/* * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved. * Copyright 2012, 2015 SAP AG. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "asm/macroAssembler.inline.hpp" #include "compiler/disassembler.hpp" #include "gc/shared/cardTableModRefBS.hpp" #include "gc/shared/collectedHeap.inline.hpp" #include "interpreter/interpreter.hpp" #include "memory/resourceArea.hpp" #include "nativeInst_ppc.hpp" #include "prims/methodHandles.hpp" #include "runtime/biasedLocking.hpp" #include "runtime/icache.hpp" #include "runtime/interfaceSupport.hpp" #include "runtime/objectMonitor.hpp" #include "runtime/os.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/stubRoutines.hpp" #include "utilities/macros.hpp" #if INCLUDE_ALL_GCS #include "gc/g1/g1CollectedHeap.inline.hpp" #include "gc/g1/g1SATBCardTableModRefBS.hpp" #include "gc/g1/heapRegion.hpp" #endif // INCLUDE_ALL_GCS #ifdef PRODUCT #define BLOCK_COMMENT(str) // nothing #else #define BLOCK_COMMENT(str) block_comment(str) #endif #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") #ifdef ASSERT // On RISC, there's no benefit to verifying instruction boundaries. bool AbstractAssembler::pd_check_instruction_mark() { return false; } #endif void MacroAssembler::ld_largeoffset_unchecked(Register d, int si31, Register a, int emit_filler_nop) { assert(Assembler::is_simm(si31, 31) && si31 >= 0, "si31 out of range"); if (Assembler::is_simm(si31, 16)) { ld(d, si31, a); if (emit_filler_nop) nop(); } else { const int hi = MacroAssembler::largeoffset_si16_si16_hi(si31); const int lo = MacroAssembler::largeoffset_si16_si16_lo(si31); addis(d, a, hi); ld(d, lo, d); } } void MacroAssembler::ld_largeoffset(Register d, int si31, Register a, int emit_filler_nop) { assert_different_registers(d, a); ld_largeoffset_unchecked(d, si31, a, emit_filler_nop); } void MacroAssembler::load_sized_value(Register dst, RegisterOrConstant offs, Register base, size_t size_in_bytes, bool is_signed) { switch (size_in_bytes) { case 8: ld(dst, offs, base); break; case 4: is_signed ? lwa(dst, offs, base) : lwz(dst, offs, base); break; case 2: is_signed ? lha(dst, offs, base) : lhz(dst, offs, base); break; case 1: lbz(dst, offs, base); if (is_signed) extsb(dst, dst); break; // lba doesn't exist :( default: ShouldNotReachHere(); } } void MacroAssembler::store_sized_value(Register dst, RegisterOrConstant offs, Register base, size_t size_in_bytes) { switch (size_in_bytes) { case 8: std(dst, offs, base); break; case 4: stw(dst, offs, base); break; case 2: sth(dst, offs, base); break; case 1: stb(dst, offs, base); break; default: ShouldNotReachHere(); } } void MacroAssembler::align(int modulus, int max, int rem) { int padding = (rem + modulus - (offset() % modulus)) % modulus; if (padding > max) return; for (int c = (padding >> 2); c > 0; --c) { nop(); } } // Issue instructions that calculate given TOC from global TOC. void MacroAssembler::calculate_address_from_global_toc(Register dst, address addr, bool hi16, bool lo16, bool add_relocation, bool emit_dummy_addr) { int offset = -1; if (emit_dummy_addr) { offset = -128; // dummy address } else if (addr != (address)(intptr_t)-1) { offset = MacroAssembler::offset_to_global_toc(addr); } if (hi16) { addis(dst, R29_TOC, MacroAssembler::largeoffset_si16_si16_hi(offset)); } if (lo16) { if (add_relocation) { // Relocate at the addi to avoid confusion with a load from the method's TOC. relocate(internal_word_Relocation::spec(addr)); } addi(dst, dst, MacroAssembler::largeoffset_si16_si16_lo(offset)); } } int MacroAssembler::patch_calculate_address_from_global_toc_at(address a, address bound, address addr) { const int offset = MacroAssembler::offset_to_global_toc(addr); const address inst2_addr = a; const int inst2 = *(int *)inst2_addr; // The relocation points to the second instruction, the addi, // and the addi reads and writes the same register dst. const int dst = inv_rt_field(inst2); assert(is_addi(inst2) && inv_ra_field(inst2) == dst, "must be addi reading and writing dst"); // Now, find the preceding addis which writes to dst. int inst1 = 0; address inst1_addr = inst2_addr - BytesPerInstWord; while (inst1_addr >= bound) { inst1 = *(int *) inst1_addr; if (is_addis(inst1) && inv_rt_field(inst1) == dst) { // Stop, found the addis which writes dst. break; } inst1_addr -= BytesPerInstWord; } assert(is_addis(inst1) && inv_ra_field(inst1) == 29 /* R29 */, "source must be global TOC"); set_imm((int *)inst1_addr, MacroAssembler::largeoffset_si16_si16_hi(offset)); set_imm((int *)inst2_addr, MacroAssembler::largeoffset_si16_si16_lo(offset)); return (int)((intptr_t)addr - (intptr_t)inst1_addr); } address MacroAssembler::get_address_of_calculate_address_from_global_toc_at(address a, address bound) { const address inst2_addr = a; const int inst2 = *(int *)inst2_addr; // The relocation points to the second instruction, the addi, // and the addi reads and writes the same register dst. const int dst = inv_rt_field(inst2); assert(is_addi(inst2) && inv_ra_field(inst2) == dst, "must be addi reading and writing dst"); // Now, find the preceding addis which writes to dst. int inst1 = 0; address inst1_addr = inst2_addr - BytesPerInstWord; while (inst1_addr >= bound) { inst1 = *(int *) inst1_addr; if (is_addis(inst1) && inv_rt_field(inst1) == dst) { // stop, found the addis which writes dst break; } inst1_addr -= BytesPerInstWord; } assert(is_addis(inst1) && inv_ra_field(inst1) == 29 /* R29 */, "source must be global TOC"); int offset = (get_imm(inst1_addr, 0) << 16) + get_imm(inst2_addr, 0); // -1 is a special case if (offset == -1) { return (address)(intptr_t)-1; } else { return global_toc() + offset; } } #ifdef _LP64 // Patch compressed oops or klass constants. // Assembler sequence is // 1) compressed oops: // lis rx = const.hi // ori rx = rx | const.lo // 2) compressed klass: // lis rx = const.hi // clrldi rx = rx & 0xFFFFffff // clearMS32b, optional // ori rx = rx | const.lo // Clrldi will be passed by. int MacroAssembler::patch_set_narrow_oop(address a, address bound, narrowOop data) { assert(UseCompressedOops, "Should only patch compressed oops"); const address inst2_addr = a; const int inst2 = *(int *)inst2_addr; // The relocation points to the second instruction, the ori, // and the ori reads and writes the same register dst. const int dst = inv_rta_field(inst2); assert(is_ori(inst2) && inv_rs_field(inst2) == dst, "must be ori reading and writing dst"); // Now, find the preceding addis which writes to dst. int inst1 = 0; address inst1_addr = inst2_addr - BytesPerInstWord; bool inst1_found = false; while (inst1_addr >= bound) { inst1 = *(int *)inst1_addr; if (is_lis(inst1) && inv_rs_field(inst1) == dst) { inst1_found = true; break; } inst1_addr -= BytesPerInstWord; } assert(inst1_found, "inst is not lis"); int xc = (data >> 16) & 0xffff; int xd = (data >> 0) & 0xffff; set_imm((int *)inst1_addr, (short)(xc)); // see enc_load_con_narrow_hi/_lo set_imm((int *)inst2_addr, (xd)); // unsigned int return (int)((intptr_t)inst2_addr - (intptr_t)inst1_addr); } // Get compressed oop or klass constant. narrowOop MacroAssembler::get_narrow_oop(address a, address bound) { assert(UseCompressedOops, "Should only patch compressed oops"); const address inst2_addr = a; const int inst2 = *(int *)inst2_addr; // The relocation points to the second instruction, the ori, // and the ori reads and writes the same register dst. const int dst = inv_rta_field(inst2); assert(is_ori(inst2) && inv_rs_field(inst2) == dst, "must be ori reading and writing dst"); // Now, find the preceding lis which writes to dst. int inst1 = 0; address inst1_addr = inst2_addr - BytesPerInstWord; bool inst1_found = false; while (inst1_addr >= bound) { inst1 = *(int *) inst1_addr; if (is_lis(inst1) && inv_rs_field(inst1) == dst) { inst1_found = true; break;} inst1_addr -= BytesPerInstWord; } assert(inst1_found, "inst is not lis"); uint xl = ((unsigned int) (get_imm(inst2_addr, 0) & 0xffff)); uint xh = (((get_imm(inst1_addr, 0)) & 0xffff) << 16); return (int) (xl | xh); } #endif // _LP64 // Returns true if successful. bool MacroAssembler::load_const_from_method_toc(Register dst, AddressLiteral& a, Register toc, bool fixed_size) { int toc_offset = 0; // Use RelocationHolder::none for the constant pool entry, otherwise // we will end up with a failing NativeCall::verify(x) where x is // the address of the constant pool entry. // FIXME: We should insert relocation information for oops at the constant // pool entries instead of inserting it at the loads; patching of a constant // pool entry should be less expensive. address const_address = address_constant((address)a.value(), RelocationHolder::none); if (const_address == NULL) { return false; } // allocation failure // Relocate at the pc of the load. relocate(a.rspec()); toc_offset = (int)(const_address - code()->consts()->start()); ld_largeoffset_unchecked(dst, toc_offset, toc, fixed_size); return true; } bool MacroAssembler::is_load_const_from_method_toc_at(address a) { const address inst1_addr = a; const int inst1 = *(int *)inst1_addr; // The relocation points to the ld or the addis. return (is_ld(inst1)) || (is_addis(inst1) && inv_ra_field(inst1) != 0); } int MacroAssembler::get_offset_of_load_const_from_method_toc_at(address a) { assert(is_load_const_from_method_toc_at(a), "must be load_const_from_method_toc"); const address inst1_addr = a; const int inst1 = *(int *)inst1_addr; if (is_ld(inst1)) { return inv_d1_field(inst1); } else if (is_addis(inst1)) { const int dst = inv_rt_field(inst1); // Now, find the succeeding ld which reads and writes to dst. address inst2_addr = inst1_addr + BytesPerInstWord; int inst2 = 0; while (true) { inst2 = *(int *) inst2_addr; if (is_ld(inst2) && inv_ra_field(inst2) == dst && inv_rt_field(inst2) == dst) { // Stop, found the ld which reads and writes dst. break; } inst2_addr += BytesPerInstWord; } return (inv_d1_field(inst1) << 16) + inv_d1_field(inst2); } ShouldNotReachHere(); return 0; } // Get the constant from a `load_const' sequence. long MacroAssembler::get_const(address a) { assert(is_load_const_at(a), "not a load of a constant"); const int *p = (const int*) a; unsigned long x = (((unsigned long) (get_imm(a,0) & 0xffff)) << 48); if (is_ori(*(p+1))) { x |= (((unsigned long) (get_imm(a,1) & 0xffff)) << 32); x |= (((unsigned long) (get_imm(a,3) & 0xffff)) << 16); x |= (((unsigned long) (get_imm(a,4) & 0xffff))); } else if (is_lis(*(p+1))) { x |= (((unsigned long) (get_imm(a,2) & 0xffff)) << 32); x |= (((unsigned long) (get_imm(a,1) & 0xffff)) << 16); x |= (((unsigned long) (get_imm(a,3) & 0xffff))); } else { ShouldNotReachHere(); return (long) 0; } return (long) x; } // Patch the 64 bit constant of a `load_const' sequence. This is a low // level procedure. It neither flushes the instruction cache nor is it // mt safe. void MacroAssembler::patch_const(address a, long x) { assert(is_load_const_at(a), "not a load of a constant"); int *p = (int*) a; if (is_ori(*(p+1))) { set_imm(0 + p, (x >> 48) & 0xffff); set_imm(1 + p, (x >> 32) & 0xffff); set_imm(3 + p, (x >> 16) & 0xffff); set_imm(4 + p, x & 0xffff); } else if (is_lis(*(p+1))) { set_imm(0 + p, (x >> 48) & 0xffff); set_imm(2 + p, (x >> 32) & 0xffff); set_imm(1 + p, (x >> 16) & 0xffff); set_imm(3 + p, x & 0xffff); } else { ShouldNotReachHere(); } } AddressLiteral