address(LIR_Address* a) { return (LIR_Opr)a; } static LIR_Opr intptrConst(void* p) { return (LIR_Opr)(new LIR_Const(p)); } static LIR_Opr intptrConst(intptr_t v) { return (LIR_Opr)(new LIR_Const((void*)v)); } static LIR_Opr illegal() { return (LIR_Opr)-1; } static LIR_Opr value_type(ValueType* type); static LIR_Opr dummy_value_type(ValueType* type); }; //------------------------------------------------------------------------------- // LIR Instructions //------------------------------------------------------------------------------- // // Note: // - every instruction has a result operand // - every instruction has an CodeEmitInfo operand (can be revisited later) // - every instruction has a LIR_OpCode operand // - LIR_OpN, means an instruction that has N input operands // // class hierarchy: // class LIR_Op; class LIR_Op0; class LIR_OpLabel; class LIR_Op1; class LIR_OpBranch; class LIR_OpConvert; class LIR_OpAllocObj; class LIR_OpRoundFP; class LIR_Op2; class LIR_OpDelay; class LIR_Op3; class LIR_OpAllocArray; class LIR_OpCall; class LIR_OpJavaCall; class LIR_OpRTCall; class LIR_OpArrayCopy; class LIR_OpLock; class LIR_OpTypeCheck; class LIR_OpCompareAndSwap; class LIR_OpProfileCall; // LIR operation codes enum LIR_Code { lir_none , begin_op0 , lir_word_align , lir_label , lir_nop , lir_backwardbranch_target , lir_std_entry , lir_osr_entry , lir_build_frame , lir_fpop_raw , lir_24bit_FPU , lir_reset_FPU , lir_breakpoint , lir_rtcall , lir_membar , lir_membar_acquire , lir_membar_release , lir_get_thread , end_op0 , begin_op1 , lir_fxch , lir_fld , lir_ffree , lir_push , lir_pop , lir_null_check , lir_return , lir_leal , lir_neg , lir_branch , lir_cond_float_branch , lir_move , lir_prefetchr , lir_prefetchw , lir_convert , lir_alloc_object , lir_monaddr , lir_roundfp , lir_safepoint , end_op1 , begin_op2 , lir_cmp , lir_cmp_l2i , lir_ucmp_fd2i , lir_cmp_fd2i , lir_cmove , lir_add , lir_sub , lir_mul , lir_mul_strictfp , lir_div , lir_div_strictfp , lir_rem , lir_sqrt , lir_abs , lir_sin , lir_cos , lir_tan , lir_log , lir_log10 , lir_logic_and , lir_logic_or , lir_logic_xor , lir_shl , lir_shr , lir_ushr , lir_alloc_array , lir_throw , lir_unwind , lir_compare_to , end_op2 , begin_op3 , lir_idiv , lir_irem , end_op3 , begin_opJavaCall , lir_static_call , lir_optvirtual_call , lir_icvirtual_call , lir_virtual_call , end_opJavaCall , begin_opArrayCopy , lir_arraycopy , end_opArrayCopy , begin_opLock , lir_lock , lir_unlock , end_opLock , begin_delay_slot , lir_delay_slot , end_delay_slot , begin_opTypeCheck , lir_instanceof , lir_checkcast , lir_store_check , end_opTypeCheck , begin_opCompareAndSwap , lir_cas_long , lir_cas_obj , lir_cas_int , end_opCompareAndSwap , begin_opMDOProfile , lir_profile_call , end_opMDOProfile }; enum LIR_Condition { lir_cond_equal , lir_cond_notEqual , lir_cond_less , lir_cond_lessEqual , lir_cond_greaterEqual , lir_cond_greater , lir_cond_belowEqual , lir_cond_aboveEqual , lir_cond_always , lir_cond_unknown = -1 }; enum LIR_PatchCode { lir_patch_none, lir_patch_low, lir_patch_high, lir_patch_normal }; enum LIR_MoveKind { lir_move_normal, lir_move_volatile, lir_move_unaligned, lir_move_max_flag }; // -------------------------------------------------- // LIR_Op // -------------------------------------------------- class LIR_Op: public CompilationResourceObj { friend class LIR_OpVisitState; #ifdef ASSERT private: const char * _file; int _line; #endif protected: LIR_Opr _result; unsigned short _code; unsigned short _flags; CodeEmitInfo* _info; int _id; // value id for register allocation int _fpu_pop_count; Instruction* _source; // for debugging static void print_condition(outputStream* out, LIR_Condition cond) PRODUCT_RETURN; protected: static bool is_in_range(LIR_Code test, LIR_Code start, LIR_Code end) { return start < test && test < end; } public: LIR_Op() : _result(LIR_OprFact::illegalOpr) , _code(lir_none) , _flags(0) , _info(NULL) #ifdef ASSERT , _file(NULL) , _line(0) #endif , _fpu_pop_count(0) , _source(NULL) , _id(-1) {} LIR_Op(LIR_Code code, LIR_Opr result, CodeEmitInfo* info) : _result(result) , _code(code) , _flags(0) , _info(info) #ifdef ASSERT , _file(NULL) , _line(0) #endif , _fpu_pop_count(0) , _source(NULL) , _id(-1) {} CodeEmitInfo* info() const { return _info; } LIR_Code code() const { return (LIR_Code)_code; } LIR_Opr result_opr() const { return _result; } void set_result_opr(LIR_Opr opr) { _result = opr; } #ifdef ASSERT void set_file_and_line(const char * file, int line) { _file = file; _line = line; } #endif virtual const char * name() const PRODUCT_RETURN0; int id() const { return _id; } void set_id(int id) { _id = id; } // FPU stack simulation helpers -- only used on Intel void set_fpu_pop_count(int count) { assert(count >= 0 && count <= 1, "currently only 0 and 1 are valid"); _fpu_pop_count = count; } int fpu_pop_count() const { return _fpu_pop_count; } bool pop_fpu_stack() { return _fpu_pop_count > 0; } Instruction* source() const { return _source; } void set_source(Instruction* ins) { _source = ins; } virtual void emit_code(LIR_Assembler* masm) = 0; virtual void print_instr(outputStream* out) const = 0; virtual void print_on(outputStream* st) const PRODUCT_RETURN; virtual LIR_OpCall* as_OpCall() { return NULL; } virtual LIR_OpJavaCall* as_OpJavaCall() { return NULL; } virtual LIR_OpLabel* as_OpLabel() { return NULL; } virtual LIR_OpDelay* as_OpDelay() { return