/* * Copyright 2000-2008 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * */ #include "incls/_precompiled.incl" #include "incls/_chaitin.cpp.incl" //============================================================================= #ifndef PRODUCT void LRG::dump( ) const { ttyLocker ttyl; tty->print("%d ",num_regs()); _mask.dump(); if( _msize_valid ) { if( mask_size() == compute_mask_size() ) tty->print(", #%d ",_mask_size); else tty->print(", #!!!_%d_vs_%d ",_mask_size,_mask.Size()); } else { tty->print(", #?(%d) ",_mask.Size()); } tty->print("EffDeg: "); if( _degree_valid ) tty->print( "%d ", _eff_degree ); else tty->print("? "); if( is_multidef() ) { tty->print("MultiDef "); if (_defs != NULL) { tty->print("("); for (int i = 0; i < _defs->length(); i++) { tty->print("N%d ", _defs->at(i)->_idx); } tty->print(") "); } } else if( _def == 0 ) tty->print("Dead "); else tty->print("Def: N%d ",_def->_idx); tty->print("Cost:%4.2g Area:%4.2g Score:%4.2g ",_cost,_area, score()); // Flags if( _is_oop ) tty->print("Oop "); if( _is_float ) tty->print("Float "); if( _was_spilled1 ) tty->print("Spilled "); if( _was_spilled2 ) tty->print("Spilled2 "); if( _direct_conflict ) tty->print("Direct_conflict "); if( _fat_proj ) tty->print("Fat "); if( _was_lo ) tty->print("Lo "); if( _has_copy ) tty->print("Copy "); if( _at_risk ) tty->print("Risk "); if( _must_spill ) tty->print("Must_spill "); if( _is_bound ) tty->print("Bound "); if( _msize_valid ) { if( _degree_valid && lo_degree() ) tty->print("Trivial "); } tty->cr(); } #endif //------------------------------score------------------------------------------ // Compute score from cost and area. Low score is best to spill. static double raw_score( double cost, double area ) { return cost - (area*RegisterCostAreaRatio) * 1.52588e-5; } double LRG::score() const { // Scale _area by RegisterCostAreaRatio/64K then subtract from cost. // Bigger area lowers score, encourages spilling this live range. // Bigger cost raise score, prevents spilling this live range. // (Note: 1/65536 is the magic constant below; I dont trust the C optimizer // to turn a divide by a constant into a multiply by the reciprical). double score = raw_score( _cost, _area); // Account for area. Basically, LRGs covering large areas are better // to spill because more other LRGs get freed up. if( _area == 0.0 ) // No area? Then no progress to spill return 1e35; if( _was_spilled2 ) // If spilled once before, we are unlikely return score + 1e30; // to make progress again. if( _cost >= _area*3.0 ) // Tiny area relative to cost return score + 1e17; // Probably no progress to spill if( (_cost+_cost) >= _area*3.0 ) // Small area relative to cost return score + 1e10; // Likely no progress to spill return score; } //------------------------------LRG_List--------------------------------------- LRG_List::LRG_List( uint max ) : _cnt(max), _max(max), _lidxs(NEW_RESOURCE_ARRAY(uint,max)) { memset( _lidxs, 0, sizeof(uint)*max ); } void LRG_List::extend( uint nidx, uint lidx ) { _nesting.check(); if( nidx >= _max ) { uint size = 16; while( size <= nidx ) size <<=1; _lidxs = REALLOC_RESOURCE_ARRAY( uint, _lidxs, _max, size ); _max = size; } while( _cnt <= nidx ) _lidxs[_cnt++] = 0; _lidxs[nidx] = lidx; } #define NUMBUCKS 3 //------------------------------Chaitin---------------------------------------- PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher) : PhaseRegAlloc(unique, cfg, matcher, #ifndef PRODUCT print_chaitin_statistics #else NULL #endif ), _names(unique), _uf_map(unique), _maxlrg(0), _live(0), _spilled_once(Thread::current()->resource_area()), _spilled_twice(Thread::current()->resource_area()), _lo_degree(0), _lo_stk_degree(0), _hi_degree(0), _simplified(0), _oldphi(unique) #ifndef PRODUCT , _trace_spilling(TraceSpilling || C->method_has_option("TraceSpilling")) #endif { NOT_PRODUCT( Compile::TracePhase t3("ctorChaitin", &_t_ctorChaitin, TimeCompiler); ) uint i,j; // Build a list of basic blocks, sorted by frequency _blks = NEW_RESOURCE_ARRAY( Block *, _cfg._num_blocks ); // Experiment with sorting strategies to speed compilation double cutoff = BLOCK_FREQUENCY(1.0); // Cutoff for high frequency bucket Block **buckets[NUMBUCKS]; // Array of buckets uint buckcnt[NUMBUCKS]; // Array of bucket counters double buckval[NUMBUCKS]; // Array of bucket value cutoffs for( i = 0; i < NUMBUCKS; i++ ) { buckets[i] = NEW_RESOURCE_ARRAY( Block *, _cfg._num_blocks ); buckcnt[i] = 0; // Bump by three orders of magnitude each time cutoff *= 0.001; buckval[i] = cutoff; for( j = 0; j < _cfg._num_blocks; j++ ) { buckets[i][j] = NULL; } } // Sort blocks into buckets for( i = 0; i < _cfg._num_blocks; i++ ) { for( j = 0; j < NUMBUCKS; j++ ) { if( (j == NUMBUCKS-1) || (_cfg._blocks[i]->_freq > buckval[j]) ) { // Assign block to end of list for appropriate bucket buckets[j][buckcnt[j]++] = _cfg._blocks[i]; break; // kick out of inner loop } } } // Dump buckets into final block array uint blkcnt = 0; for( i = 0; i < NUMBUCKS; i++ ) { for( j = 0; j < buckcnt[i]; j++ ) { _blks[blkcnt++] = buckets[i][j]; } } assert(blkcnt == _cfg._num_blocks, "Block array not totally filled"); } void PhaseChaitin::Register_Allocate() { // Above the OLD FP (and in registers) are the incoming arguments. Stack // slots in this area are called "arg_slots". Above the NEW FP (and in // registers) is the outgoing argument area; above that is the spill/temp // area. These are all "frame_slots". Arg_slots start at the zero // stack_slots and count up to the known arg_size. Frame_slots start at // the stack_slot #arg_size and go up. After allocation I map stack // slots to actual offsets. Stack-slots in the arg_slot area are biased // by the frame_size; stack-slots in the frame_slot area are biased by 0. _trip_cnt = 0; _alternate = 0; _matcher._allocation_started = true; ResourceArea live_arena; // Arena for liveness & IFG info ResourceMark rm(&live_arena); // Need live-ness for the IFG; need the IFG for coalescing. If the // liveness is JUST for coalescing, then I can get some mileage by renaming // all copy-related live ranges low and then using the max copy-related // live range as a cut-off for LIVE and the IFG. In other words, I can // build a subset of LIVE and IFG just for copies. PhaseLive live(_cfg,_names,&live_arena); // Need IFG for coalescing and coloring PhaseIFG ifg( &live_arena ); _ifg = &ifg; if (C->unique() > _names.Size()) _names.extend(C->unique()-1, 0); // Come out of SSA world to the Named world. Assign (virtual) registers to // Nodes. Use the same register for all inputs and the output of PhiNodes // - effectively ending SSA form. This requires either coalescing live // ranges or inserting copies. For the moment, we insert "virtual copies" // - we pretend there is a copy prior to each Phi in predecessor blocks. // We will attempt to coalesce such "virtual copies" before we manifest // them for real. de_ssa(); { NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); ) _live = NULL; // Mark live as being not available rm.reset_to_mark(); // Reclaim working storage IndexSet::reset_memory(C, &live_arena); ifg.init(_maxlrg); // Empty IFG gather_lrg_masks( false ); // Collect LRG masks live.compute( _maxlrg ); // Compute liveness _live = &live; // Mark LIVE as being available } // Base pointers are currently "used" by instructions which define new // derived pointers. This makes base pointers live up to the where the // derived pointer is made, but not beyond. Really, they need to be live // across any GC point where the derived value is live. So this code looks // at all the GC points, and "stretches" the live range of any base pointer // to the GC point. if( stretch_base_pointer_live_ranges(&live_arena) ) { NOT_PRODUCT( Compile::TracePhase t3("computeLive (sbplr)", &_t_computeLive, TimeCompiler); ) // Since some live range stretched, I need to recompute live _live = NULL; rm.reset_to_mark(); // Reclaim working storage IndexSet::reset_memory(C, &live_arena); ifg.init(_maxlrg); gather_lrg_masks( false ); live.compute( _maxlrg ); _live = &live; } // Create the interference graph using virtual copies build_ifg_virtual( ); // Include