/* * Copyright (c) 2016, 2018, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2016, 2018 SAP SE. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ // Major contributions by AHa, AS, JL, ML. #include "precompiled.hpp" #include "asm/macroAssembler.inline.hpp" #include "gc/shared/barrierSet.hpp" #include "gc/shared/barrierSetAssembler.hpp" #include "interp_masm_s390.hpp" #include "interpreter/interpreter.hpp" #include "interpreter/interpreterRuntime.hpp" #include "oops/arrayOop.hpp" #include "oops/markOop.hpp" #include "prims/jvmtiExport.hpp" #include "prims/jvmtiThreadState.hpp" #include "runtime/basicLock.hpp" #include "runtime/biasedLocking.hpp" #include "runtime/frame.inline.hpp" #include "runtime/safepointMechanism.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/thread.inline.hpp" // Implementation of InterpreterMacroAssembler. // This file specializes the assembler with interpreter-specific macros. #ifdef PRODUCT #define BLOCK_COMMENT(str) #define BIND(label) bind(label); #else #define BLOCK_COMMENT(str) block_comment(str) #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") #endif void InterpreterMacroAssembler::jump_to_entry(address entry, Register Rscratch) { assert(entry != NULL, "Entry must have been generated by now"); assert(Rscratch != Z_R0, "Can't use R0 for addressing"); branch_optimized(Assembler::bcondAlways, entry); } void InterpreterMacroAssembler::empty_expression_stack(void) { get_monitors(Z_R1_scratch); add2reg(Z_esp, -Interpreter::stackElementSize, Z_R1_scratch); } // Dispatch code executed in the prolog of a bytecode which does not do it's // own dispatch. void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) { // On z/Architecture we are short on registers, therefore we do not preload the // dispatch address of the next bytecode. } // Dispatch code executed in the epilog of a bytecode which does not do it's // own dispatch. void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { dispatch_next(state, step); } void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr, bool generate_poll) { z_llgc(Z_bytecode, bcp_incr, Z_R0, Z_bcp); // Load next bytecode. add2reg(Z_bcp, bcp_incr); // Advance bcp. Add2reg produces optimal code. dispatch_base(state, Interpreter::dispatch_table(state), generate_poll); } // Common code to dispatch and dispatch_only. // Dispatch value in Lbyte_code and increment Lbcp. void InterpreterMacroAssembler::dispatch_base(TosState state, address* table, bool generate_poll) { verify_FPU(1, state); #ifdef ASSERT address reentry = NULL; { Label OK; // Check if the frame pointer in Z_fp is correct. z_cg(Z_fp, 0, Z_SP); z_bre(OK); reentry = stop_chain_static(reentry, "invalid frame pointer Z_fp: " FILE_AND_LINE); bind(OK); } { Label OK; // check if the locals pointer in Z_locals is correct z_cg(Z_locals, _z_ijava_state_neg(locals), Z_fp); z_bre(OK); reentry = stop_chain_static(reentry, "invalid locals pointer Z_locals: " FILE_AND_LINE); bind(OK); } #endif // TODO: Maybe implement +VerifyActivationFrameSize here. // verify_thread(); // Too slow. We will just verify on method entry & exit. verify_oop(Z_tos, state); // Dispatch table to use. load_absolute_address(Z_tmp_1, (address)table); // Z_tmp_1 = table; if (SafepointMechanism::uses_thread_local_poll() && generate_poll) { address *sfpt_tbl = Interpreter::safept_table(state); if (table != sfpt_tbl) { Label dispatch; const Address poll_byte_addr(Z_thread, in_bytes(Thread::polling_page_offset()) + 7 /* Big Endian */); // Armed page has poll_bit set, if poll bit is cleared just continue. z_tm(poll_byte_addr, SafepointMechanism::poll_bit()); z_braz(dispatch); load_absolute_address(Z_tmp_1, (address)sfpt_tbl); // Z_tmp_1 = table; bind(dispatch); } } // 0 <= Z_bytecode < 256 => Use a 32 bit shift, because it is shorter than sllg. // Z_bytecode must have been loaded zero-extended for this approach to be correct. z_sll(Z_bytecode, LogBytesPerWord, Z_R0); // Multiply by wordSize. z_lg(Z_tmp_1, 0, Z_bytecode, Z_tmp_1); // Get entry addr. z_br(Z_tmp_1); } void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) { dispatch_base(state, Interpreter::dispatch_table(state), generate_poll); } void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { dispatch_base(state, Interpreter::normal_table(state)); } void InterpreterMacroAssembler::dispatch_via(TosState state, address *table) { // Load current bytecode. z_llgc(Z_bytecode, Address(Z_bcp, (intptr_t)0)); dispatch_base(state, table); } // The following call_VM*_base() methods overload and mask the respective // declarations/definitions in class MacroAssembler. They are meant as a "detour" // to perform additional, template interpreter specific tasks before actually // calling their MacroAssembler counterparts. void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point) { bool allow_relocation = true; // Fenerally valid variant. Assume code is relocated. // interpreter specific // Note: No need to save/restore bcp (Z_R13) pointer since these are callee // saved registers and no blocking/ GC can happen in leaf calls. // super call MacroAssembler::call_VM_leaf_base(entry_point, allow_relocation); } void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, bool allow_relocation) { // interpreter specific // Note: No need to save/restore bcp (Z_R13) pointer since these are callee // saved registers and no blocking/ GC can happen in leaf calls. // super call MacroAssembler::call_VM_leaf_base(entry_point, allow_relocation); } void InterpreterMacroAssembler::call_VM_base(Register oop_result, Register last_java_sp, address entry_point, bool check_exceptions) { bool allow_relocation = true; // Fenerally valid variant. Assume code is relocated. // interpreter specific save_bcp(); save_esp(); // super call MacroAssembler::call_VM_base(oop_result, last_java_sp, entry_point, allow_relocation, check_exceptions); restore_bcp(); } void InterpreterMacroAssembler::call_VM_base(Register oop_result, Register last_java_sp, address entry_point, bool allow_relocation, bool check_exceptions) { // interpreter specific save_bcp(); save_esp(); // super call MacroAssembler::call_VM_base(oop_result, last_java_sp, entry_point, allow_relocation, check_exceptions); restore_bcp(); } void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) { if (JvmtiExport::can_pop_frame()) { BLOCK_COMMENT("check_and_handle_popframe {"); Label L; // Initiate popframe handling only if it is not already being // processed. If the flag has the popframe_processing bit set, it // means that this code is called *during* popframe handling - we // don't want to reenter. // TODO: Check if all four state combinations could be visible. // If (processing and !pending) is an invisible/impossible state, // there is optimization potential by testing both bits at once. // Then, All_Zeroes and All_Ones means skip, Mixed means doit. testbit(Address(Z_thread, JavaThread::popframe_condition_offset()), exact_log2(JavaThread::popframe_pending_bit)); z_bfalse(L); testbit(Address(Z_thread, JavaThread::popframe_condition_offset()), exact_log2(JavaThread::popframe_processing_bit)); z_btrue(L); // Call Interpreter::remove_activation_preserving_args_entry() to get the // address of the same-named entrypoint in the generated interpreter code. call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); // The above call should (as its only effect) return the contents of the field // _remove_activation_preserving_args_entry in Z_RET. // We just jump there to have the work done. z_br(Z_RET); // There is no way for control to fall thru here. bind(L); BLOCK_COMMENT("} check_and_handle_popframe"); } } void InterpreterMacroAssembler::load_earlyret_value(TosState state) { Register RjvmtiState = Z_R1_scratch; int tos_off = in_bytes(JvmtiThreadState::earlyret_tos_offset()); int oop_off = in_bytes(JvmtiThreadState::earlyret_oop_offset()); int val_off = in_bytes(JvmtiThreadState::earlyret_value_offset()); int state_off = in_bytes(JavaThread::jvmti_thread_state_offset()); z_lg(RjvmtiState, state_off, Z_thread); switch (state) { case atos: z_lg(Z_tos, oop_off, RjvmtiState); store_const(Address(RjvmtiState, oop_off), 0L, 8, 8, Z_R0_scratch); break; case ltos: z_lg(Z_tos, val_off, RjvmtiState); break; case btos: // fall through case ztos: // fall through case ctos: // fall through case stos: // fall through case itos: z_llgf(Z_tos, val_off, RjvmtiState); break; case ftos: z_le(Z_ftos, val_off, RjvmtiState); break; case dtos: z_ld(Z_ftos, val_off, RjvmtiState); break; case vtos: /* nothing to do */ break; default : ShouldNotReachHere(); } // Clean up tos value in the jvmti thread state. store_const(Address(RjvmtiState, val_off), 0L, 8, 8, Z_R0_scratch); // Set tos state field to illegal value. store_const(Address(RjvmtiState, tos_off), ilgl, 4, 1, Z_R0_scratch); } void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) { if (JvmtiExport::can_force_early_return()) { BLOCK_COMMENT("check_and_handle_earlyret {"); Label L; // arg regs are save, because we are just behind the call in call_VM_base Register jvmti_thread_state = Z_ARG2; Register tmp = Z_ARG3; load_and_test_long(jvmti_thread_state, Address(Z_thread, JavaThread::jvmti_thread_state_offset())); z_bre(L); // if (thread->jvmti_thread_state() == NULL) exit; // Initiate