NULL; } virtual LIR_OpLock* as_OpLock() { return NULL; } virtual LIR_OpAllocArray* as_OpAllocArray() { return NULL; } virtual LIR_OpAllocObj* as_OpAllocObj() { return NULL; } virtual LIR_OpRoundFP* as_OpRoundFP() { return NULL; } virtual LIR_OpBranch* as_OpBranch() { return NULL; } virtual LIR_OpRTCall* as_OpRTCall() { return NULL; } virtual LIR_OpConvert* as_OpConvert() { return NULL; } virtual LIR_Op0* as_Op0() { return NULL; } virtual LIR_Op1* as_Op1() { return NULL; } virtual LIR_Op2* as_Op2() { return NULL; } virtual LIR_Op3* as_Op3() { return NULL; } virtual LIR_OpArrayCopy* as_OpArrayCopy() { return NULL; } virtual LIR_OpTypeCheck* as_OpTypeCheck() { return NULL; } virtual LIR_OpCompareAndSwap* as_OpCompareAndSwap() { return NULL; } virtual LIR_OpProfileCall* as_OpProfileCall() { return NULL; } virtual void verify() const {} }; // for calls class LIR_OpCall: public LIR_Op { friend class LIR_OpVisitState; protected: address _addr; LIR_OprList* _arguments; protected: LIR_OpCall(LIR_Code code, address addr, LIR_Opr result, LIR_OprList* arguments, CodeEmitInfo* info = NULL) : LIR_Op(code, result, info) , _arguments(arguments) , _addr(addr) {} public: address addr() const { return _addr; } const LIR_OprList* arguments() const { return _arguments; } virtual LIR_OpCall* as_OpCall() { return this; } }; // -------------------------------------------------- // LIR_OpJavaCall // -------------------------------------------------- class LIR_OpJavaCall: public LIR_OpCall { friend class LIR_OpVisitState; private: ciMethod* _method; LIR_Opr _receiver; public: LIR_OpJavaCall(LIR_Code code, ciMethod* method, LIR_Opr receiver, LIR_Opr result, address addr, LIR_OprList* arguments, CodeEmitInfo* info) : LIR_OpCall(code, addr, result, arguments, info) , _receiver(receiver) , _method(method) { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); } LIR_OpJavaCall(LIR_Code code, ciMethod* method, LIR_Opr receiver, LIR_Opr result, intptr_t vtable_offset, LIR_OprList* arguments, CodeEmitInfo* info) : LIR_OpCall(code, (address)vtable_offset, result, arguments, info) , _receiver(receiver) , _method(method) { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); } LIR_Opr receiver() const { return _receiver; } ciMethod* method() const { return _method; } intptr_t vtable_offset() const { assert(_code == lir_virtual_call, "only have vtable for real vcall"); return (intptr_t) addr(); } virtual void emit_code(LIR_Assembler* masm); virtual LIR_OpJavaCall* as_OpJavaCall() { return this; } virtual void print_instr(outputStream* out) const PRODUCT_RETURN; }; // -------------------------------------------------- // LIR_OpLabel // -------------------------------------------------- // Location where a branch can continue class LIR_OpLabel: public LIR_Op { friend class LIR_OpVisitState; private: Label* _label; public: LIR_OpLabel(Label* lbl) : LIR_Op(lir_label, LIR_OprFact::illegalOpr, NULL) , _label(lbl) {} Label* label() const { return _label; } virtual void emit_code(LIR_Assembler* masm); virtual LIR_OpLabel* as_OpLabel() { return this; } virtual void print_instr(outputStream* out) const PRODUCT_RETURN; }; // LIR_OpArrayCopy class LIR_OpArrayCopy: public LIR_Op { friend class LIR_OpVisitState; private: ArrayCopyStub* _stub; LIR_Opr _src; LIR_Opr _src_pos; LIR_Opr _dst; LIR_Opr _dst_pos; LIR_Opr _length; LIR_Opr _tmp; ciArrayKlass* _expected_type; int _flags; public: enum Flags { src_null_check = 1 << 0, dst_null_check = 1 << 1, src_pos_positive_check = 1 << 2, dst_pos_positive_check = 1 << 3, length_positive_check = 1 << 4, src_range_check = 1 << 5, dst_range_check = 1 << 6, type_check = 1 << 7, all_flags = (1 << 8) - 1 }; LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info); LIR_Opr src() const { return _src; } LIR_Opr src_pos() const { return _src_pos; } LIR_Opr dst() const { return _dst; } LIR_Opr dst_pos() const { return _dst_pos; } LIR_Opr length() const { return _length; } LIR_Opr tmp() const { return _tmp; } int flags() const { return _flags; } ciArrayKlass* expected_type() const { return _expected_type; } ArrayCopyStub* stub() const { return _stub; } virtual void emit_code(LIR_Assembler* masm); virtual LIR_OpArrayCopy* as_OpArrayCopy() { return this; } void print_instr(outputStream* out) const PRODUCT_RETURN; }; // -------------------------------------------------- // LIR_Op0 // -------------------------------------------------- class LIR_Op0: public LIR_Op { friend class LIR_OpVisitState; public: LIR_Op0(LIR_Code code) : LIR_Op(code, LIR_OprFact::illegalOpr, NULL) { assert(is_in_range(code, begin_op0, end_op0), "code check"); } LIR_Op0(LIR_Code code, LIR_Opr result, CodeEmitInfo* info = NULL) : LIR_Op(code, result, info) { assert(is_in_range(code, begin_op0, end_op0), "code check"); } virtual void emit_code(LIR_Assembler* masm); virtual LIR_Op0* as_Op0() { return this; } virtual void print_instr(outputStream* out) const PRODUCT_RETURN; }; // -------------------------------------------------- // LIR_Op1 // -------------------------------------------------- class LIR_Op1: public LIR_Op { friend class LIR_OpVisitState; protected: LIR_Opr _opr; // input operand BasicType _type; // Operand types LIR_PatchCode _patch; // only required with patchin (NEEDS_CLEANUP: do we want a special instruction for patching?) static void print_patch_code(outputStream* out, LIR_PatchCode code); void set_kind(LIR_MoveKind kind) { assert(code() == lir_move, "must