stack slots this time // Aggressive (but pessimistic) copy coalescing. // This pass works on virtual copies. Any virtual copies which are not // coalesced get manifested as actual copies { // The IFG is/was triangular. I am 'squaring it up' so Union can run // faster. Union requires a 'for all' operation which is slow on the // triangular adjacency matrix (quick reminder: the IFG is 'sparse' - // meaning I can visit all the Nodes neighbors less than a Node in time // O(# of neighbors), but I have to visit all the Nodes greater than a // given Node and search them for an instance, i.e., time O(#MaxLRG)). _ifg->SquareUp(); PhaseAggressiveCoalesce coalesce( *this ); coalesce.coalesce_driver( ); // Insert un-coalesced copies. Visit all Phis. Where inputs to a Phi do // not match the Phi itself, insert a copy. coalesce.insert_copies(_matcher); } // After aggressive coalesce, attempt a first cut at coloring. // To color, we need the IFG and for that we need LIVE. { NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); ) _live = NULL; rm.reset_to_mark(); // Reclaim working storage IndexSet::reset_memory(C, &live_arena); ifg.init(_maxlrg); gather_lrg_masks( true ); live.compute( _maxlrg ); _live = &live; } // Build physical interference graph uint must_spill = 0; must_spill = build_ifg_physical( &live_arena ); // If we have a guaranteed spill, might as well spill now if( must_spill ) { if( !_maxlrg ) return; // Bail out if unique gets too large (ie - unique > MaxNodeLimit) C->check_node_count(10*must_spill, "out of nodes before split"); if (C->failing()) return; _maxlrg = Split( _maxlrg ); // Split spilling LRG everywhere // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor) // or we failed to split C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after physical split"); if (C->failing()) return; #ifdef ASSERT if( VerifyOpto ) { _cfg.verify(); verify_base_ptrs(&live_arena); } #endif NOT_PRODUCT( C->verify_graph_edges(); ) compact(); // Compact LRGs; return new lower max lrg { NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); ) _live = NULL; rm.reset_to_mark(); // Reclaim working storage IndexSet::reset_memory(C, &live_arena); ifg.init(_maxlrg); // Build a new interference graph gather_lrg_masks( true ); // Collect intersect mask live.compute( _maxlrg ); // Compute LIVE _live = &live; } build_ifg_physical( &live_arena ); _ifg->SquareUp(); _ifg->Compute_Effective_Degree(); // Only do conservative coalescing if requested if( OptoCoalesce ) { // Conservative (and pessimistic) copy coalescing of those spills PhaseConservativeCoalesce coalesce( *this ); // If max live ranges greater than cutoff, don't color the stack. // This cutoff can be larger than below since it is only done once. coalesce.coalesce_driver( ); } compress_uf_map_for_nodes(); #ifdef ASSERT if( VerifyOpto ) _ifg->verify(this); #endif } else { ifg.SquareUp(); ifg.Compute_Effective_Degree(); #ifdef ASSERT set_was_low(); #endif } // Prepare for Simplify & Select cache_lrg_info(); // Count degree of LRGs // Simplify the InterFerence Graph by removing LRGs of low degree. // LRGs of low degree are trivially colorable. Simplify(); // Select colors by re-inserting LRGs back into the IFG in reverse order. // Return whether or not something spills. uint spills = Select( ); // If we spill, split and recycle the entire thing while( spills ) { if( _trip_cnt++ > 24 ) { DEBUG_ONLY( dump_for_spill_split_recycle(); ) if( _trip_cnt > 27 ) { C->record_method_not_compilable("failed spill-split-recycle sanity check"); return; } } if( !_maxlrg ) return; _maxlrg = Split( _maxlrg ); // Split spilling LRG everywhere // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor) C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after split"); if (C->failing()) return; #ifdef ASSERT if( VerifyOpto ) { _cfg.verify(); verify_base_ptrs(&live_arena); } #endif compact(); // Compact LRGs; return new lower max lrg // Nuke the live-ness and interference graph and LiveRanGe info { NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); ) _live = NULL; rm.reset_to_mark(); // Reclaim working storage IndexSet::reset_memory(C, &live_arena); ifg.init(_maxlrg); // Create LiveRanGe array. // Intersect register masks for all USEs and DEFs gather_lrg_masks( true ); live.compute( _maxlrg ); _live = &live; } must_spill = build_ifg_physical( &live_arena ); _ifg->SquareUp(); _ifg->Compute_Effective_Degree(); // Only do conservative coalescing if requested if( OptoCoalesce ) { // Conservative (and pessimistic) copy coalescing PhaseConservativeCoalesce coalesce( *this ); // Check for few live ranges determines how aggressive coalesce is. coalesce.coalesce_driver( ); } compress_uf_map_for_nodes(); #ifdef ASSERT if( VerifyOpto ) _ifg->verify(this); #endif cache_lrg_info(); // Count degree of LRGs // Simplify the InterFerence Graph by removing LRGs of low degree. // LRGs of low degree are trivially colorable. Simplify(); // Select colors by re-inserting LRGs back into the IFG in reverse order. // Return whether or not something spills. spills = Select( ); } // Count number of Simplify-Select trips per coloring success. _allocator_attempts += _trip_cnt + 1; _allocator_successes += 1; // Peephole remove copies post_allocate_copy_removal(); // max_reg is past the largest *register* used. // Convert that to a frame_slot number. if( _max_reg <= _matcher._new_SP ) _framesize = C->out_preserve_stack_slots(); else _framesize = _max_reg -_matcher._new_SP; assert((int)(_matcher._new_SP+_framesize) >= (int)_matcher._out_arg_limit, "framesize must be large enough"); // This frame must preserve the required fp alignment _framesize = round_to(_framesize, Matcher::stack_alignment_in_slots()); assert( _framesize >= 0 && _framesize <= 1000000, "sanity check" ); #ifndef PRODUCT _total_framesize += _framesize; if( (int)_framesize > _max_framesize ) _max_framesize = _framesize; #endif // Convert CISC spills fixup_spills(); // Log regalloc results CompileLog* log = Compile::current()->log(); if (log != NULL) { log->elem("regalloc attempts='%d' success='%d'", _trip_cnt, !C->failing()); } if (C->failing()) return; NOT_PRODUCT( C->verify_graph_edges(); ) // Move important info out of the live_arena to longer lasting storage. alloc_node_regs(_names.Size()); for( uint i=0; i < _names.Size(); i++ ) { if( _names[i] ) { // Live range associated with Node? LRG &lrg = lrgs( _names[i] ); if( lrg.num_regs() == 1 ) { _node_regs[i].set1( lrg.reg() ); } else { // Must be a register-pair if( !lrg._fat_proj ) { // Must be aligned adjacent register pair // Live ranges record the highest register in their mask. // We want the low register for the AD file writer's convenience. _node_regs[i].set2( OptoReg::add(lrg.reg(),-1) ); } else { // Misaligned; extract 2 bits OptoReg::Name hi = lrg.reg(); // Get hi register lrg.Remove(hi); // Yank from mask int lo = lrg.mask().find_first_elem(); // Find lo _node_regs[i].set_pair( hi, lo ); } } if( lrg._is_oop ) _node_oops.set(i); } else { _node_regs[i].set_bad(); } } // Done! _live = NULL; _ifg = NULL; C->set_indexSet_arena(NULL); // ResourceArea is at end of scope } //------------------------------de_ssa----------------------------------------- void PhaseChaitin::de_ssa() { // Set initial Names for all Nodes. Most Nodes get the virtual register // number. A few get the ZERO live range number. These do not // get allocated, but instead rely on correct scheduling to ensure that // only one instance is simultaneously live at a time. uint lr_counter = 1; for( uint i = 0; i < _cfg._num_blocks; i++ ) { Block *b = _cfg._blocks[i]; uint cnt = b->_nodes.size(); // Handle all the normal Nodes in the block for( uint j = 0; j < cnt; j++ ) { Node *n = b->_nodes[j]; // Pre-color to the zero live range, or pick virtual register const RegMask &rm = n->out_RegMask(); _names.map( n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0 ); } } // Reset the Union-Find mapping to be identity reset_uf_map(lr_counter); } //------------------------------gather_lrg_masks------------------------------- // Gather LiveRanGe information, including register masks. Modification of // cisc