MacroAssembler::allocate_metadata_address(Metadata* obj) { assert(oop_recorder() != NULL, "this assembler needs a Recorder"); int index = oop_recorder()->allocate_metadata_index(obj); RelocationHolder rspec = metadata_Relocation::spec(index); return AddressLiteral((address)obj, rspec); } AddressLiteral MacroAssembler::constant_metadata_address(Metadata* obj) { assert(oop_recorder() != NULL, "this assembler needs a Recorder"); int index = oop_recorder()->find_index(obj); RelocationHolder rspec = metadata_Relocation::spec(index); return AddressLiteral((address)obj, rspec); } AddressLiteral MacroAssembler::allocate_oop_address(jobject obj) { assert(oop_recorder() != NULL, "this assembler needs an OopRecorder"); int oop_index = oop_recorder()->allocate_oop_index(obj); return AddressLiteral(address(obj), oop_Relocation::spec(oop_index)); } AddressLiteral MacroAssembler::constant_oop_address(jobject obj) { assert(oop_recorder() != NULL, "this assembler needs an OopRecorder"); int oop_index = oop_recorder()->find_index(obj); return AddressLiteral(address(obj), oop_Relocation::spec(oop_index)); } RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr, Register tmp, int offset) { intptr_t value = *delayed_value_addr; if (value != 0) { return RegisterOrConstant(value + offset); } // Load indirectly to solve generation ordering problem. // static address, no relocation int simm16_offset = load_const_optimized(tmp, delayed_value_addr, noreg, true); ld(tmp, simm16_offset, tmp); // must be aligned ((xa & 3) == 0) if (offset != 0) { addi(tmp, tmp, offset); } return RegisterOrConstant(tmp); } #ifndef PRODUCT void MacroAssembler::pd_print_patched_instruction(address branch) { Unimplemented(); // TODO: PPC port } #endif // ndef PRODUCT // Conditional far branch for destinations encodable in 24+2 bits. void MacroAssembler::bc_far(int boint, int biint, Label& dest, int optimize) { // If requested by flag optimize, relocate the bc_far as a // runtime_call and prepare for optimizing it when the code gets // relocated. if (optimize == bc_far_optimize_on_relocate) { relocate(relocInfo::runtime_call_type); } // variant 2: // // b!cxx SKIP // bxx DEST // SKIP: // const int opposite_boint = add_bhint_to_boint(opposite_bhint(inv_boint_bhint(boint)), opposite_bcond(inv_boint_bcond(boint))); // We emit two branches. // First, a conditional branch which jumps around the far branch. const address not_taken_pc = pc() + 2 * BytesPerInstWord; const address bc_pc = pc(); bc(opposite_boint, biint, not_taken_pc); const int bc_instr = *(int*)bc_pc; assert(not_taken_pc == (address)inv_bd_field(bc_instr, (intptr_t)bc_pc), "postcondition"); assert(opposite_boint == inv_bo_field(bc_instr), "postcondition"); assert(boint == add_bhint_to_boint(opposite_bhint(inv_boint_bhint(inv_bo_field(bc_instr))), opposite_bcond(inv_boint_bcond(inv_bo_field(bc_instr)))), "postcondition"); assert(biint == inv_bi_field(bc_instr), "postcondition"); // Second, an unconditional far branch which jumps to dest. // Note: target(dest) remembers the current pc (see CodeSection::target) // and returns the current pc if the label is not bound yet; when // the label gets bound, the unconditional far branch will be patched. const address target_pc = target(dest); const address b_pc = pc(); b(target_pc); assert(not_taken_pc == pc(), "postcondition"); assert(dest.is_bound() || target_pc == b_pc, "postcondition"); } // 1 or 2 instructions void MacroAssembler::bc_far_optimized(int boint, int biint, Label& dest) { if (dest.is_bound() && is_within_range_of_bcxx(target(dest), pc())) { bc(boint, biint, dest); } else { bc_far(boint, biint, dest, MacroAssembler::bc_far_optimize_on_relocate); } } bool MacroAssembler::is_bc_far_at(address instruction_addr) { return is_bc_far_variant1_at(instruction_addr) || is_bc_far_variant2_at(instruction_addr) || is_bc_far_variant3_at(instruction_addr); } address MacroAssembler::get_dest_of_bc_far_at(address instruction_addr) { if (is_bc_far_variant1_at(instruction_addr)) { const address instruction_1_addr = instruction_addr; const int instruction_1 = *(int*)instruction_1_addr; return (address)inv_bd_field(instruction_1, (intptr_t)instruction_1_addr); } else if (is_bc_far_variant2_at(instruction_addr)) { const address instruction_2_addr = instruction_addr + 4; return bxx_destination(instruction_2_addr); } else if (is_bc_far_variant3_at(instruction_addr)) { return instruction_addr + 8; } // variant 4 ??? ShouldNotReachHere(); return NULL; } void MacroAssembler::set_dest_of_bc_far_at(address instruction_addr, address dest) { if (is_bc_far_variant3_at(instruction_addr)) { // variant 3, far cond branch to the next instruction, already patched to nops: // // nop // endgroup // SKIP/DEST: // return; } // first, extract boint and biint from the current branch int boint = 0; int biint = 0; ResourceMark rm; const int code_size = 2 * BytesPerInstWord; CodeBuffer buf(instruction_addr, code_size); MacroAssembler masm(&buf); if (is_bc_far_variant2_at(instruction_addr) && dest == instruction_addr + 8) { // Far branch to next instruction: Optimize it by patching nops (produce variant 3). masm.nop(); masm.endgroup(); } else { if (is_bc_far_variant1_at(instruction_addr)) { // variant 1, the 1st instruction contains the destination address: // // bcxx DEST // nop // const int instruction_1 = *(int*)(instruction_addr); boint = inv_bo_field(instruction_1); biint = inv_bi_field(instruction_1); } else if (is_bc_far_variant2_at(instruction_addr)) { // variant 2, the 2nd instruction contains the destination address: // // b!cxx SKIP // bxx DEST // SKIP: // const int instruction_1 = *(int*)(instruction_addr); boint = add_bhint_to_boint(opposite_bhint(inv_boint_bhint(inv_bo_field(instruction_1))), opposite_bcond(inv_boint_bcond(inv_bo_field(instruction_1)))); biint = inv_bi_field(instruction_1); } else { // variant 4??? ShouldNotReachHere(); } // second, set the new branch destination and optimize the code if (dest != instruction_addr + 4 && // the bc_far is still unbound! masm.is_within_range_of_bcxx(dest, instruction_addr)) { // variant 1: // // bcxx DEST // nop // masm.bc(boint, biint, dest); masm.nop(); } else { // variant 2: // // b!cxx SKIP // bxx DEST // SKIP: // const int opposite_boint = add_bhint_to_boint(opposite_bhint(inv_boint_bhint(boint)), opposite_bcond(inv_boint_bcond(boint))); const address not_taken_pc = masm.pc() + 2 * BytesPerInstWord; masm.bc(opposite_boint, biint, not_taken_pc); masm.b(dest); } } ICache::ppc64_flush_icache_bytes(instruction_addr, code_size); } // Emit a NOT mt-safe patchable 64 bit absolute call/jump. void MacroAssembler::bxx64_patchable(address dest, relocInfo::relocType rt, bool link) { // get current pc uint64_t start_pc = (uint64_t) pc(); const address pc_of_bl = (address) (start_pc + (6*BytesPerInstWord)); // bl is last const address pc_of_b = (address) (start_pc + (0*BytesPerInstWord)); // b is first // relocate here if (rt != relocInfo::none) { relocate(rt); } if ( ReoptimizeCallSequences && (( link && is_within_range_of_b(dest, pc_of_bl)) || (!link && is_within_range_of_b(dest, pc_of_b)))) { // variant 2: // Emit an optimized, pc-relative call/jump. if (link) { // some padding nop(); nop(); nop(); nop(); nop(); nop(); // do the call assert(pc() == pc_of_bl, "just checking"); bl(dest, relocInfo::none); } else { // do the jump assert(pc() == pc_of_b, "just checking"); b(dest, relocInfo::none); // some padding nop(); nop(); nop(); nop(); nop(); nop(); } // Assert that we can identify the emitted call/jump. assert(is_bxx64_patchable_variant2_at((address)start_pc, link), "can't identify emitted call"); } else { // variant 1: mr(R0, R11); // spill R11 -> R0. // Load the destination address into CTR, // calculate destination relative to global toc. calculate_address_from_global_toc(R11, dest, true, true, false); mtctr(R11); mr(R11, R0); // spill R11 <- R0. nop(); // do the call/jump if (link) { bctrl(); } else{ bctr(); } // Assert that we can identify the emitted call/jump. assert(is_bxx64_patchable_variant1b_at((address)start_pc, link), "can't identify emitted call"); } // Assert that we can identify the emitted call/jump. assert(is_bxx64_patchable_at((address)start_pc, link), "can't identify emitted call"); assert(get_dest_of_bxx64_patchable_at((address)start_pc, link) == dest, "wrong encoding of dest address"); } // Identify a bxx64_patchable instruction. bool MacroAssembler::is_bxx64_patchable_at(address instruction_addr, bool link) { return is_bxx64_patchable_variant1b_at(instruction_addr, link) //|| is_bxx64_patchable_variant1_at(instruction_addr, link) || is_bxx64_patchable_variant2_at(instruction_addr, link); } // Does the call64_patchable instruction use a pc-relative encoding of // the call destination? bool MacroAssembler::is_bxx64_patchable_pcrelative_at(address instruction_addr, bool link) { // variant 2 is pc-relative return is_bxx64_patchable_variant2_at(instruction_addr, link); } // Identify variant 1. bool MacroAssembler::is_bxx64_patchable_variant1_at(address instruction_addr, bool link) { unsigned int* instr = (unsigned int*) instruction_addr; return (link ? is_bctrl(instr[6]) : is_bctr(instr[6])) // bctr[l] && is_mtctr(instr[5]) // mtctr && is_load_const_at(instruction_addr); } // Identify variant 1b: load destination relative to global toc. bool MacroAssembler::is_bxx64_patchable_variant1b_at(address instruction_addr, bool link) { unsigned int* instr = (unsigned int*) instruction_addr; return (link ? is_bctrl(instr[6]) : is_bctr(instr[6])) // bctr[l] && is_mtctr(instr[3]) // mtctr && is_calculate_address_from_global_toc_at(instruction_addr + 2*BytesPerInstWord, instruction_addr); } // Identify variant 2. bool MacroAssembler::is_bxx64_patchable_variant2_at(address instruction_addr, bool link) { unsigned int* instr = (unsigned int*) instruction_addr; if (link) { return is_bl (instr[6]) // bl dest is last && is_nop(instr[0]) // nop && is_nop(instr[1]) // nop && is_nop(instr[2]) // nop && is_nop(instr[3]) // nop && is_nop(instr[4]) // nop && is_nop(instr[5]); // nop } else { return is_b (instr[0]) // b dest is first && is_nop(instr[1]) // nop && is_nop(instr[2]) // nop && is_nop(instr[3]) // nop && is_nop(instr[4]) // nop && is_nop(instr[5]) // nop && is_nop(instr[6]); // nop } } // Set dest address of a bxx64_patchable instruction. void MacroAssembler::set_dest_of_bxx64_patchable_at(address instruction_addr, address dest, bool link) { ResourceMark rm; int code_size = MacroAssembler::bxx64_patchable_size; CodeBuffer buf(instruction_addr, code_size); MacroAssembler masm(&buf); masm.bxx64_patchable(dest, relocInfo::none, link); ICache::ppc64_flush_icache_bytes(instruction_addr, code_size); } // Get dest address of a bxx64_patchable instruction. address MacroAssembler::get_dest_of_bxx64_patchable_at(address instruction_addr, bool link) { if (is_bxx64_patchable_variant1_at(instruction_addr, link)) { return (address) (unsigned long) get_const(instruction_addr); } else if (is_bxx64_patchable_variant2_at(instruction_addr, link)) { unsigned int* instr = (unsigned int*) instruction_addr; if (link) { const int instr_idx = 6; // bl is last int branchoffset = branch_destination(instr[instr_idx], 0); return instruction_addr + branchoffset + instr_idx*BytesPerInstWord; } else { const int instr_idx = 0; // b is first int branchoffset = branch_destination(instr[instr_idx], 0); return instruction_addr + branchoffset + instr_idx*BytesPerInstWord; } // Load dest relative to global toc. } else if (is_bxx64_patchable_variant1b_at(instruction_addr, link)) { return get_address_of_calculate_address_from_global_toc_at(instruction_addr + 2*BytesPerInstWord, instruction_addr); } else { ShouldNotReachHere(); return NULL; } } // Uses ordering which corresponds to ABI: // _savegpr0_14: std r14,-144(r1) // _savegpr0_15: std r15,-136(r1) // _savegpr0_16: std r16,-128(r1) void MacroAssembler::save_nonvolatile_gprs(Register dst, int offset) { std(R14, offset, dst); offset += 8; std(R15, offset, dst); offset += 8; std(R16, offset, dst); offset += 8; std(R17, offset, dst); offset += 8; std(R18, offset, dst); offset += 8; std(R19, offset, dst); offset += 8; std(R20, offset, dst); offset += 8; std(R21, offset, dst); offset += 8; std(R22, offset, dst); offset += 8; std(R23, offset, dst); offset += 8; std(R24, offset, dst); offset += 8; std(R25, offset, dst); offset += 8; std(R26, offset, dst); offset += 8; std(R27, offset, dst); offset += 8; std(R28, offset, dst); offset += 8; std(R29, offset, dst); offset += 8; std(R30, offset, dst); offset += 8; std(R31, offset, dst); offset += 8; stfd(F14, offset, dst); offset += 8; stfd(F15, offset, dst); offset += 8; stfd(F16, offset, dst); offset += 8; stfd(F17, offset, dst); offset += 8; stfd(F18, offset, dst); offset += 8; stfd(F19, offset, dst); offset += 8; stfd(F20, offset, dst); offset += 8; stfd(F21, offset, dst); offset += 8; stfd(F22, offset, dst); offset += 8; stfd(F23, offset, dst); offset += 8; stfd(F24, offset, dst); offset += 8; stfd(F25, offset, dst); offset += 8; stfd(F26, offset, dst); offset += 8; stfd(F27, offset, dst); offset += 8; stfd(F28, offset, dst); offset += 8; stfd(F29, offset, dst); offset += 8; stfd(F30, offset, dst); offset += 8; stfd(F31, offset, dst); } // Uses ordering which corresponds to ABI: // _restgpr0_14: ld r14,-144(r1) // _restgpr0_15: ld r15,-136(r1) // _restgpr0_16: ld r16,-128(r1) void MacroAssembler::restore_nonvolatile_gprs(Register src, int offset) { ld(R14, offset, src); offset += 8; ld(R15, offset, src); offset += 8; ld(R16, offset, src); offset += 8; ld(R17, offset, src); offset += 8; ld(R18, offset, src); offset += 8; ld(R19, offset, src); offset += 8; ld(R20, offset, src); offset += 8; ld(R21, offset, src); offset += 8; ld(R22, offset, src); offset += 8; ld(R23, offset, src); offset += 8; ld(R24, offset, src); offset += 8; ld(R25, offset, src); offset += 8; ld(R26, offset, src); offset += 8; ld(R27, offset, src); offset += 8; ld(R28, offset, src); offset += 8; ld(R29, offset, src); offset += 8; ld(R30, offset, src); offset += 8; ld(R31, offset, src); offset += 8; // FP registers lfd(F14, offset, src); offset += 8; lfd(F15, offset, src); offset += 8; lfd(F16, offset, src); offset += 8; lfd(F17, offset, src); offset += 8; lfd(F18, offset, src); offset += 8; lfd(F19, offset, src); offset += 8; lfd(F20, offset, src); offset += 8; lfd(F21, offset, src); offset += 8; lfd(F22, offset, src); offset += 8; lfd(F23, offset, src); offset += 8; lfd(F24, offset, src); offset += 8; lfd(F25, offset, src); offset += 8; lfd(F26, offset, src); offset += 8; lfd(F27, offset, src); offset += 8; lfd(F28, offset, src); offset += 8; lfd(F29, offset, src); offset += 8; lfd(F30, offset, src); offset += 8; lfd(F31, offset, src); } // For verify_oops. void MacroAssembler::save_volatile_gprs(Register dst, int offset) { std(R2, offset, dst); offset += 8; std(R3, offset, dst); offset += 8; std(R4, offset, dst); offset += 8; std(R5, offset, dst); offset += 8; std(R6, offset, dst); offset += 8; std(R7, offset, dst); offset += 8; std(R8, offset, dst); offset += 8; std(R9, offset, dst); offset += 8; std(R10, offset, dst); offset += 8; std(R11, offset, dst); offset += 8; std(R12, offset, dst); offset += 8; stfd(F0, offset, dst); offset += 8; stfd(F1, offset, dst); offset += 8; stfd(F2, offset, dst); offset += 8; stfd(F3, offset, dst); offset += 8; stfd(F4, offset, dst); offset += 8; stfd(F5, offset, dst); offset += 8; stfd(F6, offset, dst); offset += 8; stfd(F7, offset, dst); offset += 8; stfd(F8, offset, dst); offset += 8; stfd(F9, offset, dst); offset += 8; stfd(F10, offset, dst); offset += 8; stfd(F11, offset, dst); offset += 8; stfd(F12, offset, dst); offset += 8; stfd(F13, offset, dst); } // For verify_oops. void MacroAssembler::restore_volatile_gprs(Register src, int offset) { ld(R2, offset, src); offset += 8; ld(R3, offset, src); offset += 8; ld(R4, offset, src); offset += 8; ld(R5, offset, src); offset += 8; ld(R6, offset, src); offset += 8; ld(R7, offset, src); offset += 8; ld(R8, offset, src); offset += 8; ld(R9, offset, src); offset += 8; ld(R10, offset, src); offset += 8; ld(R11, offset, src); offset += 8; ld(R12, offset, src); offset += 8; lfd(F0, offset, src); offset += 8; lfd(F1, offset, src); offset += 8; lfd(F2, offset, src); offset += 8; lfd(F3, offset, src); offset += 8; lfd(F4, offset, src); offset += 8; lfd(F5, offset, src); offset += 8; lfd(F6, offset, src); offset += 8; lfd(F7, offset, src); offset += 8; lfd(F8, offset, src); offset += 8; lfd(F9, offset, src); offset += 8; lfd(F10, offset, src); offset += 8; lfd(F11, offset, src); offset += 8; lfd(F12, offset, src); offset += 8; lfd(F13, offset, src); } void MacroAssembler::save_LR_CR(Register tmp) { mfcr(tmp); std(tmp, _abi(cr), R1_SP); mflr(tmp); std(tmp, _abi(lr), R1_SP); // Tmp must contain lr on exit! (see return_addr and prolog in ppc64.ad) } void MacroAssembler::restore_LR_CR(Register tmp) { assert(tmp != R1_SP, "must be