be"); _flags = kind; } public: LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result = LIR_OprFact::illegalOpr, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = NULL) : LIR_Op(code, result, info) , _opr(opr) , _patch(patch) , _type(type) { assert(is_in_range(code, begin_op1, end_op1), "code check"); } LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, BasicType type, LIR_PatchCode patch, CodeEmitInfo* info, LIR_MoveKind kind) : LIR_Op(code, result, info) , _opr(opr) , _patch(patch) , _type(type) { assert(code == lir_move, "must be"); set_kind(kind); } LIR_Op1(LIR_Code code, LIR_Opr opr, CodeEmitInfo* info) : LIR_Op(code, LIR_OprFact::illegalOpr, info) , _opr(opr) , _patch(lir_patch_none) , _type(T_ILLEGAL) { assert(is_in_range(code, begin_op1, end_op1), "code check"); } LIR_Opr in_opr() const { return _opr; } LIR_PatchCode patch_code() const { return _patch; } BasicType type() const { return _type; } LIR_MoveKind move_kind() const { assert(code() == lir_move, "must be"); return (LIR_MoveKind)_flags; } virtual void emit_code(LIR_Assembler* masm); virtual LIR_Op1* as_Op1() { return this; } virtual const char * name() const PRODUCT_RETURN0; void set_in_opr(LIR_Opr opr) { _opr = opr; } virtual void print_instr(outputStream* out) const PRODUCT_RETURN; virtual void verify() const; }; // for runtime calls class LIR_OpRTCall: public LIR_OpCall { friend class LIR_OpVisitState; private: LIR_Opr _tmp; public: LIR_OpRTCall(address addr, LIR_Opr tmp, LIR_Opr result, LIR_OprList* arguments, CodeEmitInfo* info = NULL) : LIR_OpCall(lir_rtcall, addr, result, arguments, info) , _tmp(tmp) {} virtual void print_instr(outputStream* out) const PRODUCT_RETURN; virtual void emit_code(LIR_Assembler* masm); virtual LIR_OpRTCall* as_OpRTCall() { return this; } LIR_Opr tmp() const { return _tmp; } virtual void verify() const; }; class LIR_OpBranch: public LIR_Op { friend class LIR_OpVisitState; private: LIR_Condition _cond; BasicType _type; Label* _label; BlockBegin* _block; // if this is a branch to a block, this is the block BlockBegin* _ublock; // if this is a float-branch, this is the unorderd block CodeStub* _stub; // if this is a branch to a stub, this is the stub public: LIR_OpBranch(LIR_Condition cond, Label* lbl) : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*) NULL) , _cond(cond) , _label(lbl) , _block(NULL) , _ublock(NULL) , _stub(NULL) { } LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block); LIR_OpBranch(LIR_Condition cond, BasicType type, CodeStub* stub); // for unordered comparisons LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* ublock); LIR_Condition cond() const { return _cond; } BasicType type() const { return _type; } Label* label() const { return _label; } BlockBegin* block() const { return _block; } BlockBegin* ublock() const { return _ublock; } CodeStub* stub() const { return _stub; } void change_block(BlockBegin* b); void change_ublock(BlockBegin* b); void negate_cond(); virtual void emit_code(LIR_Assembler* masm); virtual LIR_OpBranch* as_OpBranch() { return this; } virtual void print_instr(outputStream* out) const PRODUCT_RETURN; }; class ConversionStub; class LIR_OpConvert: public LIR_Op1 { friend class LIR_OpVisitState; private: Bytecodes::Code _bytecode; ConversionStub* _stub; public: LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub) : LIR_Op1(lir_convert, opr, result) , _stub(stub) , _bytecode(code) {} Bytecodes::Code bytecode() const { return _bytecode; } ConversionStub* stub() const { return _stub; } virtual void emit_code(LIR_Assembler* masm); virtual LIR_OpConvert* as_OpConvert() { return this; } virtual void print_instr(outputStream* out) const PRODUCT_RETURN; static void print_bytecode(outputStream* out, Bytecodes::Code code) PRODUCT_RETURN; }; // LIR_OpAllocObj class LIR_OpAllocObj : public LIR_Op1 { friend class LIR_OpVisitState; private: LIR_Opr _tmp1; LIR_Opr _tmp2; LIR_Opr _tmp3; LIR_Opr _tmp4; int _hdr_size; int _obj_size; CodeStub* _stub; bool _init_check; public: LIR_OpAllocObj(LIR_Opr klass, LIR_Opr result, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, int hdr_size, int obj_size, bool init_check, CodeStub* stub) : LIR_Op1(lir_alloc_object, klass, result) , _tmp1(t1) , _tmp2(t2) , _tmp3(t3) , _tmp4(t4) , _hdr_size(hdr_size) , _obj_size(obj_size) , _init_check(init_check) , _stub(stub) { } LIR_Opr klass() const { return in_opr(); } LIR_Opr obj() const { return result_opr(); } LIR_Opr tmp1() const { return _tmp1; } LIR_Opr tmp2() const { return _tmp2; } LIR_Opr tmp3() const { return _tmp3; } LIR_Opr tmp4() const { return _tmp4; } int header_size() const { return _hdr_size; } int object_size() const { return _obj_size; } bool init_check() const { return _init_check; } CodeStub* stub() const { return _stub; } virtual void emit_code(LIR_Assembler* masm); virtual LIR_OpAllocObj * as_OpAllocObj () { return this; } virtual void print_instr(outputStream* out) const PRODUCT_RETURN; }; // LIR_OpRoundFP class LIR_OpRoundFP : public LIR_Op1 { friend class LIR_OpVisitState; private: LIR_Opr _tmp; public: LIR_OpRoundFP(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) : LIR_Op1(lir_roundfp, reg, result) , _tmp(stack_loc_temp) {} LIR_Opr tmp() const { return _tmp; } virtual LIR_OpRoundFP* as_OpRoundFP() { return this; } void print_instr(outputStream* out) const PRODUCT_RETURN; }; // LIR_OpTypeCheck class LIR_OpTypeCheck: public LIR_Op { friend class