spillable in_RegMasks should not be done before AggressiveCoalesce. void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) { // Nail down the frame pointer live range uint fp_lrg = n2lidx(_cfg._root->in(1)->in(TypeFunc::FramePtr)); lrgs(fp_lrg)._cost += 1e12; // Cost is infinite // For all blocks for( uint i = 0; i < _cfg._num_blocks; i++ ) { Block *b = _cfg._blocks[i]; // For all instructions for( uint j = 1; j < b->_nodes.size(); j++ ) { Node *n = b->_nodes[j]; uint input_edge_start =1; // Skip control most nodes if( n->is_Mach() ) input_edge_start = n->as_Mach()->oper_input_base(); uint idx = n->is_Copy(); // Get virtual register number, same as LiveRanGe index uint vreg = n2lidx(n); LRG &lrg = lrgs(vreg); if( vreg ) { // No vreg means un-allocable (e.g. memory) // Collect has-copy bit if( idx ) { lrg._has_copy = 1; uint clidx = n2lidx(n->in(idx)); LRG ©_src = lrgs(clidx); copy_src._has_copy = 1; } // Check for float-vs-int live range (used in register-pressure // calculations) const Type *n_type = n->bottom_type(); if( n_type->is_floatingpoint() ) lrg._is_float = 1; // Check for twice prior spilling. Once prior spilling might have // spilled 'soft', 2nd prior spill should have spilled 'hard' and // further spilling is unlikely to make progress. if( _spilled_once.test(n->_idx) ) { lrg._was_spilled1 = 1; if( _spilled_twice.test(n->_idx) ) lrg._was_spilled2 = 1; } #ifndef PRODUCT if (trace_spilling() && lrg._def != NULL) { // collect defs for MultiDef printing if (lrg._defs == NULL) { lrg._defs = new (_ifg->_arena) GrowableArray(); lrg._defs->append(lrg._def); } lrg._defs->append(n); } #endif // Check for a single def LRG; these can spill nicely // via rematerialization. Flag as NULL for no def found // yet, or 'n' for single def or -1 for many defs. lrg._def = lrg._def ? NodeSentinel : n; // Limit result register mask to acceptable registers const RegMask &rm = n->out_RegMask(); lrg.AND( rm ); // Check for bound register masks const RegMask &lrgmask = lrg.mask(); if( lrgmask.is_bound1() || lrgmask.is_bound2() ) lrg._is_bound = 1; // Check for maximum frequency value if( lrg._maxfreq < b->_freq ) lrg._maxfreq = b->_freq; int ireg = n->ideal_reg(); assert( !n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP, "oops must be in Op_RegP's" ); // Check for oop-iness, or long/double // Check for multi-kill projection switch( ireg ) { case MachProjNode::fat_proj: // Fat projections have size equal to number of registers killed lrg.set_num_regs(rm.Size()); lrg.set_reg_pressure(lrg.num_regs()); lrg._fat_proj = 1; lrg._is_bound = 1; break; case Op_RegP: #ifdef _LP64 lrg.set_num_regs(2); // Size is 2 stack words #else lrg.set_num_regs(1); // Size is 1 stack word #endif // Register pressure is tracked relative to the maximum values // suggested for that platform, INTPRESSURE and FLOATPRESSURE, // and relative to other types which compete for the same regs. // // The following table contains suggested values based on the // architectures as defined in each .ad file. // INTPRESSURE and FLOATPRESSURE may be tuned differently for // compile-speed or performance. // Note1: // SPARC and SPARCV9 reg_pressures are at 2 instead of 1 // since .ad registers are defined as high and low halves. // These reg_pressure values remain compatible with the code // in is_high_pressure() which relates get_invalid_mask_size(), // Block::_reg_pressure and INTPRESSURE, FLOATPRESSURE. // Note2: // SPARC -d32 has 24 registers available for integral values, // but only 10 of these are safe for 64-bit longs. // Using set_reg_pressure(2) for both int and long means // the allocator will believe it can fit 26 longs into // registers. Using 2 for longs and 1 for ints means the // allocator will attempt to put 52 integers into registers. // The settings below limit this problem to methods with // many long values which are being run on 32-bit SPARC. // // ------------------- reg_pressure -------------------- // Each entry is reg_pressure_per_value,number_of_regs // RegL RegI RegFlags RegF RegD INTPRESSURE FLOATPRESSURE // IA32 2 1 1 1 1 6 6 // IA64 1 1 1 1 1 50 41 // SPARC 2 2 2 2 2 48 (24) 52 (26) // SPARCV9 2 2 2 2 2 48 (24) 52 (26) // AMD64 1 1 1 1 1 14 15 // ----------------------------------------------------- #if defined(SPARC) lrg.set_reg_pressure(2); // use for v9 as well #else lrg.set_reg_pressure(1); // normally one value per register #endif if( n_type->isa_oop_ptr() ) { lrg._is_oop = 1; } break; case Op_RegL: // Check for long or double case Op_RegD: lrg.set_num_regs(2); // Define platform specific register pressure #ifdef SPARC lrg.set_reg_pressure(2); #elif defined(IA32) if( ireg == Op_RegL ) { lrg.set_reg_pressure(2); } else { lrg.set_reg_pressure(1); } #else lrg.set_reg_pressure(1); // normally one value per register #endif // If this def of a double forces a mis-aligned double, // flag as '_fat_proj' - really flag as allowing misalignment // AND changes how we count interferences. A mis-aligned // double can interfere with TWO aligned pairs, or effectively // FOUR registers! if( rm.is_misaligned_Pair() ) { lrg._fat_proj = 1; lrg._is_bound = 1; } break; case Op_RegF: case Op_RegI: case Op_RegN: case Op_RegFlags: case 0: // not an ideal register lrg.set_num_regs(1); #ifdef SPARC lrg.set_reg_pressure(2); #else lrg.set_reg_pressure(1); #endif break; default: ShouldNotReachHere(); } } // Now do the same for inputs uint cnt = n->req(); // Setup for CISC SPILLING uint inp = (uint)AdlcVMDeps::Not_cisc_spillable; if( UseCISCSpill && after_aggressive ) { inp = n->cisc_operand(); if( inp != (uint)AdlcVMDeps::Not_cisc_spillable ) // Convert operand number to edge index number inp = n->as_Mach()->operand_index(inp); } // Prepare register mask for each input for( uint k = input_edge_start; k < cnt; k++ ) { uint vreg = n2lidx(n->in(k)); if( !vreg ) continue; // If this instruction is CISC Spillable, add the flags // bit to its appropriate input if( UseCISCSpill && after_aggressive && inp == k ) { #ifndef PRODUCT if( TraceCISCSpill ) { tty->print(" use_cisc_RegMask: "); n->dump(); } #endif n->as_Mach()->use_cisc_RegMask(); } LRG &lrg = lrgs(vreg); // // Testing for floating point code shape // Node *test = n->in(k); // if( test->is_Mach() ) { // MachNode *m = test->as_Mach(); // int op = m->ideal_Opcode(); // if (n->is_Call() && (op == Op_AddF || op == Op_MulF) ) { // int zzz = 1; // } // } // Limit result register mask to acceptable registers. // Do not limit registers from uncommon uses before // AggressiveCoalesce. This effectively pre-virtual-splits // around uncommon uses of common defs. const RegMask &rm = n->in_RegMask(k); if( !after_aggressive && _cfg._bbs[n->in(k)->_idx]->_freq > 1000*b->_freq ) { // Since we are BEFORE aggressive coalesce, leave the register // mask untrimmed by the call. This encourages more coalescing. // Later, AFTER aggressive, this live range will have to spill // but the spiller handles slow-path calls very nicely. } else { lrg.AND( rm ); } // Check for bound register masks const RegMask &lrgmask = lrg.mask(); if( lrgmask.is_bound1() || lrgmask.is_bound2() ) lrg._is_bound = 1; // If this use of a double forces a mis-aligned double, // flag as '_fat_proj' - really flag as allowing misalignment // AND changes how we count interferences. A mis-aligned // double can interfere with TWO aligned pairs, or effectively // FOUR registers! if( lrg.num_regs() == 2 && !lrg._fat_proj && rm.is_misaligned_Pair() ) { lrg._fat_proj = 1; lrg._is_bound = 1; } // if the LRG is an unaligned pair, we will have to spill // so clear the LRG's register mask if it is not already spilled if ( !n->is_SpillCopy() && (lrg._def == NULL || lrg.is_multidef() || !lrg._def->is_SpillCopy()) && lrgmask.is_misaligned_Pair()) { lrg.Clear(); } // Check for maximum frequency value if( lrg._maxfreq < b->_freq ) lrg._maxfreq = b->_freq; } // End for all allocated inputs } // end for all instructions } // end for all blocks // Final per-liverange setup for( uint i2=0; i2<_maxlrg; i2++ ) { LRG &lrg = lrgs(i2); if( lrg.num_regs() == 2 && !lrg._fat_proj ) lrg.ClearToPairs(); lrg.compute_set_mask_size(); if( lrg.not_free() ) { // Handle