earlyret handling only if it is not already being processed. // If the flag has the earlyret_processing bit set, it means that this code // is called *during* earlyret handling - we don't want to reenter. assert((JvmtiThreadState::earlyret_pending != 0) && (JvmtiThreadState::earlyret_inactive == 0), "must fix this check, when changing the values of the earlyret enum"); assert(JvmtiThreadState::earlyret_pending == 1, "must fix this check, when changing the values of the earlyret enum"); load_and_test_int(tmp, Address(jvmti_thread_state, JvmtiThreadState::earlyret_state_offset())); z_brz(L); // if (thread->jvmti_thread_state()->_earlyret_state != JvmtiThreadState::earlyret_pending) exit; // Call Interpreter::remove_activation_early_entry() to get the address of the // same-named entrypoint in the generated interpreter code. assert(sizeof(TosState) == 4, "unexpected size"); z_l(Z_ARG1, Address(jvmti_thread_state, JvmtiThreadState::earlyret_tos_offset())); call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Z_ARG1); // The above call should (as its only effect) return the contents of the field // _remove_activation_preserving_args_entry in Z_RET. // We just jump there to have the work done. z_br(Z_RET); // There is no way for control to fall thru here. bind(L); BLOCK_COMMENT("} check_and_handle_earlyret"); } } void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2) { lgr_if_needed(Z_ARG1, arg_1); assert(arg_2 != Z_ARG1, "smashed argument"); lgr_if_needed(Z_ARG2, arg_2); MacroAssembler::call_VM_leaf_base(entry_point, true); } void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, int bcp_offset, size_t index_size) { Address param(Z_bcp, bcp_offset); BLOCK_COMMENT("get_cache_index_at_bcp {"); assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); if (index_size == sizeof(u2)) { load_sized_value(index, param, 2, false /*signed*/); } else if (index_size == sizeof(u4)) { load_sized_value(index, param, 4, false); // Check if the secondary index definition is still ~x, otherwise // we have to change the following assembler code to calculate the // plain index. assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line"); not_(index); // Convert to plain index. } else if (index_size == sizeof(u1)) { z_llgc(index, param); } else { ShouldNotReachHere(); } BLOCK_COMMENT("}"); } void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register cpe_offset, int bcp_offset, size_t index_size) { BLOCK_COMMENT("get_cache_and_index_at_bcp {"); assert_different_registers(cache, cpe_offset); get_cache_index_at_bcp(cpe_offset, bcp_offset, index_size); z_lg(cache, Address(Z_fp, _z_ijava_state_neg(cpoolCache))); // Convert from field index to ConstantPoolCache offset in bytes. z_sllg(cpe_offset, cpe_offset, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord)); BLOCK_COMMENT("}"); } // Kills Z_R0_scratch. void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache, Register cpe_offset, Register bytecode, int byte_no, int bcp_offset, size_t index_size) { BLOCK_COMMENT("get_cache_and_index_and_bytecode_at_bcp {"); get_cache_and_index_at_bcp(cache, cpe_offset, bcp_offset, index_size); // We want to load (from CP cache) the bytecode that corresponds to the passed-in byte_no. // It is located at (cache + cpe_offset + base_offset + indices_offset + (8-1) (last byte in DW) - (byte_no+1). // Instead of loading, shifting and masking a DW, we just load that one byte of interest with z_llgc (unsigned). const int base_ix_off = in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()); const int off_in_DW = (8-1) - (1+byte_no); assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask"); assert(ConstantPoolCacheEntry::bytecode_1_mask == 0xff, ""); load_sized_value(bytecode, Address(cache, cpe_offset, base_ix_off+off_in_DW), 1, false /*signed*/); BLOCK_COMMENT("}"); } // Load object from cpool->resolved_references(index). void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, Register index) { assert_different_registers(result, index); get_constant_pool(result); // Convert // - from field index to resolved_references() index and // - from word index to byte offset. // Since this is a java object, it is potentially compressed. Register tmp = index; // reuse z_sllg(index, index, LogBytesPerHeapOop); // Offset into resolved references array. // Load pointer for resolved_references[] objArray. z_lg(result, ConstantPool::cache_offset_in_bytes(), result); z_lg(result, ConstantPoolCache::resolved_references_offset_in_bytes(), result); resolve_oop_handle(result); // Load resolved references array itself. #ifdef ASSERT NearLabel index_ok; z_lgf(Z_R0, Address(result, arrayOopDesc::length_offset_in_bytes())); z_sllg(Z_R0, Z_R0, LogBytesPerHeapOop); compare64_and_branch(tmp, Z_R0, Assembler::bcondLow, index_ok); stop("resolved reference index out of bounds", 0x09256); bind(index_ok); #endif z_agr(result, index); // Address of indexed array element. load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT)), tmp, noreg); } // load cpool->resolved_klass_at(index) void InterpreterMacroAssembler::load_resolved_klass_at_offset(Register cpool, Register offset, Register iklass) { // int value = *(Rcpool->int_at_addr(which)); // int resolved_klass_index = extract_low_short_from_int(value); z_llgh(offset, Address(cpool, offset, sizeof(ConstantPool) + 2)); // offset = resolved_klass_index (s390 is big-endian) z_sllg(offset, offset, LogBytesPerWord); // Convert 'index' to 'offset' z_lg(iklass, Address(cpool, ConstantPool::resolved_klasses_offset_in_bytes())); // iklass = cpool->_resolved_klasses z_lg(iklass, Address(iklass, offset, Array::base_offset_in_bytes())); } void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp, int bcp_offset, size_t index_size) { BLOCK_COMMENT("get_cache_entry_pointer_at_bcp {"); get_cache_and_index_at_bcp(cache, tmp, bcp_offset, index_size); add2reg_with_index(cache, in_bytes(ConstantPoolCache::base_offset()), tmp, cache); BLOCK_COMMENT("}"); } // Generate a subtype check: branch to ok_is_subtype if sub_klass is // a subtype of super_klass. Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2. void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, Register Rsuper_klass, Register Rtmp1, Register Rtmp2, Label &ok_is_subtype) { // Profile the not-null value's klass. profile_typecheck(Rtmp1, Rsub_klass, Rtmp2); // Do the check. check_klass_subtype(Rsub_klass, Rsuper_klass, Rtmp1, Rtmp2, ok_is_subtype); // Profile the failure of the check. profile_typecheck_failed(Rtmp1, Rtmp2); } // Pop topmost element from stack. It just disappears. // Useful if consumed previously by access via stackTop(). void InterpreterMacroAssembler::popx(int len) { add2reg(Z_esp, len*Interpreter::stackElementSize); debug_only(verify_esp(Z_esp, Z_R1_scratch)); } // Get Address object of stack top. No checks. No pop. // Purpose: - Provide address of stack operand to exploit reg-mem operations. // - Avoid RISC-like mem2reg - reg-reg-op sequence. Address InterpreterMacroAssembler::stackTop() { return Address(Z_esp, Interpreter::expr_offset_in_bytes(0)); } void InterpreterMacroAssembler::pop_i(Register r) { z_l(r, Interpreter::expr_offset_in_bytes(0), Z_esp); add2reg(Z_esp, Interpreter::stackElementSize); assert_different_registers(r, Z_R1_scratch); debug_only(verify_esp(Z_esp, Z_R1_scratch)); } void InterpreterMacroAssembler::pop_ptr(Register r) { z_lg(r, Interpreter::expr_offset_in_bytes(0), Z_esp); add2reg(Z_esp, Interpreter::stackElementSize); assert_different_registers(r, Z_R1_scratch); debug_only(verify_esp(Z_esp, Z_R1_scratch)); } void InterpreterMacroAssembler::pop_l(Register r) { z_lg(r, Interpreter::expr_offset_in_bytes(0), Z_esp); add2reg(Z_esp, 2*Interpreter::stackElementSize); assert_different_registers(r, Z_R1_scratch); debug_only(verify_esp(Z_esp, Z_R1_scratch)); } void InterpreterMacroAssembler::pop_f(FloatRegister f) { mem2freg_opt(f, Address(Z_esp, Interpreter::expr_offset_in_bytes(0)), false); add2reg(Z_esp, Interpreter::stackElementSize); debug_only(verify_esp(Z_esp, Z_R1_scratch)); } void InterpreterMacroAssembler::pop_d(FloatRegister f) { mem2freg_opt(f, Address(Z_esp, Interpreter::expr_offset_in_bytes(0)), true); add2reg(Z_esp, 2*Interpreter::stackElementSize); debug_only(verify_esp(Z_esp, Z_R1_scratch)); } void InterpreterMacroAssembler::push_i(Register r) { assert_different_registers(r, Z_R1_scratch); debug_only(verify_esp(Z_esp, Z_R1_scratch)); z_st(r, Address(Z_esp)); add2reg(Z_esp, -Interpreter::stackElementSize); } void InterpreterMacroAssembler::push_ptr(Register r) { z_stg(r, Address(Z_esp)); add2reg(Z_esp, -Interpreter::stackElementSize); } void InterpreterMacroAssembler::push_l(Register r) { assert_different_registers(r, Z_R1_scratch); debug_only(verify_esp(Z_esp, Z_R1_scratch)); int offset = -Interpreter::stackElementSize; z_stg(r, Address(Z_esp, offset)); clear_mem(Address(Z_esp), Interpreter::stackElementSize); add2reg(Z_esp, 2 * offset); } void InterpreterMacroAssembler::push_f(FloatRegister f) { debug_only(verify_esp(Z_esp, Z_R1_scratch)); freg2mem_opt(f, Address(Z_esp), false); add2reg(Z_esp, -Interpreter::stackElementSize); } void InterpreterMacroAssembler::push_d(FloatRegister d) { debug_only(verify_esp(Z_esp, Z_R1_scratch)); int offset = -Interpreter::stackElementSize; freg2mem_opt(d, Address(Z_esp, offset)); add2reg(Z_esp, 2 * offset); } void InterpreterMacroAssembler::push(TosState state) { verify_oop(Z_tos, state); switch (state) { case atos: push_ptr(); break; case btos: push_i(); break; case ztos: case ctos: case stos: push_i(); break; case itos: push_i(); break; case ltos: push_l(); break; case ftos: push_f(); break; case dtos: push_d(); break; case vtos: /* nothing to do */ break; default : ShouldNotReachHere(); } } void InterpreterMacroAssembler::pop(TosState state) { switch (state) { case atos: pop_ptr(Z_tos); break; case btos: pop_i(Z_tos); break; case ztos: case ctos: case stos: pop_i(Z_tos); break; case itos: pop_i(Z_tos); break; case ltos: pop_l(Z_tos); break; case ftos: pop_f(Z_ftos); break; case dtos: pop_d(Z_ftos); break; case vtos: /* nothing to do */ break; default : ShouldNotReachHere(); } verify_oop(Z_tos, state); } // Helpers for swap and dup. void InterpreterMacroAssembler::load_ptr(int n, Register val) { z_lg(val, Address(Z_esp, Interpreter::expr_offset_in_bytes(n))); } void InterpreterMacroAssembler::store_ptr(int n, Register val) { z_stg(val, Address(Z_esp, Interpreter::expr_offset_in_bytes(n))); } void InterpreterMacroAssembler::prepare_to_jump_from_interpreted(Register method) { // Satisfy interpreter calling convention (see generate_normal_entry()). z_lgr(Z_R10, Z_SP); // Set sender sp (aka initial caller sp, aka unextended sp). // Record top_frame_sp, because the callee might modify it, if it's compiled. z_stg(Z_SP, _z_ijava_state_neg(top_frame_sp), Z_fp); save_bcp(); save_esp(); z_lgr(Z_method, method); // Set Z_method (kills Z_fp!). } // Jump to from_interpreted entry of a call unless single stepping is possible // in this thread in which case we must call the i2i entry. void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { assert_different_registers(method, Z_R10 /*used for initial_caller_sp*/, temp); prepare_to_jump_from_interpreted(method); if (JvmtiExport::can_post_interpreter_events()) { // JVMTI events, such as single-stepping, are implemented partly by avoiding running // compiled code in threads for which the event is enabled. Check here for // interp_only_mode if these events CAN be enabled. z_lg(Z_R1_scratch, Address(method, Method::from_interpreted_offset())); MacroAssembler::load_and_test_int(Z_R0_scratch, Address(Z_thread, JavaThread::interp_only_mode_offset())); z_bcr(bcondEqual, Z_R1_scratch); // Run compiled code if zero. // Run interpreted. z_lg(Z_R1_scratch, Address(method, Method::interpreter_entry_offset())); z_br(Z_R1_scratch); } else { // Run compiled code. z_lg(Z_R1_scratch, Address(method, Method::from_interpreted_offset())); z_br(Z_R1_scratch); } } #ifdef ASSERT void InterpreterMacroAssembler::verify_esp(Register Resp, Register Rtemp) { // About to read or write Resp[0]. // Make sure it is not in the monitors or the TOP_IJAVA_FRAME_ABI. address reentry = NULL; { // Check if the frame pointer in Z_fp is correct. NearLabel OK; z_cg(Z_fp, 0, Z_SP); z_bre(OK); reentry = stop_chain_static(reentry, "invalid frame pointer Z_fp"); bind(OK); } { // Resp must not point into or below the operand stack, // i.e. IJAVA_STATE.monitors > Resp. NearLabel OK; Register Rmonitors = Rtemp; z_lg(Rmonitors, _z_ijava_state_neg(monitors), Z_fp); compareU64_and_branch(Rmonitors, Resp, bcondHigh, OK); reentry = stop_chain_static(reentry, "too many pops: Z_esp points into monitor area"); bind(OK); } { // Resp may point to the last word of TOP_IJAVA_FRAME_ABI, but not below // i.e. !(Z_SP + frame::z_top_ijava_frame_abi_size - Interpreter::stackElementSize > Resp). NearLabel OK; Register Rabi_bottom = Rtemp; add2reg(Rabi_bottom, frame::z_top_ijava_frame_abi_size - Interpreter::stackElementSize, Z_SP); compareU64_and_branch(Rabi_bottom, Resp, bcondNotHigh, OK); reentry = stop_chain_static(reentry, "too many pushes: Z_esp points into TOP_IJAVA_FRAME_ABI"); bind(OK); } } void InterpreterMacroAssembler::asm_assert_ijava_state_magic(Register tmp) { Label magic_ok; load_const_optimized(tmp, frame::z_istate_magic_number); z_cg(tmp, Address(Z_fp, _z_ijava_state_neg(magic))); z_bre(magic_ok); stop_static("error: wrong magic number in ijava_state access"); bind(magic_ok); } #endif // ASSERT void InterpreterMacroAssembler::save_bcp() { z_stg(Z_bcp, Address(Z_fp, _z_ijava_state_neg(bcp))); asm_assert_ijava_state_magic(Z_bcp); NOT_PRODUCT(z_lg(Z_bcp, Address(Z_fp, _z_ijava_state_neg(bcp)))); } void InterpreterMacroAssembler::restore_bcp() { asm_assert_ijava_state_magic(Z_bcp); z_lg(Z_bcp, Address(Z_fp, _z_ijava_state_neg(bcp))); } void InterpreterMacroAssembler::save_esp() { z_stg(Z_esp, Address(Z_fp, _z_ijava_state_neg(esp))); } void InterpreterMacroAssembler::restore_esp() { asm_assert_ijava_state_magic(Z_esp); z_lg(Z_esp, Address(Z_fp, _z_ijava_state_neg(esp))); } void InterpreterMacroAssembler::get_monitors(Register reg) { asm_assert_ijava_state_magic(reg); mem2reg_opt(reg, Address(Z_fp, _z_ijava_state_neg(monitors))); } void InterpreterMacroAssembler::save_monitors(Register reg) { reg2mem_opt(reg, Address(Z_fp, _z_ijava_state_neg(monitors))); } void InterpreterMacroAssembler::get_mdp(Register mdp) { z_lg(mdp, _z_ijava_state_neg(mdx), Z_fp); } void InterpreterMacroAssembler::save_mdp(Register mdp) { z_stg(mdp, _z_ijava_state_neg(mdx), Z_fp); } // Values that are only read (besides initialization). void InterpreterMacroAssembler::restore_locals() { asm_assert_ijava_state_magic(Z_locals); z_lg(Z_locals, Address(Z_fp, _z_ijava_state_neg(locals))); } void InterpreterMacroAssembler::get_method(Register reg) { asm_assert_ijava_state_magic(reg); z_lg(reg, Address(Z_fp, _z_ijava_state_neg(method))); } void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(Register Rdst, int bcp_offset, signedOrNot is_signed) { // Rdst is an 8-byte return value!!! // Unaligned loads incur only a small penalty on z/Architecture. The penalty // is a few (2..3) ticks, even when the load crosses a cache line // boundary. In case of a cache miss, the stall could, of course, be // much longer. switch (is_signed) { case Signed: z_lgh(Rdst, bcp_offset, Z_R0, Z_bcp); break; case Unsigned: z_llgh(Rdst, bcp_offset, Z_R0, Z_bcp); break; default: ShouldNotReachHere(); } } void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(Register Rdst, int bcp_offset, setCCOrNot set_cc) { // Rdst is an 8-byte return value!!! // Unaligned loads incur only a small penalty on z/Architecture. The penalty // is a few (2..3) ticks, even when the load crosses a cache line // boundary. In case of a cache miss, the stall could, of course, be // much longer. // Both variants implement a sign-extending int2long load. if (set_cc == set_CC) { load_and_test_int2long(Rdst, Address(Z_bcp, (intptr_t)bcp_offset)); } else { mem2reg_signed_opt( Rdst, Address(Z_bcp, (intptr_t)bcp_offset)); } } void InterpreterMacroAssembler::get_constant_pool(Register Rdst) { get_method(Rdst); mem2reg_opt(Rdst, Address(Rdst, Method::const_offset())); mem2reg_opt(Rdst, Address(Rdst, ConstMethod::constants_offset())); } void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) { get_constant_pool(Rcpool); mem2reg_opt(Rtags, Address(Rcpool, ConstantPool::tags_offset_in_bytes())); } // Unlock if synchronized method. // // Unlock the receiver if this is a synchronized method. // Unlock any Java monitors from syncronized blocks. // // If there are locked Java monitors // If throw_monitor_exception // throws IllegalMonitorStateException // Else if install_monitor_exception // installs IllegalMonitorStateException // Else // no error processing void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state, bool throw_monitor_exception, bool install_monitor_exception) { NearLabel unlocked, unlock, no_unlock; { Register R_method = Z_ARG2; Register R_do_not_unlock_if_synchronized = Z_ARG3; // Get the value of _do_not_unlock_if_synchronized into G1_scratch. const Address do_not_unlock_if_synchronized(Z_thread, JavaThread::do_not_unlock_if_synchronized_offset()); load_sized_value(R_do_not_unlock_if_synchronized, do_not_unlock_if_synchronized, 1, false /*unsigned*/); z_mvi(do_not_unlock_if_synchronized, false); // Reset the flag. // Check if synchronized method. get_method(R_method); verify_oop(Z_tos, state); push(state); // Save tos/result. testbit(method2_(R_method, access_flags), JVM_ACC_SYNCHRONIZED_BIT); z_bfalse(unlocked); // Don't unlock anything if the _do_not_unlock_if_synchronized flag // is set. compareU64_and_branch(R_do_not_unlock_if_synchronized, (intptr_t)0L, bcondNotEqual, no_unlock); } // unlock monitor // BasicObjectLock will be first in list, since this is a // synchronized method. However, need to check that the object has // not been unlocked by an explicit monitorexit bytecode. const Address monitor(Z_fp, -(frame::z_ijava_state_size + (int) sizeof(BasicObjectLock))); // We use Z_ARG2 so that if we go slow path it will be the correct // register for unlock_object to pass to VM directly. load_address(Z_ARG2, monitor); // Address of first monitor. z_lg(Z_ARG3, Address(Z_ARG2, BasicObjectLock::obj_offset_in_bytes())); compareU64_and_branch(Z_ARG3, (intptr_t)0L, bcondNotEqual, unlock); if (throw_monitor_exception) { // Entry already unlocked need to throw an