LIR_OpVisitState; private: LIR_Opr _object; LIR_Opr _array; ciKlass* _klass; LIR_Opr _tmp1; LIR_Opr _tmp2; LIR_Opr _tmp3; bool _fast_check; CodeEmitInfo* _info_for_patch; CodeEmitInfo* _info_for_exception; CodeStub* _stub; // Helpers for Tier1UpdateMethodData ciMethod* _profiled_method; int _profiled_bci; public: LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub, ciMethod* profiled_method, int profiled_bci); LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci); LIR_Opr object() const { return _object; } LIR_Opr array() const { assert(code() == lir_store_check, "not valid"); return _array; } LIR_Opr tmp1() const { return _tmp1; } LIR_Opr tmp2() const { return _tmp2; } LIR_Opr tmp3() const { return _tmp3; } ciKlass* klass() const { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _klass; } bool fast_check() const { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _fast_check; } CodeEmitInfo* info_for_patch() const { return _info_for_patch; } CodeEmitInfo* info_for_exception() const { return _info_for_exception; } CodeStub* stub() const { return _stub; } // methodDataOop profiling ciMethod* profiled_method() { return _profiled_method; } int profiled_bci() { return _profiled_bci; } virtual void emit_code(LIR_Assembler* masm); virtual LIR_OpTypeCheck* as_OpTypeCheck() { return this; } void print_instr(outputStream* out) const PRODUCT_RETURN; }; // LIR_Op2 class LIR_Op2: public LIR_Op { friend class LIR_OpVisitState; int _fpu_stack_size; // for sin/cos implementation on Intel protected: LIR_Opr _opr1; LIR_Opr _opr2; BasicType _type; LIR_Opr _tmp; LIR_Condition _condition; void verify() const; public: LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, CodeEmitInfo* info = NULL) : LIR_Op(code, LIR_OprFact::illegalOpr, info) , _opr1(opr1) , _opr2(opr2) , _type(T_ILLEGAL) , _condition(condition) , _fpu_stack_size(0) , _tmp(LIR_OprFact::illegalOpr) { assert(code == lir_cmp, "code check"); } LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) : LIR_Op(code, result, NULL) , _opr1(opr1) , _opr2(opr2) , _type(T_ILLEGAL) , _condition(condition) , _fpu_stack_size(0) , _tmp(LIR_OprFact::illegalOpr) { assert(code == lir_cmove, "code check"); } LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result = LIR_OprFact::illegalOpr, CodeEmitInfo* info = NULL, BasicType type = T_ILLEGAL) : LIR_Op(code, result, info) , _opr1(opr1) , _opr2(opr2) , _type(type) , _condition(lir_cond_unknown) , _fpu_stack_size(0) , _tmp(LIR_OprFact::illegalOpr) { assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check"); } LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, LIR_Opr tmp) : LIR_Op(code, result, NULL) , _opr1(opr1) , _opr2(opr2) , _type(T_ILLEGAL) , _condition(lir_cond_unknown) , _fpu_stack_size(0) , _tmp(tmp) { assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check"); } LIR_Opr in_opr1() const { return _opr1; } LIR_Opr in_opr2() const { return _opr2; } BasicType type() const { return _type; } LIR_Opr tmp_opr() const { return _tmp; } LIR_Condition condition() const { assert(code() == lir_cmp || code() == lir_cmove, "only valid for cmp and cmove"); return _condition; } void set_fpu_stack_size(int size) { _fpu_stack_size = size; } int fpu_stack_size() const { return _fpu_stack_size; } void set_in_opr1(LIR_Opr opr) { _opr1 = opr; } void set_in_opr2(LIR_Opr opr) { _opr2 = opr; } virtual void emit_code(LIR_Assembler* masm); virtual LIR_Op2* as_Op2() { return this; } virtual void print_instr(outputStream* out) const PRODUCT_RETURN; }; class LIR_OpAllocArray : public LIR_Op { friend class LIR_OpVisitState; private: LIR_Opr _klass; LIR_Opr _len; LIR_Opr _tmp1; LIR_Opr _tmp2; LIR_Opr _tmp3; LIR_Opr _tmp4; BasicType _type; CodeStub* _stub; public: LIR_OpAllocArray(LIR_Opr klass, LIR_Opr len, LIR_Opr result, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, BasicType type, CodeStub* stub) : LIR_Op(lir_alloc_array, result, NULL) , _klass(klass) , _len(len) , _tmp1(t1) , _tmp2(t2) , _tmp3(t3) , _tmp4(t4) , _type(type) , _stub(stub) {} LIR_Opr klass() const { return _klass; } LIR_Opr len() const { return _len; } LIR_Opr obj() const { return result_opr(); } LIR_Opr tmp1() const { return _tmp1; } LIR_Opr tmp2() const { return _tmp2; } LIR_Opr tmp3() const { return _tmp3; } LIR_Opr tmp4() const { return _tmp4; } BasicType type() const { return _type; } CodeStub* stub() const { return _stub; } virtual void emit_code(LIR_Assembler* masm); virtual LIR_OpAllocArray * as_OpAllocArray () { return this; } virtual void print_instr(outputStream* out) const PRODUCT_RETURN; }; class LIR_Op3: public LIR_Op { friend class LIR_OpVisitState; private: LIR_Opr _opr1; LIR_Opr _opr2; LIR_Opr _opr3; public: LIR_Op3(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr result, CodeEmitInfo* info = NULL) : LIR_Op(code, result, info) , _opr1(opr1) , _opr2(opr2) , _opr3(opr3) { assert(is_in_range(code, begin_op3, end_op3), "code check"); } LIR_Opr in_opr1() const { return _opr1; } LIR_Opr in_opr2() const { return _opr2; } LIR_Opr in_opr3() const { return _opr3; } virtual void emit_code(LIR_Assembler* masm); virtual LIR_Op3* as_Op3() { return this; } virtual void print_instr(outputStream* out) const PRODUCT_RETURN; }; //-------------------------------- class LabelObj: public CompilationResourceObj { private: Label _label; public: LabelObj() {} Label* label() { return &_label; } }; class LIR_OpLock: public LIR_Op { friend class