case where we lose from the start lrg.set_reg(OptoReg::Name(LRG::SPILL_REG)); lrg._direct_conflict = 1; } lrg.set_degree(0); // no neighbors in IFG yet } } //------------------------------set_was_low------------------------------------ // Set the was-lo-degree bit. Conservative coalescing should not change the // colorability of the graph. If any live range was of low-degree before // coalescing, it should Simplify. This call sets the was-lo-degree bit. // The bit is checked in Simplify. void PhaseChaitin::set_was_low() { #ifdef ASSERT for( uint i = 1; i < _maxlrg; i++ ) { int size = lrgs(i).num_regs(); uint old_was_lo = lrgs(i)._was_lo; lrgs(i)._was_lo = 0; if( lrgs(i).lo_degree() ) { lrgs(i)._was_lo = 1; // Trivially of low degree } else { // Else check the Brigg's assertion // Brigg's observation is that the lo-degree neighbors of a // hi-degree live range will not interfere with the color choices // of said hi-degree live range. The Simplify reverse-stack-coloring // order takes care of the details. Hence you do not have to count // low-degree neighbors when determining if this guy colors. int briggs_degree = 0; IndexSet *s = _ifg->neighbors(i); IndexSetIterator elements(s); uint lidx; while((lidx = elements.next()) != 0) { if( !lrgs(lidx).lo_degree() ) briggs_degree += MAX2(size,lrgs(lidx).num_regs()); } if( briggs_degree < lrgs(i).degrees_of_freedom() ) lrgs(i)._was_lo = 1; // Low degree via the briggs assertion } assert(old_was_lo <= lrgs(i)._was_lo, "_was_lo may not decrease"); } #endif } #define REGISTER_CONSTRAINED 16 //------------------------------cache_lrg_info--------------------------------- // Compute cost/area ratio, in case we spill. Build the lo-degree list. void PhaseChaitin::cache_lrg_info( ) { for( uint i = 1; i < _maxlrg; i++ ) { LRG &lrg = lrgs(i); // Check for being of low degree: means we can be trivially colored. // Low degree, dead or must-spill guys just get to simplify right away if( lrg.lo_degree() || !lrg.alive() || lrg._must_spill ) { // Split low degree list into those guys that must get a // register and those that can go to register or stack. // The idea is LRGs that can go register or stack color first when // they have a good chance of getting a register. The register-only // lo-degree live ranges always get a register. OptoReg::Name hi_reg = lrg.mask().find_last_elem(); if( OptoReg::is_stack(hi_reg)) { // Can go to stack? lrg._next = _lo_stk_degree; _lo_stk_degree = i; } else { lrg._next = _lo_degree; _lo_degree = i; } } else { // Else high degree lrgs(_hi_degree)._prev = i; lrg._next = _hi_degree; lrg._prev = 0; _hi_degree = i; } } } //------------------------------Pre-Simplify----------------------------------- // Simplify the IFG by removing LRGs of low degree that have NO copies void PhaseChaitin::Pre_Simplify( ) { // Warm up the lo-degree no-copy list int lo_no_copy = 0; for( uint i = 1; i < _maxlrg; i++ ) { if( (lrgs(i).lo_degree() && !lrgs(i)._has_copy) || !lrgs(i).alive() || lrgs(i)._must_spill ) { lrgs(i)._next = lo_no_copy; lo_no_copy = i; } } while( lo_no_copy ) { uint lo = lo_no_copy; lo_no_copy = lrgs(lo)._next; int size = lrgs(lo).num_regs(); // Put the simplified guy on the simplified list. lrgs(lo)._next = _simplified; _simplified = lo; // Yank this guy from the IFG. IndexSet *adj = _ifg->remove_node( lo ); // If any neighbors' degrees fall below their number of // allowed registers, then put that neighbor on the low degree // list. Note that 'degree' can only fall and 'numregs' is // unchanged by this action. Thus the two are equal at most once, // so LRGs hit the lo-degree worklists at most once. IndexSetIterator elements(adj); uint neighbor; while ((neighbor = elements.next()) != 0) { LRG *n = &lrgs(neighbor); assert( _ifg->effective_degree(neighbor) == n->degree(), "" ); // Check for just becoming of-low-degree if( n->just_lo_degree() && !n->_has_copy ) { assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice"); // Put on lo-degree list n->_next = lo_no_copy; lo_no_copy = neighbor; } } } // End of while lo-degree no_copy worklist not empty // No more lo-degree no-copy live ranges to simplify } //------------------------------Simplify--------------------------------------- // Simplify the IFG by removing LRGs of low degree. void PhaseChaitin::Simplify( ) { while( 1 ) { // Repeat till simplified it all // May want to explore simplifying lo_degree before _lo_stk_degree. // This might result in more spills coloring into registers during // Select(). while( _lo_degree || _lo_stk_degree ) { // If possible, pull from lo_stk first uint lo; if( _lo_degree ) { lo = _lo_degree; _lo_degree = lrgs(lo)._next; } else { lo = _lo_stk_degree; _lo_stk_degree = lrgs(lo)._next; } // Put the simplified guy on the simplified list. lrgs(lo)._next = _simplified; _simplified = lo; // If this guy is "at risk" then mark his current neighbors if( lrgs(lo)._at_risk ) { IndexSetIterator elements(_ifg->neighbors(lo)); uint datum; while ((datum = elements.next()) != 0) { lrgs(datum)._risk_bias = lo; } } // Yank this guy from the IFG. IndexSet *adj = _ifg->remove_node( lo ); // If any neighbors' degrees fall below their number of // allowed registers, then put that neighbor on the low degree // list. Note that 'degree' can only fall and 'numregs' is // unchanged by this action. Thus the two are equal at most once, // so LRGs hit the lo-degree worklist at most once. IndexSetIterator elements(adj); uint neighbor; while ((neighbor = elements.next()) != 0) { LRG *n = &lrgs(neighbor); #ifdef ASSERT if( VerifyOpto ) { assert( _ifg->effective_degree(neighbor) == n->degree(), "" ); } #endif // Check for just becoming of-low-degree just counting registers. // _must_spill live ranges are already on the low degree list. if( n->just_lo_degree() && !n->_must_spill ) { assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice"); // Pull from hi-degree list uint prev = n->_prev; uint next = n->_next; if( prev ) lrgs(prev)._next = next; else _hi_degree = next; lrgs(next)._prev = prev; n->_next = _lo_degree; _lo_degree = neighbor; } } } // End of while lo-degree/lo_stk_degree worklist not empty // Check for got everything: is hi-degree list empty? if( !_hi_degree ) break; // Time to pick a potential spill guy uint lo_score = _hi_degree; double score = lrgs(lo_score).score(); double area = lrgs(lo_score)._area; // Find cheapest guy debug_only( int lo_no_simplify=0; ); for( uint i = _hi_degree; i; i = lrgs(i)._next ) { assert( !(*_ifg->_yanked)[i], "" ); // It's just vaguely possible to move hi-degree to lo-degree without // going through a just-lo-degree stage: If you remove a double from // a float live range it's degree will drop by 2 and you can skip the // just-lo-degree stage. It's very rare (shows up after 5000+ methods // in -Xcomp of Java2Demo). So just choose this guy to simplify next. if( lrgs(i).lo_degree() ) { lo_score = i; break; } debug_only( if( lrgs(i)._was_lo ) lo_no_simplify=i; ); double iscore = lrgs(i).score(); double iarea = lrgs(i)._area; // Compare cost/area of i vs cost/area of lo_score. Smaller cost/area // wins. Ties happen because all live ranges in question have spilled // a few times before and the spill-score adds a huge number which // washes out the low order bits. We are choosing the lesser of 2 // evils; in this case pick largest area to spill. if( iscore < score || (iscore == score && iarea > area && lrgs(lo_score)._was_spilled2) ) { lo_score = i; score = iscore; area = iarea; } } LRG *lo_lrg = &lrgs(lo_score); // The live range we choose for spilling is either hi-degree, or very // rarely it can be low-degree. If we choose a hi-degree live range // there better not be any lo-degree choices. assert( lo_lrg->lo_degree() || !lo_no_simplify, "Live range was lo-degree before coalesce; should simplify" ); // Pull from hi-degree list uint prev = lo_lrg->_prev; uint next = lo_lrg->_next; if( prev ) lrgs(prev)._next = next; else _hi_degree = next; lrgs(next)._prev = prev; // Jam him on the lo-degree list, despite his high degree. // Maybe he'll get a color, and maybe he'll spill. // Only Select() will know. lrgs(lo_score)._at_risk = true; _lo_degree = lo_score; lo_lrg->_next = 0; } // End of while not simplified everything } //------------------------------bias_color------------------------------------- // Choose a color using the biasing heuristic OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) { // Check for "at_risk" LRG's uint risk_lrg = Find(lrg._risk_bias); if( risk_lrg != 0 ) { // Walk the colored neighbors of the "at_risk" candidate // Choose a color which is both legal and already taken by a neighbor // of the "at_risk" candidate in order to improve the chances of the // "at_risk" candidate of coloring IndexSetIterator elements(_ifg->neighbors(risk_lrg)); uint datum; while ((datum = elements.next()) != 0) { OptoReg::Name reg = lrgs(datum).reg(); // If this LRG's register is legal for us, choose it if( reg >= chunk && reg < chunk + RegMask::CHUNK_SIZE && lrg.mask().Member(OptoReg::add(reg,-chunk)) && (lrg.num_regs()==1 || // either size 1 (reg&1) == 1) ) // or aligned (adjacent reg is available since we already cleared-to-pairs) return reg; } } uint copy_lrg = Find(lrg._copy_bias); if( copy_lrg != 0 ) { // If he has a color, if( !