distinct"); ld(tmp, _abi(lr), R1_SP); mtlr(tmp); ld(tmp, _abi(cr), R1_SP); mtcr(tmp); } address MacroAssembler::get_PC_trash_LR(Register result) { Label L; bl(L); bind(L); address lr_pc = pc(); mflr(result); return lr_pc; } void MacroAssembler::resize_frame(Register offset, Register tmp) { #ifdef ASSERT assert_different_registers(offset, tmp, R1_SP); andi_(tmp, offset, frame::alignment_in_bytes-1); asm_assert_eq("resize_frame: unaligned", 0x204); #endif // tmp <- *(SP) ld(tmp, _abi(callers_sp), R1_SP); // addr <- SP + offset; // *(addr) <- tmp; // SP <- addr stdux(tmp, R1_SP, offset); } void MacroAssembler::resize_frame(int offset, Register tmp) { assert(is_simm(offset, 16), "too big an offset"); assert_different_registers(tmp, R1_SP); assert((offset & (frame::alignment_in_bytes-1))==0, "resize_frame: unaligned"); // tmp <- *(SP) ld(tmp, _abi(callers_sp), R1_SP); // addr <- SP + offset; // *(addr) <- tmp; // SP <- addr stdu(tmp, offset, R1_SP); } void MacroAssembler::resize_frame_absolute(Register addr, Register tmp1, Register tmp2) { // (addr == tmp1) || (addr == tmp2) is allowed here! assert(tmp1 != tmp2, "must be distinct"); // compute offset w.r.t. current stack pointer // tmp_1 <- addr - SP (!) subf(tmp1, R1_SP, addr); // atomically update SP keeping back link. resize_frame(tmp1/* offset */, tmp2/* tmp */); } void MacroAssembler::push_frame(Register bytes, Register tmp) { #ifdef ASSERT assert(bytes != R0, "r0 not allowed here"); andi_(R0, bytes, frame::alignment_in_bytes-1); asm_assert_eq("push_frame(Reg, Reg): unaligned", 0x203); #endif neg(tmp, bytes); stdux(R1_SP, R1_SP, tmp); } // Push a frame of size `bytes'. void MacroAssembler::push_frame(unsigned int bytes, Register tmp) { long offset = align_addr(bytes, frame::alignment_in_bytes); if (is_simm(-offset, 16)) { stdu(R1_SP, -offset, R1_SP); } else { load_const_optimized(tmp, -offset); stdux(R1_SP, R1_SP, tmp); } } // Push a frame of size `bytes' plus abi_reg_args on top. void MacroAssembler::push_frame_reg_args(unsigned int bytes, Register tmp) { push_frame(bytes + frame::abi_reg_args_size, tmp); } // Setup up a new C frame with a spill area for non-volatile GPRs and // additional space for local variables. void MacroAssembler::push_frame_reg_args_nonvolatiles(unsigned int bytes, Register tmp) { push_frame(bytes + frame::abi_reg_args_size + frame::spill_nonvolatiles_size, tmp); } // Pop current C frame. void MacroAssembler::pop_frame() { ld(R1_SP, _abi(callers_sp), R1_SP); } #if defined(ABI_ELFv2) address MacroAssembler::branch_to(Register r_function_entry, bool and_link) { // TODO(asmundak): make sure the caller uses R12 as function descriptor // most of the times. if (R12 != r_function_entry) { mr(R12, r_function_entry); } mtctr(R12); // Do a call or a branch. if (and_link) { bctrl(); } else { bctr(); } _last_calls_return_pc = pc(); return _last_calls_return_pc; } // Call a C function via a function descriptor and use full C // calling conventions. Updates and returns _last_calls_return_pc. address MacroAssembler::call_c(Register r_function_entry) { return branch_to(r_function_entry, /*and_link=*/true); } // For tail calls: only branch, don't link, so callee returns to caller of this function. address MacroAssembler::call_c_and_return_to_caller(Register r_function_entry) { return branch_to(r_function_entry, /*and_link=*/false); } address MacroAssembler::call_c(address function_entry, relocInfo::relocType rt) { load_const(R12, function_entry, R0); return branch_to(R12, /*and_link=*/true); } #else // Generic version of a call to C function via a function descriptor // with variable support for C calling conventions (TOC, ENV, etc.). // Updates and returns _last_calls_return_pc. address MacroAssembler::branch_to(Register function_descriptor, bool and_link, bool save_toc_before_call, bool restore_toc_after_call, bool load_toc_of_callee, bool load_env_of_callee) { // we emit standard ptrgl glue code here assert((function_descriptor != R0), "function_descriptor cannot be R0"); // retrieve necessary entries from the function descriptor ld(R0, in_bytes(FunctionDescriptor::entry_offset()), function_descriptor); mtctr(R0); if (load_toc_of_callee) { ld(R2_TOC, in_bytes(FunctionDescriptor::toc_offset()), function_descriptor); } if (load_env_of_callee) { ld(R11, in_bytes(FunctionDescriptor::env_offset()), function_descriptor); } else if (load_toc_of_callee) { li(R11, 0); } // do a call or a branch if (and_link) { bctrl(); } else { bctr(); } _last_calls_return_pc = pc(); return _last_calls_return_pc; } // Call a C function via a function descriptor and use full C calling // conventions. // We don't use the TOC in generated code, so there is no need to save // and restore its value. address MacroAssembler::call_c(Register fd) { return branch_to(fd, /*and_link=*/true, /*save toc=*/false, /*restore toc=*/false, /*load toc=*/true, /*load env=*/true); } address MacroAssembler::call_c_and_return_to_caller(Register fd) { return branch_to(fd, /*and_link=*/false, /*save toc=*/false, /*restore toc=*/false, /*load toc=*/true, /*load env=*/true); } address MacroAssembler::call_c(const FunctionDescriptor* fd, relocInfo::relocType rt) { if (rt != relocInfo::none) { // this call needs to be relocatable if (!ReoptimizeCallSequences || (rt != relocInfo::runtime_call_type && rt != relocInfo::none) || fd == NULL // support code-size estimation || !fd->is_friend_function() || fd->entry() == NULL) { // it's not a friend function as defined by class FunctionDescriptor, // so do a full call-c here. load_const(R11, (address)fd, R0); bool has_env = (fd != NULL && fd->env() != NULL); return branch_to(R11, /*and_link=*/true, /*save toc=*/false, /*restore toc=*/false, /*load