LIR_OpVisitState; private: LIR_Opr _hdr; LIR_Opr _obj; LIR_Opr _lock; LIR_Opr _scratch; CodeStub* _stub; public: LIR_OpLock(LIR_Code code, LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info) : LIR_Op(code, LIR_OprFact::illegalOpr, info) , _hdr(hdr) , _obj(obj) , _lock(lock) , _scratch(scratch) , _stub(stub) {} LIR_Opr hdr_opr() const { return _hdr; } LIR_Opr obj_opr() const { return _obj; } LIR_Opr lock_opr() const { return _lock; } LIR_Opr scratch_opr() const { return _scratch; } CodeStub* stub() const { return _stub; } virtual void emit_code(LIR_Assembler* masm); virtual LIR_OpLock* as_OpLock() { return this; } void print_instr(outputStream* out) const PRODUCT_RETURN; }; class LIR_OpDelay: public LIR_Op { friend class LIR_OpVisitState; private: LIR_Op* _op; public: LIR_OpDelay(LIR_Op* op, CodeEmitInfo* info): LIR_Op(lir_delay_slot, LIR_OprFact::illegalOpr, info), _op(op) { assert(op->code() == lir_nop || LIRFillDelaySlots, "should be filling with nops"); } virtual void emit_code(LIR_Assembler* masm); virtual LIR_OpDelay* as_OpDelay() { return this; } void print_instr(outputStream* out) const PRODUCT_RETURN; LIR_Op* delay_op() const { return _op; } CodeEmitInfo* call_info() const { return info(); } }; // LIR_OpCompareAndSwap class LIR_OpCompareAndSwap : public LIR_Op { friend class LIR_OpVisitState; private: LIR_Opr _addr; LIR_Opr _cmp_value; LIR_Opr _new_value; LIR_Opr _tmp1; LIR_Opr _tmp2; public: LIR_OpCompareAndSwap(LIR_Code code, LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, LIR_Opr t1, LIR_Opr t2) : LIR_Op(code, LIR_OprFact::illegalOpr, NULL) // no result, no info , _addr(addr) , _cmp_value(cmp_value) , _new_value(new_value) , _tmp1(t1) , _tmp2(t2) { } LIR_Opr addr() const { return _addr; } LIR_Opr cmp_value() const { return _cmp_value; } LIR_Opr new_value() const { return _new_value; } LIR_Opr tmp1() const { return _tmp1; } LIR_Opr tmp2() const { return _tmp2; } virtual void emit_code(LIR_Assembler* masm); virtual LIR_OpCompareAndSwap * as_OpCompareAndSwap () { return this; } virtual void print_instr(outputStream* out) const PRODUCT_RETURN; }; // LIR_OpProfileCall class LIR_OpProfileCall : public LIR_Op { friend class LIR_OpVisitState; private: ciMethod* _profiled_method; int _profiled_bci; LIR_Opr _mdo; LIR_Opr _recv; LIR_Opr _tmp1; ciKlass* _known_holder; public: // Destroys recv LIR_OpProfileCall(LIR_Code code, ciMethod* profiled_method, int profiled_bci, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* known_holder) : LIR_Op(code, LIR_OprFact::illegalOpr, NULL) // no result, no info , _profiled_method(profiled_method) , _profiled_bci(profiled_bci) , _mdo(mdo) , _recv(recv) , _tmp1(t1) , _known_holder(known_holder) { } ciMethod* profiled_method() const { return _profiled_method; } int profiled_bci() const { return _profiled_bci; } LIR_Opr mdo() const { return _mdo; } LIR_Opr recv() const { return _recv; } LIR_Opr tmp1() const { return _tmp1; } ciKlass* known_holder() const { return _known_holder; } virtual void emit_code(LIR_Assembler* masm); virtual LIR_OpProfileCall* as_OpProfileCall() { return this; } virtual void print_instr(outputStream* out) const PRODUCT_RETURN; }; class LIR_InsertionBuffer; //--------------------------------LIR_List--------------------------------------------------- // Maintains a list of LIR instructions (one instance of LIR_List per basic block) // The LIR instructions are appended by the LIR_List class itself; // // Notes: // - all offsets are(should be) in bytes // - local positions are specified with an offset, with offset 0 being local 0 class LIR_List: public CompilationResourceObj { private: LIR_OpList _operations; Compilation* _compilation; #ifndef PRODUCT BlockBegin* _block; #endif #ifdef ASSERT const char * _file; int _line; #endif void append(LIR_Op* op) { if (op->source() == NULL) op->set_source(_compilation->current_instruction()); #ifndef PRODUCT if (PrintIRWithLIR) { _compilation->maybe_print_current_instruction(); op->print(); tty->cr(); } #endif // PRODUCT _operations.append(op); #ifdef ASSERT op->verify(); op->set_file_and_line(_file, _line); _file = NULL; _line = 0; #endif } public: LIR_List(Compilation* compilation, BlockBegin* block = NULL); #ifdef ASSERT void set_file_and_line(const char * file, int line); #endif //---------- accessors --------------- LIR_OpList* instructions_list() { return &_operations; } int length() const { return _operations.length(); } LIR_Op* at(int i) const { return _operations.at(i); } NOT_PRODUCT(BlockBegin* block() const { return _block; }); // insert LIR_Ops in buffer to right places in LIR_List void append(LIR_InsertionBuffer* buffer); //---------- mutators --------------- void insert_before(int i, LIR_List* op_list) { _operations.insert_before(i, op_list->instructions_list()); } void insert_before(int i, LIR_Op* op) { _operations.insert_before(i, op); } //---------- printing ------------- void print_instructions() PRODUCT_RETURN; //---------- instructions ------------- void call_opt_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result, address dest, LIR_OprList* arguments, CodeEmitInfo* info) { append(new LIR_OpJavaCall(lir_optvirtual_call, method, receiver, result, dest, arguments, info)); } void call_static(ciMethod* method, LIR_Opr result, address dest, LIR_OprList* arguments, CodeEmitInfo* info) { append(new LIR_OpJavaCall(lir_static_call, method, LIR_OprFact::illegalOpr, result, dest, arguments, info)); } void