(*(_ifg->_yanked))[copy_lrg] ) { OptoReg::Name reg = lrgs(copy_lrg).reg(); // And it is legal for you, if( reg >= chunk && reg < chunk + RegMask::CHUNK_SIZE && lrg.mask().Member(OptoReg::add(reg,-chunk)) && (lrg.num_regs()==1 || // either size 1 (reg&1) == 1) ) // or aligned (adjacent reg is available since we already cleared-to-pairs) return reg; } else if( chunk == 0 ) { // Choose a color which is legal for him RegMask tempmask = lrg.mask(); tempmask.AND(lrgs(copy_lrg).mask()); OptoReg::Name reg; if( lrg.num_regs() == 1 ) { reg = tempmask.find_first_elem(); } else { tempmask.ClearToPairs(); reg = tempmask.find_first_pair(); } if( OptoReg::is_valid(reg) ) return reg; } } // If no bias info exists, just go with the register selection ordering if( lrg.num_regs() == 2 ) { // Find an aligned pair return OptoReg::add(lrg.mask().find_first_pair(),chunk); } // CNC - Fun hack. Alternate 1st and 2nd selection. Enables post-allocate // copy removal to remove many more copies, by preventing a just-assigned // register from being repeatedly assigned. OptoReg::Name reg = lrg.mask().find_first_elem(); if( (++_alternate & 1) && OptoReg::is_valid(reg) ) { // This 'Remove; find; Insert' idiom is an expensive way to find the // SECOND element in the mask. lrg.Remove(reg); OptoReg::Name reg2 = lrg.mask().find_first_elem(); lrg.Insert(reg); if( OptoReg::is_reg(reg2)) reg = reg2; } return OptoReg::add( reg, chunk ); } //------------------------------choose_color----------------------------------- // Choose a color in the current chunk OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) { assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)"); assert(C->out_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP+0)), "must not allocate stack0 (inside preserve area)"); if( lrg.num_regs() == 1 || // Common Case !lrg._fat_proj ) // Aligned+adjacent pairs ok // Use a heuristic to "bias" the color choice return bias_color(lrg, chunk); assert( lrg.num_regs() >= 2, "dead live ranges do not color" ); // Fat-proj case or misaligned double argument. assert(lrg.compute_mask_size() == lrg.num_regs() || lrg.num_regs() == 2,"fat projs exactly color" ); assert( !chunk, "always color in 1st chunk" ); // Return the highest element in the set. return lrg.mask().find_last_elem(); } //------------------------------Select----------------------------------------- // Select colors by re-inserting LRGs back into the IFG. LRGs are re-inserted // in reverse order of removal. As long as nothing of hi-degree was yanked, // everything going back is guaranteed a color. Select that color. If some // hi-degree LRG cannot get a color then we record that we must spill. uint PhaseChaitin::Select( ) { uint spill_reg = LRG::SPILL_REG; _max_reg = OptoReg::Name(0); // Past max register used while( _simplified ) { // Pull next LRG from the simplified list - in reverse order of removal uint lidx = _simplified; LRG *lrg = &lrgs(lidx); _simplified = lrg->_next; #ifndef PRODUCT if (trace_spilling()) { ttyLocker ttyl; tty->print_cr("L%d selecting degree %d degrees_of_freedom %d", lidx, lrg->degree(), lrg->degrees_of_freedom()); lrg->dump(); } #endif // Re-insert into the IFG _ifg->re_insert(lidx); if( !lrg->alive() ) continue; // capture allstackedness flag before mask is hacked const int is_allstack = lrg->mask().is_AllStack(); // Yeah, yeah, yeah, I know, I know. I can refactor this // to avoid the GOTO, although the refactored code will not // be much clearer. We arrive here IFF we have a stack-based // live range that cannot color in the current chunk, and it // has to move into the next free stack chunk. int chunk = 0; // Current chunk is first chunk retry_next_chunk: // Remove neighbor colors IndexSet *s = _ifg->neighbors(lidx); debug_only(RegMask orig_mask = lrg->mask();) IndexSetIterator elements(s); uint neighbor; while ((neighbor = elements.next()) != 0) { // Note that neighbor might be a spill_reg. In this case, exclusion // of its color will be a no-op, since the spill_reg chunk is in outer // space. Also, if neighbor is in a different chunk, this exclusion // will be a no-op. (Later on, if lrg runs out of possible colors in // its chunk, a new chunk of color may be tried, in which case // examination of neighbors is started again, at retry_next_chunk.) LRG &nlrg = lrgs(neighbor); OptoReg::Name nreg = nlrg.reg(); // Only subtract masks in the same chunk if( nreg >= chunk && nreg < chunk + RegMask::CHUNK_SIZE ) { #ifndef PRODUCT uint size = lrg->mask().Size(); RegMask rm = lrg->mask(); #endif lrg->SUBTRACT(nlrg.mask()); #ifndef PRODUCT if (trace_spilling() && lrg->mask().Size() != size) { ttyLocker ttyl; tty->print("L%d ", lidx); rm.dump(); tty->print(" intersected L%d ", neighbor); nlrg.mask().dump(); tty->print(" removed "); rm.SUBTRACT(lrg->mask()); rm.dump(); tty->print(" leaving "); lrg->mask().dump(); tty->cr(); } #endif } } //assert(is_allstack == lrg->mask().is_AllStack(), "nbrs must not change AllStackedness"); // Aligned pairs need aligned masks if( lrg->num_regs() == 2 && !lrg->_fat_proj ) lrg->ClearToPairs(); // Check if a color is available and if so pick the color OptoReg::Name reg = choose_color( *lrg, chunk ); #ifdef SPARC debug_only(lrg->compute_set_mask_size()); assert(lrg->num_regs() != 2 || lrg->is_bound() || is_even(reg-1), "allocate all doubles aligned"); #endif //--------------- // If we fail to color and the AllStack flag is set, trigger // a chunk-rollover event if(!OptoReg::is_valid(OptoReg::add(reg,-chunk)) && is_allstack) { // Bump register mask up to next stack chunk chunk += RegMask::CHUNK_SIZE; lrg->Set_All(); goto retry_next_chunk; } //--------------- // Did we get a color? else if( OptoReg::is_valid(reg)) { #ifndef PRODUCT RegMask avail_rm = lrg->mask(); #endif // Record selected register lrg->set_reg(reg); if( reg >= _max_reg ) // Compute max register limit _max_reg = OptoReg::add(reg,1); // Fold reg back into normal space reg = OptoReg::add(reg,-chunk); // If the live range is not bound, then we actually had some choices // to make. In this case, the mask has more bits in it than the colors // choosen. Restrict the mask to just what was picked. if( lrg->num_regs() == 1 ) { // Size 1 live range lrg->Clear(); // Clear the mask lrg->Insert(reg); // Set regmask to match selected reg lrg->set_mask_size(1); } else if( !lrg->_fat_proj ) { // For pairs, also insert the low bit of the pair assert( lrg->num_regs() == 2, "unbound fatproj???" ); lrg->Clear(); // Clear the mask lrg->Insert(reg); // Set regmask to match selected reg lrg->Insert(OptoReg::add(reg,-1)); lrg->set_mask_size(2); } else { // Else fatproj // mask must be equal to fatproj bits, by definition } #ifndef PRODUCT if (trace_spilling()) { ttyLocker ttyl; tty->print("L%d selected ", lidx); lrg->mask().dump(); tty->print(" from "); avail_rm.dump(); tty->cr(); } #endif // Note that reg is the highest-numbered register in the newly-bound mask. } // end color available case //--------------- // Live range is live and no colors available else { assert( lrg->alive(), "" ); assert( !lrg->_fat_proj || lrg->is_multidef() || lrg->_def->outcnt() > 0, "fat_proj cannot spill"); assert( !orig_mask.is_AllStack(), "All Stack does not spill" ); // Assign the special spillreg register lrg->set_reg(OptoReg::Name(spill_reg++)); // Do not empty the regmask; leave mask_size lying around // for use during Spilling #ifndef PRODUCT if( trace_spilling() ) { ttyLocker ttyl; tty->print("L%d spilling with neighbors: ", lidx); s->dump(); debug_only(tty->print(" original mask: ")); debug_only(orig_mask.dump()); dump_lrg(lidx); } #endif } // end spill case } return spill_reg-LRG::SPILL_REG; // Return number of spills } //------------------------------copy_was_spilled------------------------------- // Copy 'was_spilled'-edness from the source Node to the dst Node. void PhaseChaitin::copy_was_spilled( Node *src, Node *dst ) { if( _spilled_once.test(src->_idx) ) { _spilled_once.set(dst->_idx); lrgs(Find(dst))._was_spilled1 = 1; if( _spilled_twice.test(src->_idx) ) { _spilled_twice.set(dst->_idx); lrgs(Find(dst))._was_spilled2 = 1; } } } //------------------------------set_was_spilled-------------------------------- // Set the 'spilled_once' or 'spilled_twice' flag on a node. void PhaseChaitin::set_was_spilled( Node *n ) { if( _spilled_once.test_set(n->_idx) ) _spilled_twice.set(n->_idx); } //------------------------------fixup_spills----------------------------------- // Convert Ideal spill instructions into proper FramePtr + offset Loads and // Stores. Use-def chains are NOT preserved, but Node->LRG->reg maps are. void PhaseChaitin::fixup_spills() { // This function does only cisc spill work. if( !UseCISCSpill ) return; NOT_PRODUCT( Compile::TracePhase t3("fixupSpills", &_t_fixupSpills, TimeCompiler); ) // Grab the Frame Pointer Node *fp = _cfg._broot->head()->in(1)->in(TypeFunc::FramePtr); // For all blocks for( uint i = 0; i < _cfg._num_blocks; i++ ) { Block *b = _cfg._blocks[i]; // For all instructions in block uint last_inst = b->end_idx(); for( uint j = 1; j <= last_inst; j++ ) { Node *n = b->_nodes[j]; // Dead instruction??? assert( n->outcnt() != 0 ||// Nothing dead after post alloc C->top() == n || // Or the random TOP node n->is_Proj(), // Or a fat-proj kill node "No dead instructions after post-alloc" ); int inp = n->cisc_operand(); if( inp != AdlcVMDeps::Not_cisc_spillable ) { // Convert operand number to edge index number MachNode *mach = n->as_Mach(); inp = mach->operand_index(inp); Node *src = n->in(inp); // Value to load or store LRG &lrg_cisc = lrgs( Find_const(src) ); OptoReg::Name src_reg = lrg_cisc.reg(); // Doubles record the HIGH register of an adjacent pair. src_reg = OptoReg::add(src_reg,1-lrg_cisc.num_regs()); if( OptoReg::is_stack(src_reg) ) { // If input is on stack // This is a CISC Spill, get stack offset and construct new node #ifndef PRODUCT if( TraceCISCSpill ) { tty->print(" reg-instr: "); n->dump(); } #endif int stk_offset = reg2offset(src_reg); // Bailout if we might exceed node limit when spilling this instruction C->check_node_count(0, "out of nodes fixing spills"); if (C->failing()) return; // Transform node MachNode *cisc = mach->cisc_version(stk_offset, C)->as_Mach(); cisc->set_req(inp,fp); // Base register is frame pointer if( cisc->oper_input_base() > 1 && mach->oper_input_base() <= 1 ) { assert( cisc->oper_input_base() == 2, "Only adding one edge"); cisc->ins_req(1,src); // Requires a memory edge } b->_nodes.map(j,cisc); // Insert into basic block n->subsume_by(cisc); // Correct graph // ++_used_cisc_instructions; #ifndef PRODUCT if( TraceCISCSpill ) { tty->print(" cisc-instr: "); cisc->dump(); } #endif } else { #ifndef PRODUCT if( TraceCISCSpill ) { tty->print(" using reg-instr: "); n->dump(); } #endif ++_unused_cisc_instructions; // input can be on stack } } } // End of for all instructions } // End of for all blocks } //------------------------------find_base_for_derived-------------------------- // Helper to stretch above; recursively discover the base Node for a // given derived Node. Easy for AddP-related machine nodes, but needs // to be recursive for derived Phis. Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg ) { // See if already computed; if so return it if( derived_base_map[derived->_idx] ) return derived_base_map[derived->_idx]; // See if this happens to be a base. // NOTE: we use TypePtr instead of TypeOopPtr because we can have // pointers derived from NULL! These are always along paths that // can't happen at run-time but the optimizer cannot deduce it so // we have to handle it gracefully. const TypePtr *tj = derived->bottom_type()->isa_ptr(); // If its an OOP with a non-zero offset, then it is derived. if( tj->_offset == 0 ) { derived_base_map[derived->_idx] = derived; return derived; } // Derived is NULL+offset? Base is NULL! if( derived->is_Con() ) { Node *base = new (C, 1) ConPNode( TypePtr::NULL_PTR ); uint no_lidx = 0; // an unmatched constant in debug info has no LRG _names.extend(base->_idx, no_lidx); derived_base_map[derived->_idx] = base; return base; } // Check for AddP-related opcodes if( !derived->is_Phi() ) { assert( derived->as_Mach()->ideal_Opcode() == Op_AddP, "" ); Node *base = derived->in(AddPNode::Base); derived_base_map[derived->_idx] = base; return base; } // Recursively find bases for Phis. // First check to see if we can avoid a base Phi here. Node *base = find_base_for_derived( derived_base_map, derived->in(1),maxlrg); uint i; for( i = 2; i < derived->req(); i++ ) if( base != find_base_for_derived( derived_base_map,derived->in(i),maxlrg)) break; // Went to the end without finding any different bases? if( i == derived->req() ) { // No need for a base Phi here derived_base_map[derived->_idx] = base; return base; } // Now we see we need a base-Phi here to merge the bases base = new (C, derived->req()) PhiNode( derived->in(0), base->bottom_type() ); for( i = 1; i < derived->req(); i++ ) base->init_req(i, find_base_for_derived(derived_base_map, derived->in(i), maxlrg)); // Search the current block for an existing base-Phi Block *b = _cfg._bbs[derived->_idx]; for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi Node *phi = b->_nodes[i]; if( !phi->is_Phi() ) { // Found end of Phis with no match? b->_nodes.insert( i, base ); // Must insert created Phi here as base _cfg._bbs.map( base->_idx, b ); new_lrg(base,maxlrg++); break; } // See if Phi matches. uint j; for( j = 1; j < base->req(); j++ ) if( phi->in(j) != base->in(j) && !(phi->in(j)->is_Con() && base->in(j)->is_Con()) ) // allow different NULLs break; if( j == base->req() ) { // All inputs match? base = phi; // Then use existing 'phi' and drop 'base' break; } } // Cache info for later passes derived_base_map[derived->_idx] = base; return base; } //------------------------------stretch_base_pointer_live_ranges--------------- // At each Safepoint, insert extra debug edges for each pair of derived value/ // base pointer that is live across the Safepoint for oopmap building. The // edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the // required edge set. bool PhaseChaitin::stretch_base_pointer_live_ranges( ResourceArea *a ) { int must_recompute_live = false; uint maxlrg = _maxlrg; Node **derived_base_map = (Node**)a->Amalloc(sizeof(Node*)*C->unique()); memset( derived_base_map, 0, sizeof(Node*)*C->unique() ); // For all blocks in RPO do... for( uint i=0; i<_cfg._num_blocks; i++ ) { Block *b = _cfg._blocks[i]; // Note use of deep-copy constructor. I cannot hammer the original // liveout bits, because they are needed by the following coalesce pass. IndexSet liveout(_live->live(b)); for( uint j = b->end_idx() + 1; j > 1; j-- ) { Node *n = b->_nodes[j-1]; // Pre-split compares of loop-phis. Loop-phis form a cycle we would // like to see in the same register. Compare uses the loop-phi and so // extends its live range BUT cannot be part of the cycle. If this // extended live range overlaps with the update of the loop-phi value // we need both alive at the same time -- which requires at least 1 // copy. But because Intel has only 2-address registers we end up with // at least 2 copies, one before the loop-phi update