exception. MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception)); should_not_reach_here(); } else { // Monitor already unlocked during a stack unroll. // If requested, install an illegal_monitor_state_exception. // Continue with stack unrolling. if (install_monitor_exception) { MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception)); } z_bru(unlocked); } bind(unlock); unlock_object(Z_ARG2); bind(unlocked); // I0, I1: Might contain return value // Check that all monitors are unlocked. { NearLabel loop, exception, entry, restart; const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; // We use Z_ARG2 so that if we go slow path it will be the correct // register for unlock_object to pass to VM directly. Register R_current_monitor = Z_ARG2; Register R_monitor_block_bot = Z_ARG1; const Address monitor_block_top(Z_fp, _z_ijava_state_neg(monitors)); const Address monitor_block_bot(Z_fp, -frame::z_ijava_state_size); bind(restart); // Starting with top-most entry. z_lg(R_current_monitor, monitor_block_top); // Points to word before bottom of monitor block. load_address(R_monitor_block_bot, monitor_block_bot); z_bru(entry); // Entry already locked, need to throw exception. bind(exception); if (throw_monitor_exception) { // Throw exception. MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime:: throw_illegal_monitor_state_exception)); should_not_reach_here(); } else { // Stack unrolling. Unlock object and install illegal_monitor_exception. // Unlock does not block, so don't have to worry about the frame. // We don't have to preserve c_rarg1 since we are going to throw an exception. unlock_object(R_current_monitor); if (install_monitor_exception) { call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime:: new_illegal_monitor_state_exception)); } z_bru(restart); } bind(loop); // Check if current entry is used. load_and_test_long(Z_R0_scratch, Address(R_current_monitor, BasicObjectLock::obj_offset_in_bytes())); z_brne(exception); add2reg(R_current_monitor, entry_size); // Otherwise advance to next entry. bind(entry); compareU64_and_branch(R_current_monitor, R_monitor_block_bot, bcondNotEqual, loop); } bind(no_unlock); pop(state); verify_oop(Z_tos, state); } void InterpreterMacroAssembler::narrow(Register result, Register ret_type) { get_method(ret_type); z_lg(ret_type, Address(ret_type, in_bytes(Method::const_offset()))); z_lb(ret_type, Address(ret_type, in_bytes(ConstMethod::result_type_offset()))); Label notBool, notByte, notChar, done; // common case first compareU32_and_branch(ret_type, T_INT, bcondEqual, done); compareU32_and_branch(ret_type, T_BOOLEAN, bcondNotEqual, notBool); z_nilf(result, 0x1); z_bru(done); bind(notBool); compareU32_and_branch(ret_type, T_BYTE, bcondNotEqual, notByte); z_lbr(result, result); z_bru(done); bind(notByte); compareU32_and_branch(ret_type, T_CHAR, bcondNotEqual, notChar); z_nilf(result, 0xffff); z_bru(done); bind(notChar); // compareU32_and_branch(ret_type, T_SHORT, bcondNotEqual, notShort); z_lhr(result, result); // Nothing to do for T_INT bind(done); } // remove activation // // Unlock the receiver if this is a synchronized method. // Unlock any Java monitors from syncronized blocks. // Remove the activation from the stack. // // If there are locked Java monitors // If throw_monitor_exception // throws IllegalMonitorStateException // Else if install_monitor_exception // installs IllegalMonitorStateException // Else // no error processing void InterpreterMacroAssembler::remove_activation(TosState state, Register return_pc, bool throw_monitor_exception, bool install_monitor_exception, bool notify_jvmti) { BLOCK_COMMENT("remove_activation {"); unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception); // Save result (push state before jvmti call and pop it afterwards) and notify jvmti. notify_method_exit(false, state, notify_jvmti ? NotifyJVMTI : SkipNotifyJVMTI); if (StackReservedPages > 0) { BLOCK_COMMENT("reserved_stack_check:"); // Test if reserved zone needs to be enabled. Label no_reserved_zone_enabling; // Compare frame pointers. There is no good stack pointer, as with stack // frame compression we can get different SPs when we do calls. A subsequent // call could have a smaller SP, so that this compare succeeds for an // inner call of the method annotated with ReservedStack. z_lg(Z_R0, Address(Z_SP, (intptr_t)_z_abi(callers_sp))); z_clg(Z_R0, Address(Z_thread, JavaThread::reserved_stack_activation_offset())); // Compare with frame pointer in memory. z_brl(no_reserved_zone_enabling); // Enable reserved zone again, throw stack overflow exception. call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), Z_thread); call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_delayed_StackOverflowError)); should_not_reach_here(); bind(no_reserved_zone_enabling); } verify_oop(Z_tos, state); verify_thread(); pop_interpreter_frame(return_pc, Z_ARG2, Z_ARG3); BLOCK_COMMENT("} remove_activation"); } // lock object // // Registers alive // monitor - Address of the BasicObjectLock to be used for locking, // which must be initialized with the object to lock. // object - Address of the object to be locked. void InterpreterMacroAssembler::lock_object(Register monitor, Register object) { if (UseHeavyMonitors) { call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), monitor, /*check_for_exceptions=*/false); return; } // template code: // // markOop displaced_header = obj->mark().set_unlocked(); // monitor->lock()->set_displaced_header(displaced_header); // if (Atomic::cmpxchg(/*ex=*/monitor, /*addr*/obj->mark_addr(), /*cmp*/displaced_header) == displaced_header) { // // We stored the monitor address into the object's mark word. // } else if (THREAD->is_lock_owned((address)displaced_header)) // // Simple recursive case. // monitor->lock()->set_displaced_header(NULL); // } else { // // Slow path. // InterpreterRuntime::monitorenter(THREAD, monitor); // } const Register displaced_header = Z_ARG5; const Register object_mark_addr = Z_ARG4; const Register current_header = Z_ARG5; NearLabel done; NearLabel slow_case; // markOop displaced_header = obj->mark().set_unlocked(); // Load markOop from object into displaced_header. z_lg(displaced_header, oopDesc::mark_offset_in_bytes(), object); if (UseBiasedLocking) { biased_locking_enter(object, displaced_header, Z_R1, Z_R0, done, &slow_case); } // Set displaced_header to be (markOop of object | UNLOCK_VALUE). z_oill(displaced_header, markOopDesc::unlocked_value); // monitor->lock()->set_displaced_header(displaced_header); // Initialize the box (Must happen before we update the object mark!). z_stg(displaced_header, BasicObjectLock::lock_offset_in_bytes() + BasicLock::displaced_header_offset_in_bytes(), monitor); // if (Atomic::cmpxchg(/*ex=*/monitor, /*addr*/obj->mark_addr(), /*cmp*/displaced_header) == displaced_header) { // Store stack address of the BasicObjectLock (this is monitor) into object. add2reg(object_mark_addr, oopDesc::mark_offset_in_bytes(), object); z_csg(displaced_header, monitor, 0, object_mark_addr); assert(current_header==displaced_header, "must be same register"); // Identified two registers from z/Architecture. z_bre(done); // } else if (THREAD->is_lock_owned((address)displaced_header)) // // Simple recursive case. // monitor->lock()->set_displaced_header(NULL); // We did not see an unlocked object so try the fast recursive case. // Check if owner is self by comparing the value in the markOop of object // (current_header) with the stack pointer. z_sgr(current_header, Z_SP); assert(os::vm_page_size() > 0xfff, "page size too small - change the constant"); // The prior sequence "LGR, NGR, LTGR" can be done better // (Z_R1 is temp and not used after here). load_const_optimized(Z_R0, (~(os::vm_page_size()-1) | markOopDesc::lock_mask_in_place)); z_ngr(Z_R0, current_header); // AND sets CC (result eq/ne 0) // If condition is true we are done and hence we can store 0 in the displaced // header indicating it is a recursive lock and be done. z_brne(slow_case); z_release(); // Membar unnecessary on zarch AND because the above csg does a sync before and after. z_stg(Z_R0/*==0!