call_icvirtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result, address dest, LIR_OprList* arguments, CodeEmitInfo* info) { append(new LIR_OpJavaCall(lir_icvirtual_call, method, receiver, result, dest, arguments, info)); } void call_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result, intptr_t vtable_offset, LIR_OprList* arguments, CodeEmitInfo* info) { append(new LIR_OpJavaCall(lir_virtual_call, method, receiver, result, vtable_offset, arguments, info)); } void get_thread(LIR_Opr result) { append(new LIR_Op0(lir_get_thread, result)); } void word_align() { append(new LIR_Op0(lir_word_align)); } void membar() { append(new LIR_Op0(lir_membar)); } void membar_acquire() { append(new LIR_Op0(lir_membar_acquire)); } void membar_release() { append(new LIR_Op0(lir_membar_release)); } void nop() { append(new LIR_Op0(lir_nop)); } void build_frame() { append(new LIR_Op0(lir_build_frame)); } void std_entry(LIR_Opr receiver) { append(new LIR_Op0(lir_std_entry, receiver)); } void osr_entry(LIR_Opr osrPointer) { append(new LIR_Op0(lir_osr_entry, osrPointer)); } void branch_destination(Label* lbl) { append(new LIR_OpLabel(lbl)); } void negate(LIR_Opr from, LIR_Opr to) { append(new LIR_Op1(lir_neg, from, to)); } void leal(LIR_Opr from, LIR_Opr result_reg) { append(new LIR_Op1(lir_leal, from, result_reg)); } // result is a stack location for old backend and vreg for UseLinearScan // stack_loc_temp is an illegal register for old backend void roundfp(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) { append(new LIR_OpRoundFP(reg, stack_loc_temp, result)); } void unaligned_move(LIR_Address* src, LIR_Opr dst) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); } void unaligned_move(LIR_Opr src, LIR_Address* dst) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), src->type(), lir_patch_none, NULL, lir_move_unaligned)); } void unaligned_move(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); } void move(LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); } void move(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info)); } void move(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info)); } void volatile_move(LIR_Opr src, LIR_Opr dst, BasicType type, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none) { append(new LIR_Op1(lir_move, src, dst, type, patch_code, info, lir_move_volatile)); } void oop2reg (jobject o, LIR_Opr reg) { append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o), reg)); } void oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info); void return_op(LIR_Opr result) { append(new LIR_Op1(lir_return, result)); } void safepoint(LIR_Opr tmp, CodeEmitInfo* info) { append(new LIR_Op1(lir_safepoint, tmp, info)); } void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, ConversionStub* stub = NULL/*, bool is_32bit = false*/) { append(new LIR_OpConvert(code, left, dst, stub)); } void logical_and (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_and, left, right, dst)); } void logical_or (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_or, left, right, dst)); } void logical_xor (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_xor, left, right, dst)); } void null_check(LIR_Opr opr, CodeEmitInfo* info) { append(new LIR_Op1(lir_null_check, opr, info)); } void throw_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { append(new LIR_Op2(lir_throw, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info)); } void unwind_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { append(new LIR_Op2(lir_unwind, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info)); } void compare_to (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_compare_to, left, right, dst)); } void push(LIR_Opr opr) { append(new LIR_Op1(lir_push, opr)); } void pop(LIR_Opr reg) { append(new LIR_Op1(lir_pop, reg)); } void cmp(LIR_Condition condition, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_cmp, condition, left, right, info)); } void cmp(LIR_Condition condition, LIR_Opr left, int right, CodeEmitInfo* info = NULL) { cmp(condition, left, LIR_OprFact::intConst(right), info); } void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info); void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info); void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst) { append(new LIR_Op2(lir_cmove, condition, src1, src2, dst)); } void cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, LIR_Opr t1, LIR_Opr t2); void cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, LIR_Opr t1, LIR_Opr t2); void cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, LIR_Opr t1, LIR_Opr t2); void abs (LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op2(lir_abs , from, tmp, to)); } void sqrt(LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op2(lir_sqrt, from, tmp, to)); } void log (LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op2(lir_log, from, LIR_OprFact::illegalOpr, to, tmp)); } void log10 (LIR_Opr from, LIR_Opr to, LIR_Opr tmp) { append(new LIR_Op2(lir_log10, from, LIR_OprFact::illegalOpr, to, tmp)); } void sin (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_sin , from, tmp1, to, tmp2)); } void cos (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_cos , from, tmp1, to, tmp2)); } void tan (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_tan , from, tmp1, to, tmp2)); } void add (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_add, left, right, res)); } void