instruction and // one after. Instead we split the input to the compare just after the // phi. if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CmpI ) { Node *phi = n->in(1); if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) { Block *phi_block = _cfg._bbs[phi->_idx]; if( _cfg._bbs[phi_block->pred(2)->_idx] == b ) { const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI]; Node *spill = new (C) MachSpillCopyNode( phi, *mask, *mask ); insert_proj( phi_block, 1, spill, maxlrg++ ); n->set_req(1,spill); must_recompute_live = true; } } } // Get value being defined uint lidx = n2lidx(n); if( lidx && lidx < _maxlrg /* Ignore the occasional brand-new live range */) { // Remove from live-out set liveout.remove(lidx); // Copies do not define a new value and so do not interfere. // Remove the copies source from the liveout set before interfering. uint idx = n->is_Copy(); if( idx ) liveout.remove( n2lidx(n->in(idx)) ); } // Found a safepoint? JVMState *jvms = n->jvms(); if( jvms ) { // Now scan for a live derived pointer IndexSetIterator elements(&liveout); uint neighbor; while ((neighbor = elements.next()) != 0) { // Find reaching DEF for base and derived values // This works because we are still in SSA during this call. Node *derived = lrgs(neighbor)._def; const TypePtr *tj = derived->bottom_type()->isa_ptr(); // If its an OOP with a non-zero offset, then it is derived. if( tj && tj->_offset != 0 && tj->isa_oop_ptr() ) { Node *base = find_base_for_derived( derived_base_map, derived, maxlrg ); assert( base->_idx < _names.Size(), "" ); // Add reaching DEFs of derived pointer and base pointer as a // pair of inputs n->add_req( derived ); n->add_req( base ); // See if the base pointer is already live to this point. // Since I'm working on the SSA form, live-ness amounts to // reaching def's. So if I find the base's live range then // I know the base's def reaches here. if( (n2lidx(base) >= _maxlrg ||// (Brand new base (hence not live) or !liveout.member( n2lidx(base) ) ) && // not live) AND (n2lidx(base) > 0) && // not a constant _cfg._bbs[base->_idx] != b ) { // base not def'd in blk) // Base pointer is not currently live. Since I stretched // the base pointer to here and it crosses basic-block // boundaries, the global live info is now incorrect. // Recompute live. must_recompute_live = true; } // End of if base pointer is not live to debug info } } // End of scan all live data for derived ptrs crossing GC point } // End of if found a GC point // Make all inputs live if( !n->is_Phi() ) { // Phi function uses come from prior block for( uint k = 1; k < n->req(); k++ ) { uint lidx = n2lidx(n->in(k)); if( lidx < _maxlrg ) liveout.insert( lidx ); } } } // End of forall instructions in block liveout.clear(); // Free the memory used by liveout. } // End of forall blocks _maxlrg = maxlrg; // If I created a new live range I need to recompute live if( maxlrg != _ifg->_maxlrg ) must_recompute_live = true; return must_recompute_live != 0; } //------------------------------add_reference---------------------------------- // Extend the node to LRG mapping void PhaseChaitin::add_reference( const Node *node, const Node *old_node ) { _names.extend( node->_idx, n2lidx(old_node) ); } //------------------------------dump------------------------------------------- #ifndef PRODUCT void PhaseChaitin::dump( const Node *n ) const { uint r = (n->_idx < _names.Size() ) ? Find_const(n) : 0; tty->print("L%d",r); if( r && n->Opcode() != Op_Phi ) { if( _node_regs ) { // Got a post-allocation copy of allocation? tty->print("["); OptoReg::Name second = get_reg_second(n); if( OptoReg::is_valid(second) ) { if( OptoReg::is_reg(second) ) tty->print("%s:",Matcher::regName[second]); else tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second)); } OptoReg::Name first = get_reg_first(n); if( OptoReg::is_reg(first) ) tty->print("%s]",Matcher::regName[first]); else tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first)); } else n->out_RegMask().dump(); } tty->print("/N%d\t",n->_idx); tty->print("%s === ", n->Name()); uint k; for( k = 0; k < n->req(); k++) { Node *m = n->in(k); if( !m ) tty->print("_ "); else { uint r = (m->_idx < _names.Size() ) ? Find_const(m) : 0; tty->print("L%d",r); // Data MultiNode's can have projections with no real registers. // Don't die while dumping them. int op = n->Opcode(); if( r && op != Op_Phi && op != Op_Proj && op != Op_SCMemProj) { if( _node_regs ) { tty->print("["); OptoReg::Name second = get_reg_second(n->in(k)); if( OptoReg::is_valid(second) ) { if( OptoReg::is_reg(second) ) tty->print("%s:",Matcher::regName[second]); else tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second)); } OptoReg::Name first = get_reg_first(n->in(k)); if( OptoReg::is_reg(first) ) tty->print("%s]",Matcher::regName[first]); else tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first)); } else n->in_RegMask(k).dump(); } tty->print("/N%d ",m->_idx); } } if( k < n->len() && n->in(k) ) tty->print("| "); for( ; k < n->len(); k++ ) { Node *m = n->in(k); if( !m ) break; uint r = (m->_idx < _names.Size() ) ? Find_const(m) : 0; tty->print("L%d",r); tty->print("/N%d ",m->_idx); } if( n->is_Mach() ) n->as_Mach()->dump_spec(tty); else n->dump_spec(tty); if( _spilled_once.test(n->_idx ) ) { tty->print(" Spill_1"); if( _spilled_twice.test(n->_idx ) ) tty->print(" Spill_2"); } tty->print("\n"); } void PhaseChaitin::dump( const Block * b ) const { b->dump_head( &_cfg._bbs ); // For all instructions for( uint j = 0; j < b->_nodes.size(); j++ ) dump(b->_nodes[j]); // Print live-out info at end of block if( _live ) { tty->print("Liveout: "); IndexSet *live = _live->live(b); IndexSetIterator elements(live); tty->print("{"); uint i; while ((i = elements.next()) != 0) { tty->print("L%d ", Find_const(i)); } tty->print_cr("}"); } tty->print("\n"); } void PhaseChaitin::dump() const { tty->print( "--- Chaitin -- argsize: %d framesize: %d ---\n", _matcher._new_SP, _framesize ); // For all blocks for( uint i = 0; i < _cfg._num_blocks; i++ ) dump(_cfg._blocks[i]); // End of per-block dump tty->print("\n"); if (!_ifg) { tty->print("(No IFG.)\n"); return; } // Dump LRG array tty->print("--- Live RanGe Array ---\n"); for(uint i2 = 1; i2 < _maxlrg; i2++ ) { tty->print("L%d: ",i2); if( i2 < _ifg->_maxlrg ) lrgs(i2).dump( ); else tty->print("new LRG"); } tty->print_cr(""); // Dump lo-degree list tty->print("Lo degree: "); for(uint i3 = _lo_degree; i3; i3 = lrgs(i3)._next ) tty->print("L%d ",i3); tty->print_cr(""); // Dump lo-stk-degree list tty->print("Lo stk degree: "); for(uint i4 = _lo_stk_degree; i4; i4 = lrgs(i4)._next ) tty->print("L%d ",i4); tty->print_cr(""); // Dump lo-degree list tty->print("Hi degree: "); for(uint i5 = _hi_degree; i5; i5 = lrgs(i5)._next ) tty->print("L%d ",i5); tty->print_cr(""); } //------------------------------dump_degree_lists------------------------------ void PhaseChaitin::dump_degree_lists() const { // Dump lo-degree list tty->print("Lo degree: "); for( uint i = _lo_degree; i; i = lrgs(i)._next ) tty->print("L%d ",i); tty->print_cr(""); // Dump lo-stk-degree list tty->print("Lo stk degree: "); for(uint i2 = _lo_stk_degree; i2; i2 = lrgs(i2)._next ) tty->print("L%d ",i2); tty->print_cr(""); // Dump lo-degree list tty->print("Hi degree: "); for(uint i3 = _hi_degree; i3; i3 = lrgs(i3)._next ) tty->print("L%d ",i3); tty->print_cr(""); } //------------------------------dump_simplified-------------------------------- void PhaseChaitin::dump_simplified() const { tty->print("Simplified: "); for( uint i = _simplified; i; i = lrgs(i)._next ) tty->print("L%d ",i); tty->print_cr(""); } static char *print_reg( OptoReg::Name reg, const PhaseChaitin *pc, char *buf ) { if ((int)reg < 0) sprintf(buf, "", (int)reg); else if (OptoReg::is_reg(reg)) strcpy(buf, Matcher::regName[reg]); else sprintf(buf,"%s + #%d",OptoReg::regname(OptoReg::c_frame_pointer), pc->reg2offset(reg)); return buf+strlen(buf); } //------------------------------dump_register---------------------------------- // Dump a register name into a buffer. Be intelligent if we get called // before allocation is complete. char *PhaseChaitin::dump_register( const Node *n, char *buf ) const { if( !this ) { // Not got anything? sprintf(buf,"N%d",n->_idx); // Then use Node index } else if( _node_regs ) { // Post allocation, use direct mappings, no LRG info available print_reg( get_reg_first(n), this, buf ); } else { uint lidx = Find_const(n); // Grab LRG number if( !