toc=*/true, /*load env=*/has_env); } else { // It's a friend function. Load the entry point and don't care about // toc and env. Use an optimizable call instruction, but ensure the // same code-size as in the case of a non-friend function. nop(); nop(); nop(); bl64_patchable(fd->entry(), rt); _last_calls_return_pc = pc(); return _last_calls_return_pc; } } else { // This call does not need to be relocatable, do more aggressive // optimizations. if (!ReoptimizeCallSequences || !fd->is_friend_function()) { // It's not a friend function as defined by class FunctionDescriptor, // so do a full call-c here. load_const(R11, (address)fd, R0); return branch_to(R11, /*and_link=*/true, /*save toc=*/false, /*restore toc=*/false, /*load toc=*/true, /*load env=*/true); } else { // it's a friend function, load the entry point and don't care about // toc and env. address dest = fd->entry(); if (is_within_range_of_b(dest, pc())) { bl(dest); } else { bl64_patchable(dest, rt); } _last_calls_return_pc = pc(); return _last_calls_return_pc; } } } // Call a C function. All constants needed reside in TOC. // // Read the address to call from the TOC. // Read env from TOC, if fd specifies an env. // Read new TOC from TOC. address MacroAssembler::call_c_using_toc(const FunctionDescriptor* fd, relocInfo::relocType rt, Register toc) { if (!ReoptimizeCallSequences || (rt != relocInfo::runtime_call_type && rt != relocInfo::none) || !fd->is_friend_function()) { // It's not a friend function as defined by class FunctionDescriptor, // so do a full call-c here. assert(fd->entry() != NULL, "function must be linked"); AddressLiteral fd_entry(fd->entry()); bool success = load_const_from_method_toc(R11, fd_entry, toc, /*fixed_size*/ true); mtctr(R11); if (fd->env() == NULL) { li(R11, 0); nop(); } else { AddressLiteral fd_env(fd->env()); success = success && load_const_from_method_toc(R11, fd_env, toc, /*fixed_size*/ true); } AddressLiteral fd_toc(fd->toc()); // Set R2_TOC (load from toc) success = success && load_const_from_method_toc(R2_TOC, fd_toc, toc, /*fixed_size*/ true); bctrl(); _last_calls_return_pc = pc(); if (!success) { return NULL; } } else { // It's a friend function, load the entry point and don't care about // toc and env. Use an optimizable call instruction, but ensure the // same code-size as in the case of a non-friend function. nop(); bl64_patchable(fd->entry(), rt); _last_calls_return_pc = pc(); } return _last_calls_return_pc; } #endif // ABI_ELFv2 void MacroAssembler::call_VM_base(Register oop_result, Register last_java_sp, address entry_point, bool check_exceptions) { BLOCK_COMMENT("call_VM {"); // Determine last_java_sp register. if (!last_java_sp->is_valid()) { last_java_sp = R1_SP; } set_top_ijava_frame_at_SP_as_last_Java_frame(last_java_sp, R11_scratch1); // ARG1 must hold thread address. mr(R3_ARG1, R16_thread); #if defined(ABI_ELFv2) address return_pc = call_c(entry_point, relocInfo::none); #else address return_pc = call_c((FunctionDescriptor*)entry_point, relocInfo::none); #endif reset_last_Java_frame(); // Check for pending exceptions. if (check_exceptions) { // We don't check for exceptions here. ShouldNotReachHere(); } // Get oop result if there is one and reset the value in the thread. if (oop_result->is_valid()) { get_vm_result(oop_result); } _last_calls_return_pc = return_pc; BLOCK_COMMENT("} call_VM"); } void MacroAssembler::call_VM_leaf_base(address entry_point) { BLOCK_COMMENT("call_VM_leaf {"); #if defined(ABI_ELFv2) call_c(entry_point, relocInfo::none); #else call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, entry_point), relocInfo::none); #endif BLOCK_COMMENT("} call_VM_leaf"); } void MacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) { call_VM_base(oop_result, noreg, entry_point, check_exceptions); } void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) { // R3_ARG1 is reserved for the thread. mr_if_needed(R4_ARG2, arg_1); call_VM(oop_result, entry_point, check_exceptions); } void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) { // R3_ARG1 is reserved for the thread mr_if_needed(R4_ARG2, arg_1); assert(arg_2 != R4_ARG2, "smashed argument"); mr_if_needed(R5_ARG3, arg_2); call_VM(oop_result, entry_point, check_exceptions); } void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) { // R3_ARG1 is reserved for the thread mr_if_needed(R4_ARG2, arg_1); assert(arg_2 != R4_ARG2, "smashed argument"); mr_if_needed(R5_ARG3, arg_2); mr_if_needed(R6_ARG4, arg_3); call_VM(oop_result, entry_point, check_exceptions); } void MacroAssembler::call_VM_leaf(address entry_point) { call_VM_leaf_base(entry_point); } void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1) { mr_if_needed(R3_ARG1, arg_1); call_VM_leaf(entry_point); } void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2) { mr_if_needed(R3_ARG1, arg_1); assert(arg_2 != R3_ARG1, "smashed argument"); mr_if_needed(R4_ARG2, arg_2); call_VM_leaf(entry_point); } void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3) { mr_if_needed(R3_ARG1, arg_1); assert(arg_2 != R3_ARG1, "smashed argument"); mr_if_needed(R4_ARG2, arg_2); assert(arg_3 != R3_ARG1 && arg_3 != R4_ARG2, "smashed argument"); mr_if_needed(R5_ARG3, arg_3); call_VM_leaf(entry_point); } // Check whether instruction is a read access to the polling page // which was emitted by load_from_polling_page(..). bool MacroAssembler::is_load_from_polling_page(int instruction, void* ucontext, address* polling_address_ptr) { if (!is_ld(instruction)) return false; // It's not a ld. Fail. int rt = inv_rt_field(instruction); int ra = inv_ra_field(instruction); int ds = inv_ds_field(instruction); if (!