sub (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_sub, left, right, res, info)); } void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_mul, left, right, res)); } void mul_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_mul_strictfp, left, right, res, tmp)); } void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_div, left, right, res, info)); } void div_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_div_strictfp, left, right, res, tmp)); } void rem (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_rem, left, right, res, info)); } void volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none); void volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code); void load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none); void prefetch(LIR_Address* addr, bool is_store); void store_mem_int(jint v, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none); void store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none); void store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none); void volatile_store_mem_reg(LIR_Opr src, LIR_Address* address, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none); void volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code); void idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info); void idiv(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info); void irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info); void irem(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info); void allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub); void allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub); // jump is an unconditional branch void jump(BlockBegin* block) { append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, block)); } void jump(CodeStub* stub) { append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, stub)); } void branch(LIR_Condition cond, Label* lbl) { append(new LIR_OpBranch(cond, lbl)); } void branch(LIR_Condition cond, BasicType type, BlockBegin* block) { assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons"); append(new LIR_OpBranch(cond, type, block)); } void branch(LIR_Condition cond, BasicType type, CodeStub* stub) { assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons"); append(new LIR_OpBranch(cond, type, stub)); } void branch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* unordered) { assert(type == T_FLOAT || type == T_DOUBLE, "fp comparisons only"); append(new LIR_OpBranch(cond, type, block, unordered)); } void shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp); void shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp); void unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp); void shift_left(LIR_Opr value, int count, LIR_Opr dst) { shift_left(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); } void shift_right(LIR_Opr value, int count, LIR_Opr dst) { shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); } void unsigned_shift_right(LIR_Opr value, int count, LIR_Opr dst) { unsigned_shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); } void lcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_cmp_l2i, left, right, dst)); } void fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less); void call_runtime_leaf(address routine, LIR_Opr tmp, LIR_Opr result, LIR_OprList* arguments) { append(new LIR_OpRTCall(routine, tmp, result, arguments)); } void call_runtime(address routine, LIR_Opr tmp, LIR_Opr result, LIR_OprList* arguments, CodeEmitInfo* info) { append(new LIR_OpRTCall(routine, tmp, result, arguments, info)); } void load_stack_address_monitor(int monitor_ix, LIR_Opr dst) { append(new LIR_Op1(lir_monaddr, LIR_OprFact::intConst(monitor_ix), dst)); } void unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, CodeStub* stub); void lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info); void set_24bit_fpu() { append(new LIR_Op0(lir_24bit_FPU )); } void restore_fpu() { append(new LIR_Op0(lir_reset_FPU )); } void breakpoint() { append(new LIR_Op0(lir_breakpoint)); } void arraycopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info) { append(new LIR_OpArrayCopy(src, src_pos, dst, dst_pos, length, tmp, expected_type, flags, info)); } void fpop_raw() { append(new LIR_Op0(lir_fpop_raw)); } void checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub, ciMethod* profiled_method, int profiled_bci); void instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch); void store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception); // methodDataOop profiling void profile_call(ciMethod* method, int bci, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* cha_klass) { append(new LIR_OpProfileCall(lir_profile_call, method, bci, mdo, recv, t1, cha_klass)); } }; void print_LIR(BlockList* blocks); class LIR_InsertionBuffer : public CompilationResourceObj { private: LIR_List* _lir; // the lir list where ops of this buffer should be inserted later (NULL when uninitialized) // list of insertion points. index and count are stored alternately: // _index_and_count[i * 2]: the index into lir list where "count" ops should be inserted // _index_and_count[i * 2 + 1]: the number of ops to be inserted at index intStack _index_and_count; // the LIR_Ops to be inserted LIR_OpList _ops; void append_new(int index, int count) { _index_and_count.append(index); _index_and_count.append(count); } void