_ifg ) { sprintf(buf,"L%d",lidx); // No register binding yet } else if( !lidx ) { // Special, not allocated value strcpy(buf,"Special"); } else if( (lrgs(lidx).num_regs() == 1) ? !lrgs(lidx).mask().is_bound1() : !lrgs(lidx).mask().is_bound2() ) { sprintf(buf,"L%d",lidx); // No register binding yet } else { // Hah! We have a bound machine register print_reg( lrgs(lidx).reg(), this, buf ); } } return buf+strlen(buf); } //----------------------dump_for_spill_split_recycle-------------------------- void PhaseChaitin::dump_for_spill_split_recycle() const { if( WizardMode && (PrintCompilation || PrintOpto) ) { // Display which live ranges need to be split and the allocator's state tty->print_cr("Graph-Coloring Iteration %d will split the following live ranges", _trip_cnt); for( uint bidx = 1; bidx < _maxlrg; bidx++ ) { if( lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG ) { tty->print("L%d: ", bidx); lrgs(bidx).dump(); } } tty->cr(); dump(); } } //------------------------------dump_frame------------------------------------ void PhaseChaitin::dump_frame() const { const char *fp = OptoReg::regname(OptoReg::c_frame_pointer); const TypeTuple *domain = C->tf()->domain(); const int argcnt = domain->cnt() - TypeFunc::Parms; // Incoming arguments in registers dump for( int k = 0; k < argcnt; k++ ) { OptoReg::Name parmreg = _matcher._parm_regs[k].first(); if( OptoReg::is_reg(parmreg)) { const char *reg_name = OptoReg::regname(parmreg); tty->print("#r%3.3d %s", parmreg, reg_name); parmreg = _matcher._parm_regs[k].second(); if( OptoReg::is_reg(parmreg)) { tty->print(":%s", OptoReg::regname(parmreg)); } tty->print(" : parm %d: ", k); domain->field_at(k + TypeFunc::Parms)->dump(); tty->print_cr(""); } } // Check for un-owned padding above incoming args OptoReg::Name reg = _matcher._new_SP; if( reg > _matcher._in_arg_limit ) { reg = OptoReg::add(reg, -1); tty->print_cr("#r%3.3d %s+%2d: pad0, owned by CALLER", reg, fp, reg2offset_unchecked(reg)); } // Incoming argument area dump OptoReg::Name begin_in_arg = OptoReg::add(_matcher._old_SP,C->out_preserve_stack_slots()); while( reg > begin_in_arg ) { reg = OptoReg::add(reg, -1); tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg)); int j; for( j = 0; j < argcnt; j++) { if( _matcher._parm_regs[j].first() == reg || _matcher._parm_regs[j].second() == reg ) { tty->print("parm %d: ",j); domain->field_at(j + TypeFunc::Parms)->dump(); tty->print_cr(""); break; } } if( j >= argcnt ) tty->print_cr("HOLE, owned by SELF"); } // Old outgoing preserve area while( reg > _matcher._old_SP ) { reg = OptoReg::add(reg, -1); tty->print_cr("#r%3.3d %s+%2d: old out preserve",reg,fp,reg2offset_unchecked(reg)); } // Old SP tty->print_cr("# -- Old %s -- Framesize: %d --",fp, reg2offset_unchecked(OptoReg::add(_matcher._old_SP,-1)) - reg2offset_unchecked(_matcher._new_SP)+jintSize); // Preserve area dump reg = OptoReg::add(reg, -1); while( OptoReg::is_stack(reg)) { tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg)); if( _matcher.return_addr() == reg ) tty->print_cr("return address"); else if( _matcher.return_addr() == OptoReg::add(reg,1) && VerifyStackAtCalls ) tty->print_cr("0xBADB100D +VerifyStackAtCalls"); else if ((int)OptoReg::reg2stack(reg) < C->fixed_slots()) tty->print_cr("Fixed slot %d", OptoReg::reg2stack(reg)); else tty->print_cr("pad2, in_preserve"); reg = OptoReg::add(reg, -1); } // Spill area dump reg = OptoReg::add(_matcher._new_SP, _framesize ); while( reg > _matcher._out_arg_limit ) { reg = OptoReg::add(reg, -1); tty->print_cr("#r%3.3d %s+%2d: spill",reg,fp,reg2offset_unchecked(reg)); } // Outgoing argument area dump while( reg > OptoReg::add(_matcher._new_SP, C->out_preserve_stack_slots()) ) { reg = OptoReg::add(reg, -1); tty->print_cr("#r%3.3d %s+%2d: outgoing argument",reg,fp,reg2offset_unchecked(reg)); } // Outgoing new preserve area while( reg > _matcher._new_SP ) { reg = OptoReg::add(reg, -1); tty->print_cr("#r%3.3d %s+%2d: new out preserve",reg,fp,reg2offset_unchecked(reg)); } tty->print_cr("#"); } //------------------------------dump_bb---------------------------------------- void PhaseChaitin::dump_bb( uint pre_order ) const { tty->print_cr("---dump of B%d---",pre_order); for( uint i = 0; i < _cfg._num_blocks; i++ ) { Block *b = _cfg._blocks[i]; if( b->_pre_order == pre_order ) dump(b); } } //------------------------------dump_lrg--------------------------------------- void PhaseChaitin::dump_lrg( uint lidx ) const { tty->print_cr("---dump of L%d---",lidx); if( _ifg ) { if( lidx >= _maxlrg ) { tty->print("Attempt to print live range index beyond max live range.\n"); return; } tty->print("L%d: ",lidx); lrgs(lidx).dump( ); } if( _ifg ) { tty->print("Neighbors: %d - ", _ifg->neighbor_cnt(lidx)); _ifg->neighbors(lidx)->dump(); tty->cr(); } // For all blocks for( uint i = 0; i < _cfg._num_blocks; i++ ) { Block *b = _cfg._blocks[i]; int dump_once = 0; // For all instructions for( uint j = 0; j < b->_nodes.size(); j++ ) { Node *n = b->_nodes[j]; if( Find_const(n) == lidx ) { if( !dump_once++ ) { tty->cr(); b->dump_head( &_cfg._bbs ); } dump(n); continue; } uint cnt = n->req(); for( uint k = 1; k < cnt; k++ ) { Node *m = n->in(k); if (!m) continue; // be robust in the dumper if( Find_const(m) == lidx ) { if( !dump_once++ ) { tty->cr(); b->dump_head( &_cfg._bbs ); } dump(n); } } } } // End of per-block dump tty->cr(); } #endif // not PRODUCT //------------------------------print_chaitin_statistics------------------------------- int PhaseChaitin::_final_loads = 0; int PhaseChaitin::_final_stores = 0; int PhaseChaitin::_final_memoves= 0; int PhaseChaitin::_final_copies = 0; double PhaseChaitin::_final_load_cost = 0; double PhaseChaitin::_final_store_cost = 0; double PhaseChaitin::_final_memove_cost= 0; double PhaseChaitin::_final_copy_cost = 0; int PhaseChaitin::_conserv_coalesce = 0; int PhaseChaitin::_conserv_coalesce_pair = 0; int PhaseChaitin::_conserv_coalesce_trie = 0; int PhaseChaitin::_conserv_coalesce_quad = 0; int PhaseChaitin::_post_alloc = 0; int PhaseChaitin::_lost_opp_pp_coalesce = 0; int PhaseChaitin::_lost_opp_cflow_coalesce = 0; int PhaseChaitin::_used_cisc_instructions = 0; int PhaseChaitin::_unused_cisc_instructions = 0; int PhaseChaitin::_allocator_attempts = 0; int PhaseChaitin::_allocator_successes = 0; #ifndef PRODUCT uint PhaseChaitin::_high_pressure = 0; uint PhaseChaitin::_low_pressure = 0; void PhaseChaitin::print_chaitin_statistics() { tty->print_cr("Inserted %d spill loads, %d spill stores, %d mem-mem moves and %d copies.", _final_loads, _final_stores, _final_memoves, _final_copies); tty->print_cr("Total load cost= %6.0f, store cost = %6.0f, mem-mem cost = %5.2f, copy cost = %5.0f.", _final_load_cost, _final_store_cost, _final_memove_cost, _final_copy_cost); tty->print_cr("Adjusted spill cost = %7.0f.", _final_load_cost*4.0 + _final_store_cost * 2.0 + _final_copy_cost*1.0 + _final_memove_cost*12.0); tty->print("Conservatively coalesced %d copies, %d pairs", _conserv_coalesce, _conserv_coalesce_pair); if( _conserv_coalesce_trie || _conserv_coalesce_quad ) tty->print(", %d tries, %d quads", _conserv_coalesce_trie, _conserv_coalesce_quad); tty->print_cr(", %d post alloc.", _post_alloc); if( _lost_opp_pp_coalesce || _lost_opp_cflow_coalesce ) tty->print_cr("Lost coalesce opportunity, %d private-private, and %d cflow interfered.", _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce ); if( _used_cisc_instructions || _unused_cisc_instructions ) tty->print_cr("Used cisc instruction %d, remained in register %d", _used_cisc_instructions, _unused_cisc_instructions); if( _allocator_successes != 0 ) tty->print_cr("Average allocation trips %f", (float)_allocator_attempts/(float)_allocator_successes); tty->print_cr("High Pressure Blocks = %d, Low Pressure Blocks = %d", _high_pressure, _low_pressure); } #endif // not PRODUCT