*/, BasicObjectLock::lock_offset_in_bytes() + BasicLock::displaced_header_offset_in_bytes(), monitor); z_bru(done); // } else { // // Slow path. // InterpreterRuntime::monitorenter(THREAD, monitor); // None of the above fast optimizations worked so we have to get into the // slow case of monitor enter. bind(slow_case); call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), monitor, /*check_for_exceptions=*/false); // } bind(done); } // Unlocks an object. Used in monitorexit bytecode and remove_activation. // // Registers alive // monitor - address of the BasicObjectLock to be used for locking, // which must be initialized with the object to lock. // // Throw IllegalMonitorException if object is not locked by current thread. void InterpreterMacroAssembler::unlock_object(Register monitor, Register object) { if (UseHeavyMonitors) { call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), monitor, /*check_for_exceptions=*/ true); return; } // else { // template code: // // if ((displaced_header = monitor->displaced_header()) == NULL) { // // Recursive unlock. Mark the monitor unlocked by setting the object field to NULL. // monitor->set_obj(NULL); // } else if (Atomic::cmpxchg(displaced_header, obj->mark_addr(), monitor) == monitor) { // // We swapped the unlocked mark in displaced_header into the object's mark word. // monitor->set_obj(NULL); // } else { // // Slow path. // InterpreterRuntime::monitorexit(THREAD, monitor); // } const Register displaced_header = Z_ARG4; const Register current_header = Z_R1; Address obj_entry(monitor, BasicObjectLock::obj_offset_in_bytes()); Label done; if (object == noreg) { // In the template interpreter, we must assure that the object // entry in the monitor is cleared on all paths. Thus we move // loading up to here, and clear the entry afterwards. object = Z_ARG3; // Use Z_ARG3 if caller didn't pass object. z_lg(object, obj_entry); } assert_different_registers(monitor, object, displaced_header, current_header); // if ((displaced_header = monitor->displaced_header()) == NULL) { // // Recursive unlock. Mark the monitor unlocked by setting the object field to NULL. // monitor->set_obj(NULL); clear_mem(obj_entry, sizeof(oop)); if (UseBiasedLocking) { // The object address from the monitor is in object. assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0"); biased_locking_exit(object, displaced_header, done); } // Test first if we are in the fast recursive case. MacroAssembler::load_and_test_long(displaced_header, Address(monitor, BasicObjectLock::lock_offset_in_bytes() + BasicLock::displaced_header_offset_in_bytes())); z_bre(done); // displaced_header == 0 -> goto done // } else if (Atomic::cmpxchg(displaced_header, obj->mark_addr(), monitor) == monitor) { // // We swapped the unlocked mark in displaced_header into the object's mark word. // monitor->set_obj(NULL); // If we still have a lightweight lock, unlock the object and be done. // The markword is expected to be at offset 0. assert(oopDesc::mark_offset_in_bytes() == 0, "unlock_object: review code below"); // We have the displaced header in displaced_header. If the lock is still // lightweight, it will contain the monitor address and we'll store the // displaced header back into the object's mark word. z_lgr(current_header, monitor); z_csg(current_header, displaced_header, 0, object); z_bre(done); // } else { // // Slow path. // InterpreterRuntime::monitorexit(THREAD, monitor); // The lock has been converted into a heavy lock and hence // we need to get into the slow case. z_stg(object, obj_entry); // Restore object entry, has been cleared above. call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), monitor, /*check_for_exceptions=*/false); // } bind(done); } void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, Label& zero_continue) { assert(ProfileInterpreter, "must be profiling interpreter"); load_and_test_long(mdp, Address(Z_fp, _z_ijava_state_neg(mdx))); z_brz(zero_continue); } // Set the method data pointer for the current bcp. void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { assert(ProfileInterpreter, "must be profiling interpreter"); Label set_mdp; Register mdp = Z_ARG4; Register method = Z_ARG5; get_method(method); // Test MDO to avoid the call if it is NULL. load_and_test_long(mdp, method2_(method, method_data)); z_brz(set_mdp); call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), method, Z_bcp); // Z_RET: mdi // Mdo is guaranteed to be non-zero here, we checked for it before the call. assert(method->is_nonvolatile(), "choose nonvolatile reg or reload from frame"); z_lg(mdp, method2_(method, method_data)); // Must reload, mdp is volatile reg. add2reg_with_index(mdp, in_bytes(MethodData::data_offset()), Z_RET, mdp); bind(set_mdp); save_mdp(mdp); } void InterpreterMacroAssembler::verify_method_data_pointer() { assert(ProfileInterpreter, "must be profiling interpreter"); #ifdef ASSERT NearLabel verify_continue; Register bcp_expected = Z_ARG3; Register mdp = Z_ARG4; Register method = Z_ARG5; test_method_data_pointer(mdp, verify_continue); // If mdp is zero, continue get_method(method); // If the mdp is valid, it will point to a DataLayout header which is // consistent with the bcp. The converse is highly probable also. load_sized_value(bcp_expected, Address(mdp, DataLayout::bci_offset()), 2, false /*signed*/); z_ag(bcp_expected, Address(method, Method::const_offset())); load_address(bcp_expected, Address(bcp_expected, ConstMethod::codes_offset())); compareU64_and_branch(bcp_expected, Z_bcp, bcondEqual, verify_continue); call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), method, Z_bcp, mdp); bind(verify_continue); #endif // ASSERT } void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, int constant, Register value) { assert(ProfileInterpreter, "must be profiling interpreter"); z_stg(value, constant, mdp_in); } void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, int constant, Register tmp, bool decrement) { assert_different_registers(mdp_in, tmp); // counter address Address data(mdp_in, constant); const int delta = decrement ? -DataLayout::counter_increment : DataLayout::counter_increment; add2mem_64(Address(mdp_in, constant), delta, tmp); } void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, int flag_byte_constant) { assert(ProfileInterpreter, "must be profiling interpreter"); // Set the flag. z_oi(Address(mdp_in, DataLayout::flags_offset()), flag_byte_constant); } void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, int offset, Register value, Register test_value_out, Label& not_equal_continue) { assert(ProfileInterpreter, "must be profiling interpreter"); if (test_value_out == noreg) { z_cg(value, Address(mdp_in, offset)); z_brne(not_equal_continue); } else { // Put the test value into a register, so caller can use it: z_lg(test_value_out, Address(mdp_in, offset)); compareU64_and_branch(test_value_out, value, bcondNotEqual, not_equal_continue); } } void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, int offset_of_disp) { update_mdp_by_offset(mdp_in, noreg, offset_of_disp); } void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, Register dataidx, int offset_of_disp) { assert(ProfileInterpreter, "must be profiling interpreter"); Address disp_address(mdp_in, dataidx, offset_of_disp); Assembler::z_ag(mdp_in, disp_address); save_mdp(mdp_in); } void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, int constant) { assert(ProfileInterpreter, "must be profiling interpreter"); add2reg(mdp_in, constant); save_mdp(mdp_in); } void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { assert(ProfileInterpreter, "must be profiling interpreter"); assert(return_bci->is_nonvolatile(), "choose nonvolatile reg or save/restore"); call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci); } void InterpreterMacroAssembler::profile_taken_branch(Register mdp, Register bumped_count) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. // Otherwise, assign to mdp. test_method_data_pointer(mdp, profile_continue); // We are taking a branch. Increment the taken count. // We inline increment_mdp_data_at to return bumped_count in a register //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); Address data(mdp, JumpData::taken_offset()); z_lg(bumped_count, data); // 64-bit overflow is very unlikely. Saturation to 32-bit values is // performed when reading the counts. add2reg(bumped_count, DataLayout::counter_increment); z_stg(bumped_count, data); // Store back out // The method data pointer needs to be updated to reflect the new target. update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); bind(profile_continue); } } // Kills Z_R1_scratch. void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); // We are taking a branch. Increment the not taken count. increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()), Z_R1_scratch); // The method data pointer needs to be updated to correspond to // the next bytecode. update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size())); bind(profile_continue); } } // Kills: Z_R1_scratch. void InterpreterMacroAssembler::profile_call(Register mdp) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); // We are making a call. Increment the count. increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); // The method data pointer needs to be updated to reflect the new target. update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); bind(profile_continue); } } void InterpreterMacroAssembler::profile_final_call(Register mdp) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); // We are making a call. Increment the count. increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); // The method data pointer needs to be updated to reflect the new target. update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); bind(profile_continue); } } void InterpreterMacroAssembler::profile_virtual_call(Register receiver, Register mdp, Register reg2, bool receiver_can_be_null) { if (ProfileInterpreter) { NearLabel profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); NearLabel skip_receiver_profile; if (receiver_can_be_null) { NearLabel not_null; compareU64_and_branch(receiver, (intptr_t)0L, bcondNotEqual, not_null); // We are making a call. Increment the count for null receiver. increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); z_bru(skip_receiver_profile); bind(not_null); } // Record