set_index_at(int i, int value) { _index_and_count.at_put((i << 1), value); } void set_count_at(int i, int value) { _index_and_count.at_put((i << 1) + 1, value); } #ifdef ASSERT void verify(); #endif public: LIR_InsertionBuffer() : _lir(NULL), _index_and_count(8), _ops(8) { } // must be called before using the insertion buffer void init(LIR_List* lir) { assert(!initialized(), "already initialized"); _lir = lir; _index_and_count.clear(); _ops.clear(); } bool initialized() const { return _lir != NULL; } // called automatically when the buffer is appended to the LIR_List void finish() { _lir = NULL; } // accessors LIR_List* lir_list() const { return _lir; } int number_of_insertion_points() const { return _index_and_count.length() >> 1; } int index_at(int i) const { return _index_and_count.at((i << 1)); } int count_at(int i) const { return _index_and_count.at((i << 1) + 1); } int number_of_ops() const { return _ops.length(); } LIR_Op* op_at(int i) const { return _ops.at(i); } // append an instruction to the buffer void append(int index, LIR_Op* op); // instruction void move(int index, LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(index, new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); } }; // // LIR_OpVisitState is used for manipulating LIR_Ops in an abstract way. // Calling a LIR_Op's visit function with a LIR_OpVisitState causes // information about the input, output and temporaries used by the // op to be recorded. It also records whether the op has call semantics // and also records all the CodeEmitInfos used by this op. // class LIR_OpVisitState: public StackObj { public: typedef enum { inputMode, firstMode = inputMode, tempMode, outputMode, numModes, invalidMode = -1 } OprMode; enum { maxNumberOfOperands = 16, maxNumberOfInfos = 4 }; private: LIR_Op* _op; // optimization: the operands and infos are not stored in a variable-length // list, but in a fixed-size array to save time of size checks and resizing int _oprs_len[numModes]; LIR_Opr* _oprs_new[numModes][maxNumberOfOperands]; int _info_len; CodeEmitInfo* _info_new[maxNumberOfInfos]; bool _has_call; bool _has_slow_case; // only include register operands // addresses are decomposed to the base and index registers // constants and stack operands are ignored void append(LIR_Opr& opr, OprMode mode) { assert(opr->is_valid(), "should not call this otherwise"); assert(mode >= 0 && mode < numModes, "bad mode"); if (opr->is_register()) { assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow"); _oprs_new[mode][_oprs_len[mode]++] = &opr; } else if (opr->is_pointer()) { LIR_Address* address = opr->as_address_ptr(); if (address != NULL) { // special handling for addresses: add base and index register of the address // both are always input operands! if (address->_base->is_valid()) { assert(address->_base->is_register(), "must be"); assert(_oprs_len[inputMode] < maxNumberOfOperands, "array overflow"); _oprs_new[inputMode][_oprs_len[inputMode]++] = &address->_base; } if (address->_index->is_valid()) { assert(address->_index->is_register(), "must be"); assert(_oprs_len[inputMode] < maxNumberOfOperands, "array overflow"); _oprs_new[inputMode][_oprs_len[inputMode]++] = &address->_index; } } else { assert(opr->is_constant(), "constant operands are not processed"); } } else { assert(opr->is_stack(), "stack operands are not processed"); } } void append(CodeEmitInfo* info) { assert(info != NULL, "should not call this otherwise"); assert(_info_len < maxNumberOfInfos, "array overflow"); _info_new[_info_len++] = info; } public: LIR_OpVisitState() { reset(); } LIR_Op* op() const { return _op; } void set_op(LIR_Op* op) { reset(); _op = op; } bool has_call() const { return _has_call; } bool has_slow_case() const { return _has_slow_case; } void reset() { _op = NULL; _has_call = false; _has_slow_case = false; _oprs_len[inputMode] = 0; _oprs_len[tempMode] = 0; _oprs_len[outputMode] = 0; _info_len = 0; } int opr_count(OprMode mode) const { assert(mode >= 0 && mode < numModes, "bad mode"); return _oprs_len[mode]; } LIR_Opr opr_at(OprMode mode, int index) const { assert(mode >= 0 && mode < numModes, "bad mode"); assert(index >= 0 && index < _oprs_len[mode], "index out of bound"); return *_oprs_new[mode][index]; } void set_opr_at(OprMode mode, int index, LIR_Opr opr) const { assert(mode >= 0 && mode < numModes, "bad mode"); assert(index >= 0 && index < _oprs_len[mode], "index out of bound"); *_oprs_new[mode][index] = opr; } int info_count() const { return _info_len; } CodeEmitInfo* info_at(int index) const { assert(index < _info_len, "index out of bounds"); return _info_new[index]; } XHandlers* all_xhandler(); // collects all register operands of the instruction void visit(LIR_Op* op); #if ASSERT // check that an operation has no operands bool no_operands(LIR_Op* op); #endif // LIR_Op visitor functions use these to fill in the state void do_input(LIR_Opr& opr) { append(opr, LIR_OpVisitState::inputMode); } void do_output(LIR_Opr& opr) { append(opr, LIR_OpVisitState::outputMode); } void do_temp(LIR_Opr& opr) { append(opr, LIR_OpVisitState::tempMode); } void do_info(CodeEmitInfo* info) { append(info); } void do_stub(CodeStub* stub); void do_call() { _has_call = true; } void do_slow_case() { _has_slow_case = true; } void do_slow_case(CodeEmitInfo* info) { _has_slow_case = true; append(info); } }; inline LIR_Opr LIR_OprDesc::illegalOpr() { return LIR_OprFact::illegalOpr; };