the receiver type. record_klass_in_profile(receiver, mdp, reg2, true); bind(skip_receiver_profile); // The method data pointer needs to be updated to reflect the new target. update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); bind(profile_continue); } } // This routine creates a state machine for updating the multi-row // type profile at a virtual call site (or other type-sensitive bytecode). // The machine visits each row (of receiver/count) until the receiver type // is found, or until it runs out of rows. At the same time, it remembers // the location of the first empty row. (An empty row records null for its // receiver, and can be allocated for a newly-observed receiver type.) // Because there are two degrees of freedom in the state, a simple linear // search will not work; it must be a decision tree. Hence this helper // function is recursive, to generate the required tree structured code. // It's the interpreter, so we are trading off code space for speed. // See below for example code. void InterpreterMacroAssembler::record_klass_in_profile_helper( Register receiver, Register mdp, Register reg2, int start_row, Label& done, bool is_virtual_call) { if (TypeProfileWidth == 0) { if (is_virtual_call) { increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); } return; } int last_row = VirtualCallData::row_limit() - 1; assert(start_row <= last_row, "must be work left to do"); // Test this row for both the receiver and for null. // Take any of three different outcomes: // 1. found receiver => increment count and goto done // 2. found null => keep looking for case 1, maybe allocate this cell // 3. found something else => keep looking for cases 1 and 2 // Case 3 is handled by a recursive call. for (int row = start_row; row <= last_row; row++) { NearLabel next_test; bool test_for_null_also = (row == start_row); // See if the receiver is receiver[n]. int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row)); test_mdp_data_at(mdp, recvr_offset, receiver, (test_for_null_also ? reg2 : noreg), next_test); // (Reg2 now contains the receiver from the CallData.) // The receiver is receiver[n]. Increment count[n]. int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row)); increment_mdp_data_at(mdp, count_offset); z_bru(done); bind(next_test); if (test_for_null_also) { Label found_null; // Failed the equality check on receiver[n]... Test for null. z_ltgr(reg2, reg2); if (start_row == last_row) { // The only thing left to do is handle the null case. if (is_virtual_call) { z_brz(found_null); // Receiver did not match any saved receiver and there is no empty row for it. // Increment total counter to indicate polymorphic case. increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); z_bru(done); bind(found_null); } else { z_brnz(done); } break; } // Since null is rare, make it be the branch-taken case. z_brz(found_null); // Put all the "Case 3" tests here. record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done, is_virtual_call); // Found a null. Keep searching for a matching receiver, // but remember that this is an empty (unused) slot. bind(found_null); } } // In the fall-through case, we found no matching receiver, but we // observed the receiver[start_row] is NULL. // Fill in the receiver field and increment the count. int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row)); set_mdp_data_at(mdp, recvr_offset, receiver); int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row)); load_const_optimized(reg2, DataLayout::counter_increment); set_mdp_data_at(mdp, count_offset, reg2); if (start_row > 0) { z_bru(done); } } // Example state machine code for three profile rows: // // main copy of decision tree, rooted at row[1] // if (row[0].rec == rec) { row[0].incr(); goto done; } // if (row[0].rec != NULL) { // // inner copy of decision tree, rooted at row[1] // if (row[1].rec == rec) { row[1].incr(); goto done; } // if (row[1].rec != NULL) { // // degenerate decision tree, rooted at row[2] // if (row[2].rec == rec) { row[2].incr(); goto done; } // if (row[2].rec != NULL) { count.incr(); goto done; } // overflow // row[2].init(rec); goto done; // } else { // // remember row[1] is empty // if (row[2].rec == rec) { row[2].incr(); goto done; } // row[1].init(rec); goto done; // } // } else { // // remember row[0] is empty // if (row[1].rec == rec) { row[1].incr(); goto done; } // if (row[2].rec == rec) { row[2].incr(); goto done; } // row[0].init(rec); goto done; // } // done: void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, Register mdp, Register reg2, bool is_virtual_call) { assert(ProfileInterpreter, "must be profiling"); Label done; record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call); bind (done); } void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) { if (ProfileInterpreter) { NearLabel profile_continue; uint row; // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); // Update the total ret count. increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); for (row = 0; row < RetData::row_limit(); row++) { NearLabel next_test; // See if return_bci is equal to bci[n]: test_mdp_data_at(mdp, in_bytes(RetData::bci_offset(row)), return_bci, noreg, next_test); // Return_bci is equal to bci[n]. Increment the count. increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); // The method data pointer needs to be updated to reflect the new target. update_mdp_by_offset(mdp, in_bytes(RetData::bci_displacement_offset(row))); z_bru(profile_continue); bind(next_test); } update_mdp_for_ret(return_bci); bind(profile_continue); } } void InterpreterMacroAssembler::profile_null_seen(Register mdp) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); // The method data pointer needs to be updated. int mdp_delta = in_bytes(BitData::bit_data_size()); if (TypeProfileCasts) { mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); } update_mdp_by_constant(mdp, mdp_delta); bind(profile_continue); } } void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp, Register tmp) { if (ProfileInterpreter && TypeProfileCasts) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); int count_offset = in_bytes(CounterData::count_offset()); // Back up the address, since we have already bumped the mdp. count_offset -= in_bytes(VirtualCallData::virtual_call_data_size()); // *Decrement* the counter. We expect to see zero or small negatives. increment_mdp_data_at(mdp, count_offset, tmp, true); bind (profile_continue); } } void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); // The method data pointer needs to be updated. int mdp_delta = in_bytes(BitData::bit_data_size()); if (TypeProfileCasts) { mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); // Record the object type. record_klass_in_profile(klass, mdp, reg2, false); } update_mdp_by_constant(mdp, mdp_delta); bind(profile_continue); } } void InterpreterMacroAssembler::profile_switch_default(Register mdp) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); // Update the default case count. increment_mdp_data_at(mdp, in_bytes(MultiBranchData::default_count_offset())); // The method data pointer needs to be updated. update_mdp_by_offset(mdp, in_bytes(MultiBranchData::default_displacement_offset())); bind(profile_continue); } } // Kills: index, scratch1, scratch2. void InterpreterMacroAssembler::profile_switch_case(Register index, Register mdp, Register scratch1, Register scratch2) { if (ProfileInterpreter) { Label profile_continue; assert_different_registers(index, mdp, scratch1, scratch2); // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); // Build the base (index * per_case_size_in_bytes()) + // case_array_offset_in_bytes(). z_sllg(index, index, exact_log2(in_bytes(MultiBranchData::per_case_size()))); add2reg(index, in_bytes(MultiBranchData::case_array_offset())); // Add the calculated base to the mdp -> address of the case' data. Address case_data_addr(mdp, index); Register case_data = scratch1; load_address(case_data, case_data_addr); // Update the case count. increment_mdp_data_at(case_data, in_bytes(MultiBranchData::relative_count_offset()), scratch2); // The method data pointer needs to be updated. update_mdp_by_offset(mdp, index, in_bytes(MultiBranchData::relative_displacement_offset())); bind(profile_continue); } } // kills: R0, R1, flags, loads klass from obj (if not null) void InterpreterMacroAssembler::profile_obj_type(Register obj, Address mdo_addr, Register klass, bool cmp_done) { NearLabel null_seen, init_klass, do_nothing, do_update; // Klass = obj is allowed. const Register tmp = Z_R1; assert_different_registers(obj, mdo_addr.base(), tmp, Z_R0); assert_different_registers(klass, mdo_addr.base(), tmp, Z_R0); z_lg(tmp, mdo_addr); if (cmp_done) { z_brz(null_seen); } else { compareU64_and_branch(obj, (intptr_t)0, Assembler::bcondEqual, null_seen); } verify_oop(obj); load_klass(klass, obj); // Klass seen before, nothing to do (regardless of unknown bit). z_lgr(Z_R0, tmp); assert(Immediate::is_uimm(~TypeEntries::type_klass_mask, 16), "or change following instruction"); z_nill(Z_R0, TypeEntries::type_klass_mask & 0xFFFF); compareU64_and_branch(Z_R0, klass, Assembler::bcondEqual, do_nothing); // Already unknown. Nothing to do anymore. z_tmll(tmp, TypeEntries::type_unknown); z_brc(Assembler::bcondAllOne, do_nothing); z_lgr(Z_R0, tmp); assert(Immediate::is_uimm(~TypeEntries::type_mask, 16), "or change following instruction"); z_nill(Z_R0, TypeEntries::type_mask & 0xFFFF); compareU64_and_branch(Z_R0, (intptr_t)0, Assembler::bcondEqual, init_klass); // Different than before. Cannot keep accurate profile. z_oill(tmp, TypeEntries::type_unknown); z_bru(do_update); bind(init_klass); // Combine klass and null_seen bit (only used if (tmp & type_mask)==0). z_ogr(tmp, klass); z_bru(do_update); bind(null_seen); // Set null_seen if obj is 0. z_oill(tmp, TypeEntries::null_seen); // fallthru: z_bru(do_update); bind(do_update); z_stg(tmp, mdo_addr); bind(do_nothing); } void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { if (!ProfileInterpreter) { return; } assert_different_registers(mdp, callee, tmp); if (MethodData::profile_arguments() || MethodData::profile_return()) { Label profile_continue; test_method_data_pointer(mdp, profile_continue); int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); z_cliy(in_bytes(DataLayout::tag_offset()) - off_to_start, mdp, is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag); z_brne(profile_continue); if (MethodData::profile_arguments()) { NearLabel done; int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); add2reg(mdp, off_to_args); for (int i = 0; i < TypeProfileArgsLimit; i++) { if (i > 0 || MethodData::profile_return()) { // If return value type is profiled we may have no argument to profile. z_lg(tmp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, mdp); add2reg(tmp, -i*TypeStackSlotEntries::per_arg_count()); compare64_and_branch(tmp, TypeStackSlotEntries::per_arg_count(), Assembler::bcondLow, done); } z_lg(tmp, Address(callee, Method::const_offset())); z_lgh(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); // Stack offset o (zero based) from the start of the argument // list. For n arguments translates into offset n - o - 1 from // the end of the argument list. But there is an extra slot at // the top of the stack. So the offset is n - o from Lesp. z_sg(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args)); z_sllg(tmp, tmp, Interpreter::logStackElementSize); Address stack_slot_addr(tmp, Z_esp); z_ltg(tmp, stack_slot_addr); Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args); profile_obj_type(tmp, mdo_arg_addr, tmp, /*ltg did compare to 0*/ true); int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); add2reg(mdp, to_add); off_to_args += to_add; } if (MethodData::profile_return()) { z_lg(tmp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, mdp); add2reg(tmp, -TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); } bind(done); if (MethodData::profile_return()) { // We're right after the type profile for the last // argument. Tmp is the number of cells left in the // CallTypeData/VirtualCallTypeData to reach its end. Non null // if there's a return to profile. assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); z_sllg(tmp, tmp, exact_log2(DataLayout::cell_size)); z_agr(mdp, tmp); } z_stg(mdp, _z_ijava_state_neg(mdx), Z_fp); } else { assert(MethodData::profile_return(), "either profile call args or call ret"); update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); } // Mdp points right after the end of the // CallTypeData/VirtualCallTypeData, right after the cells for the // return value type if there's one. bind(profile_continue); } } void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { assert_different_registers(mdp, ret, tmp); if (ProfileInterpreter && MethodData::profile_return()) { Label profile_continue; test_method_data_pointer(mdp, profile_continue); if (MethodData::profile_return_jsr292_only()) { // If we don't profile all invoke bytecodes we must make sure // it's a bytecode we indeed profile. We can't go back to the // beginning of the ProfileData we intend to update to check its // type because we're right after it and we don't known its // length. NearLabel do_profile; Address bc(Z_bcp); z_lb(tmp, bc); compare32_and_branch(tmp, Bytecodes::_invokedynamic, Assembler::bcondEqual, do_profile); compare32_and_branch(tmp, Bytecodes::_invokehandle, Assembler::bcondEqual, do_profile); get_method(tmp); // Supplement to 8139891: _intrinsic_id exceeded 1-byte size limit. if (Method::intrinsic_id_size_in_bytes() == 1) { z_cli(Method::intrinsic_id_offset_in_bytes(), tmp, vmIntrinsics::_compiledLambdaForm); } else { assert(Method::intrinsic_id_size_in_bytes() == 2, "size error: check Method::_intrinsic_id"); z_lh(tmp, Method::intrinsic_id_offset_in_bytes(), Z_R0, tmp); z_chi(tmp, vmIntrinsics::_compiledLambdaForm); } z_brne(profile_continue); bind(do_profile); } Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size())); profile_obj_type(ret, mdo_ret_addr, tmp); bind(profile_continue); } } void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) { if (ProfileInterpreter && MethodData::profile_parameters()) { Label profile_continue, done; test_method_data_pointer(mdp, profile_continue); // Load the offset of the area within the MDO used for // parameters. If it's negative we're not profiling any parameters. Address parm_di_addr(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())); load_and_test_int2long(tmp1, parm_di_addr); z_brl(profile_continue); // Compute a pointer to the area for parameters from the offset // and move the pointer to the slot for the last // parameters. Collect profiling from last parameter down. // mdo start + parameters offset + array length - 1 // Pointer to the parameter area in the MDO. z_agr(mdp, tmp1); // Offset of the current profile entry to update. const Register entry_offset = tmp1; // entry_offset = array len in number of cells. z_lg(entry_offset, Address(mdp, ArrayData::array_len_offset())); // entry_offset (number of cells) = array len - size of 1 entry add2reg(entry_offset, -TypeStackSlotEntries::per_arg_count()); // entry_offset in bytes z_sllg(entry_offset, entry_offset, exact_log2(DataLayout::cell_size)); Label loop; bind(loop); Address arg_off(mdp, entry_offset, ParametersTypeData::stack_slot_offset(0)); Address arg_type(mdp, entry_offset, ParametersTypeData::type_offset(0)); // Load offset on the stack from the slot for this parameter. z_lg(tmp2, arg_off); z_sllg(tmp2, tmp2, Interpreter::logStackElementSize); z_lcgr(tmp2); // Negate. // Profile the parameter. z_ltg(tmp2, Address(Z_locals, tmp2)); profile_obj_type(tmp2, arg_type, tmp2, /*ltg did compare to 0*/ true); // Go to next parameter. z_aghi(entry_offset, -TypeStackSlotEntries::per_arg_count() * DataLayout::cell_size); z_brnl(loop); bind(profile_continue); } } // Jump if ((*counter_addr += increment) & mask) satisfies the condition. void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, int increment, Address mask, Register scratch, bool preloaded, branch_condition cond, Label *where) { assert_different_registers(counter_addr.base(), scratch); if (preloaded) { add2reg(scratch, increment); reg2mem_opt(scratch, counter_addr, false); } else { if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(increment) && counter_addr.is_RSYform()) { z_alsi(counter_addr.disp20(), counter_addr.base(), increment); mem2reg_signed_opt(scratch, counter_addr); } else { mem2reg_signed_opt(scratch, counter_addr); add2reg(scratch, increment); reg2mem_opt(scratch, counter_addr, false); } } z_n(scratch, mask); if (where) { z_brc(cond, *where); } } // Get MethodCounters object for given method. Lazily allocated if necessary. // method - Ptr to Method object. // Rcounters - Ptr to MethodCounters object associated with Method object. // skip - Exit point if MethodCounters object can't be created (OOM condition). void InterpreterMacroAssembler::get_method_counters(Register Rmethod, Register Rcounters, Label& skip) { assert_different_registers(Rmethod, Rcounters); BLOCK_COMMENT("get MethodCounters object {"); Label has_counters; load_and_test_long(Rcounters, Address(Rmethod, Method::method_counters_offset())); z_brnz(has_counters); call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), Rmethod, false); z_ltgr(Rcounters, Z_RET); // Runtime call returns MethodCounters object. z_brz(skip); // No MethodCounters, out of memory. bind(has_counters); BLOCK_COMMENT("} get MethodCounters object"); } // Increment invocation counter in MethodCounters object. // Return (invocation_counter+backedge_counter) as "result" in RctrSum. // Counter values are all unsigned. void InterpreterMacroAssembler::increment_invocation_counter(Register Rcounters, Register RctrSum) { assert(UseCompiler || LogTouchedMethods, "incrementing must be useful"); assert_different_registers(Rcounters, RctrSum); int increment = InvocationCounter::count_increment; int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() + InvocationCounter::counter_offset()); int be_counter_offset = in_bytes(MethodCounters::backedge_counter_offset() + InvocationCounter::counter_offset()); BLOCK_COMMENT("Increment invocation counter {"); if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(increment)) { // Increment the invocation counter in place, // then add the incremented value to the backedge counter. z_l(RctrSum, be_counter_offset, Rcounters); z_alsi(inv_counter_offset, Rcounters, increment); // Atomic increment @no extra cost! z_nilf(RctrSum, InvocationCounter::count_mask_value); // Mask off state bits. z_al(RctrSum, inv_counter_offset, Z_R0, Rcounters); } else { // This path is optimized for low register consumption // at the cost of somewhat higher operand delays. // It does not need an extra temp register. // Update the invocation counter. z_l(RctrSum, inv_counter_offset, Rcounters); if (RctrSum == Z_R0) { z_ahi(RctrSum, increment); } else { add2reg(RctrSum, increment); } z_st(RctrSum, inv_counter_offset, Rcounters); // Mask off the state bits. z_nilf(RctrSum, InvocationCounter::count_mask_value); // Add the backedge counter to the updated invocation counter to // form the result. z_al(RctrSum, be_counter_offset, Z_R0, Rcounters); } BLOCK_COMMENT("} Increment invocation counter"); // Note that this macro must leave the backedge_count + invocation_count in Rtmp! } // increment backedge counter in MethodCounters object. // return (invocation_counter+backedge_counter) as "result" in RctrSum // counter values are all unsigned! void InterpreterMacroAssembler::increment_backedge_counter(Register Rcounters, Register RctrSum) { assert(UseCompiler, "incrementing must be useful"); assert_different_registers(Rcounters, RctrSum); int increment = InvocationCounter::count_increment; int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() + InvocationCounter::counter_offset()); int be_counter_offset = in_bytes(MethodCounters::backedge_counter_offset() + InvocationCounter::counter_offset()); BLOCK_COMMENT("Increment backedge counter {"); if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(increment)) { // Increment the invocation counter in place, // then add the incremented value to the backedge counter. z_l(RctrSum, inv_counter_offset, Rcounters); z_alsi(be_counter_offset, Rcounters, increment); // Atomic increment @no extra cost! z_nilf(RctrSum, InvocationCounter::count_mask_value); // Mask off state bits. z_al(RctrSum, be_counter_offset, Z_R0, Rcounters); } else { // This path is optimized for low register consumption // at the cost of somewhat higher operand delays. // It does not need an extra temp register. // Update the invocation counter. z_l(RctrSum, be_counter_offset, Rcounters); if (RctrSum == Z_R0) { z_ahi(RctrSum, increment); } else { add2reg(RctrSum, increment); } z_st(RctrSum, be_counter_offset, Rcounters); // Mask off the state bits. z_nilf(RctrSum, InvocationCounter::count_mask_value); // Add the backedge counter to the updated invocation counter to // form the result. z_al(RctrSum, inv_counter_offset, Z_R0, Rcounters); } BLOCK_COMMENT("} Increment backedge counter"); // Note that this macro must leave the backedge_count + invocation_count in Rtmp! } // Add an InterpMonitorElem to stack (see frame_s390.hpp). void InterpreterMacroAssembler::add_monitor_to_stack(bool stack_is_empty, Register Rtemp1, Register Rtemp2, Register Rtemp3) { const Register Rcurr_slot = Rtemp1; const Register Rlimit = Rtemp2; const jint delta = -frame::interpreter_frame_monitor_size() * wordSize; assert((delta & LongAlignmentMask) == 0, "sizeof BasicObjectLock must be even number of doublewords"); assert(2 * wordSize == -delta, "this works only as long as delta == -2*wordSize"); assert(Rcurr_slot != Z_R0, "Register must be usable as base register"); assert_different_registers(Rlimit, Rcurr_slot, Rtemp3); get_monitors(Rlimit); // Adjust stack pointer for additional monitor entry. resize_frame(RegisterOrConstant((intptr_t) delta), Z_fp, false); if (!stack_is_empty) { // Must copy stack contents down. NearLabel next, done; // Rtemp := addr(Tos), Z_esp is pointing below it! add2reg(Rcurr_slot, wordSize, Z_esp); // Nothing to do, if already at monitor area. compareU64_and_branch(Rcurr_slot, Rlimit, bcondNotLow, done); bind(next); // Move one stack slot. mem2reg_opt(Rtemp3, Address(Rcurr_slot)); reg2mem_opt(Rtemp3, Address(Rcurr_slot, delta)); add2reg(Rcurr_slot, wordSize); compareU64_and_branch(Rcurr_slot, Rlimit, bcondLow, next); // Are we done? bind(done); // Done copying stack. } // Adjust expression stack and monitor pointers. add2reg(Z_esp, delta); add2reg(Rlimit, delta); save_monitors(Rlimit); } // Note: Index holds the offset in bytes afterwards. // You can use this to store a new value (with Llocals as the base). void InterpreterMacroAssembler::access_local_int(Register index, Register dst) { z_sllg(index, index, LogBytesPerWord); mem2reg_opt(dst, Address(Z_locals, index), false); } void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) { if (state == atos) { MacroAssembler::verify_oop(reg); } } // Inline assembly for: // // if (thread is in interp_only_mode) { // InterpreterRuntime::post_method_entry(); // } void InterpreterMacroAssembler::notify_method_entry() { // JVMTI // Whenever JVMTI puts a thread in interp_only_mode, method // entry/exit events are sent for that thread to track stack // depth. If it is possible to enter interp_only_mode we add // the code to check if the event should be sent. if (JvmtiExport::can_post_interpreter_events()) { Label jvmti_post_done; MacroAssembler::load_and_test_int(Z_R0, Address(Z_thread, JavaThread::interp_only_mode_offset())); z_bre(jvmti_post_done); call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry), /*check_exceptions=*/false); bind(jvmti_post_done); } } // Inline assembly for: // // if (thread is in interp_only_mode) { // if (!native_method) save result // InterpreterRuntime::post_method_exit(); // if (!native_method) restore result // } // if (DTraceMethodProbes) { // SharedRuntime::dtrace_method_exit(thread, method); // } // // For native methods their result is stored in z_ijava_state.lresult // and z_ijava_state.fresult before coming here. // Java methods have their result stored in the expression stack. // // Notice the dependency to frame::interpreter_frame_result(). void InterpreterMacroAssembler::notify_method_exit(bool native_method, TosState state, NotifyMethodExitMode mode) { // JVMTI // Whenever JVMTI puts a thread in interp_only_mode, method // entry/exit events are sent for that thread to track stack // depth. If it is possible to enter interp_only_mode we add // the code to check if the event should be sent. if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { Label jvmti_post_done; MacroAssembler::load_and_test_int(Z_R0, Address(Z_thread, JavaThread::interp_only_mode_offset())); z_bre(jvmti_post_done); if (!native_method) push(state); // see frame::interpreter_frame_result() call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit), /*check_exceptions=*/false); if (!native_method) pop(state); bind(jvmti_post_done); } #if 0 // Dtrace currently not supported on z/Architecture. { SkipIfEqual skip(this, &DTraceMethodProbes, false); push(state); get_method(c_rarg1); call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), r15_thread, c_rarg1); pop(state); } #endif } void InterpreterMacroAssembler::skip_if_jvmti_mode(Label &Lskip, Register Rscratch) { if (!JvmtiExport::can_post_interpreter_events()) { return; } load_and_test_int(Rscratch, Address(Z_thread, JavaThread::interp_only_mode_offset())); z_brnz(Lskip); } // Pop the topmost TOP_IJAVA_FRAME and set it's sender_sp as new Z_SP. // The return pc is loaded into the register return_pc. // // Registers updated: // return_pc - The return pc of the calling frame. // tmp1, tmp2 - scratch void InterpreterMacroAssembler::pop_interpreter_frame(Register return_pc, Register tmp1, Register tmp2) { // F0 Z_SP -> caller_sp (F1's) // ... // sender_sp (F1's) // ... // F1 Z_fp -> caller_sp (F2's) // return_pc (Continuation after return from F0.) // ... // F2 caller_sp // Remove F0's activation. Restoring Z_SP to sender_sp reverts modifications // (a) by a c2i adapter and (b) by generate_fixed_frame(). // In case (a) the new top frame F1 is an unextended compiled frame. // In case (b) F1 is converted from PARENT_IJAVA_FRAME to TOP_IJAVA_FRAME. // Case (b) seems to be redundant when returning to a interpreted caller, // because then the caller's top_frame_sp is installed as sp (see // TemplateInterpreterGenerator::generate_return_entry_for ()). But // pop_interpreter_frame() is also used in exception handling and there the // frame type of the caller is unknown, therefore top_frame_sp cannot be used, // so it is important that sender_sp is the caller's sp as TOP_IJAVA_FRAME. Register R_f1_sender_sp = tmp1; Register R_f2_sp = tmp2; // Tirst check the for the interpreter frame's magic. asm_assert_ijava_state_magic(R_f2_sp/*tmp*/); z_lg(R_f2_sp, _z_parent_ijava_frame_abi(callers_sp), Z_fp); z_lg(R_f1_sender_sp, _z_ijava_state_neg(sender_sp), Z_fp); if (return_pc->is_valid()) z_lg(return_pc, _z_parent_ijava_frame_abi(return_pc), Z_fp); // Pop F0 by resizing to R_f1_sender_sp and using R_f2_sp as fp. resize_frame_absolute(R_f1_sender_sp, R_f2_sp, false/*load fp*/); #ifdef ASSERT // The return_pc in the new top frame is dead... at least that's my // current understanding; to assert this I overwrite it. load_const_optimized(Z_ARG3, 0xb00b1); z_stg(Z_ARG3, _z_parent_ijava_frame_abi(return_pc), Z_SP); #endif } void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { if (VerifyFPU) { unimplemented("verfiyFPU"); } }