(ds == 0 && ra != 0 && rt == 0)) { return false; // It's not a ld(r0, X, ra). Fail. } if (!ucontext) { // Set polling address. if (polling_address_ptr != NULL) { *polling_address_ptr = NULL; } return true; // No ucontext given. Can't check value of ra. Assume true. } #ifdef LINUX // Ucontext given. Check that register ra contains the address of // the safepoing polling page. ucontext_t* uc = (ucontext_t*) ucontext; // Set polling address. address addr = (address)uc->uc_mcontext.regs->gpr[ra] + (ssize_t)ds; if (polling_address_ptr != NULL) { *polling_address_ptr = addr; } return os::is_poll_address(addr); #else // Not on Linux, ucontext must be NULL. ShouldNotReachHere(); return false; #endif } bool MacroAssembler::is_memory_serialization(int instruction, JavaThread* thread, void* ucontext) { #ifdef LINUX ucontext_t* uc = (ucontext_t*) ucontext; if (is_stwx(instruction) || is_stwux(instruction)) { int ra = inv_ra_field(instruction); int rb = inv_rb_field(instruction); // look up content of ra and rb in ucontext address ra_val=(address)uc->uc_mcontext.regs->gpr[ra]; long rb_val=(long)uc->uc_mcontext.regs->gpr[rb]; return os::is_memory_serialize_page(thread, ra_val+rb_val); } else if (is_stw(instruction) || is_stwu(instruction)) { int ra = inv_ra_field(instruction); int d1 = inv_d1_field(instruction); // look up content of ra in ucontext address ra_val=(address)uc->uc_mcontext.regs->gpr[ra]; return os::is_memory_serialize_page(thread, ra_val+d1); } else { return false; } #else // workaround not needed on !LINUX :-) ShouldNotCallThis(); return false; #endif } void MacroAssembler::bang_stack_with_offset(int offset) { // When increasing the stack, the old stack pointer will be written // to the new top of stack according to the PPC64 abi. // Therefore, stack banging is not necessary when increasing // the stack by <= os::vm_page_size() bytes. // When increasing the stack by a larger amount, this method is // called repeatedly to bang the intermediate pages. // Stack grows down, caller passes positive offset. assert(offset > 0, "must bang with positive offset"); long stdoffset = -offset; if (is_simm(stdoffset, 16)) { // Signed 16 bit offset, a simple std is ok. if (UseLoadInstructionsForStackBangingPPC64) { ld(R0, (int)(signed short)stdoffset, R1_SP); } else { std(R0,(int)(signed short)stdoffset, R1_SP); } } else if (is_simm(stdoffset, 31)) { const int hi = MacroAssembler::largeoffset_si16_si16_hi(stdoffset); const int lo = MacroAssembler::largeoffset_si16_si16_lo(stdoffset); Register tmp = R11; addis(tmp, R1_SP, hi); if (UseLoadInstructionsForStackBangingPPC64) { ld(R0, lo, tmp); } else { std(R0, lo, tmp); } } else { ShouldNotReachHere(); } } // If instruction is a stack bang of the form // std R0, x(Ry), (see bang_stack_with_offset()) // stdu R1_SP, x(R1_SP), (see push_frame(), resize_frame()) // or stdux R1_SP, Rx, R1_SP (see push_frame(), resize_frame()) // return the banged address. Otherwise, return 0. address MacroAssembler::get_stack_bang_address(int instruction, void *ucontext) { #ifdef LINUX ucontext_t* uc = (ucontext_t*) ucontext; int rs = inv_rs_field(instruction); int ra = inv_ra_field(instruction); if ( (is_ld(instruction) && rs == 0 && UseLoadInstructionsForStackBangingPPC64) || (is_std(instruction) && rs == 0 && !UseLoadInstructionsForStackBangingPPC64) || (is_stdu(instruction) && rs == 1)) { int ds = inv_ds_field(instruction); // return banged address return ds+(address)uc->uc_mcontext.regs->gpr[ra]; } else if (is_stdux(instruction) && rs == 1) { int rb = inv_rb_field(instruction); address sp = (address)uc->uc_mcontext.regs->gpr[1]; long rb_val = (long)uc->uc_mcontext.regs->gpr[rb]; return ra != 1 || rb_val >= 0 ? NULL // not a stack bang : sp + rb_val; // banged address } return NULL; // not a stack bang #else // workaround not needed on !LINUX :-) ShouldNotCallThis(); return NULL; #endif } // CmpxchgX sets condition register to cmpX(current, compare). void MacroAssembler::cmpxchgw(ConditionRegister flag, Register dest_current_value, Register compare_value, Register exchange_value, Register addr_base, int semantics, bool cmpxchgx_hint, Register int_flag_success, bool contention_hint) { Label retry; Label failed; Label done; // Save one branch if result is returned via register and // result register is different from the other ones. bool use_result_reg = (int_flag_success != noreg); bool preset_result_reg = (int_flag_success != dest_current_value && int_flag_success != compare_value && int_flag_success != exchange_value && int_flag_success != addr_base); if (use_result_reg && preset_result_reg) { li(int_flag_success, 0); // preset (assume cas failed) } // Add simple guard in order to reduce risk of starving under high contention (recommended by IBM). if (contention_hint) { // Don't try to reserve if cmp fails. lwz(dest_current_value, 0, addr_base); cmpw(flag, dest_current_value, compare_value); bne(flag, failed); } // release/fence semantics if (semantics & MemBarRel) { release(); } // atomic emulation loop bind(retry); lwarx(dest_current_value, addr_base, cmpxchgx_hint); cmpw(flag, dest_current_value, compare_value); if (UseStaticBranchPredictionInCompareAndSwapPPC64) { bne_predict_not_taken(flag, failed); } else { bne( flag, failed); } // branch to done => (flag == ne), (dest_current_value != compare_value) // fall through => (flag == eq), (dest_current_value == compare_value) stwcx_(exchange_value, addr_base); if (UseStaticBranchPredictionInCompareAndSwapPPC64) { bne_predict_not_taken(CCR0, retry); // StXcx_ sets CCR0. } else { bne( CCR0, retry); // StXcx_ sets CCR0. } // fall through => (flag == eq), (dest_current_value == compare_value), (swapped) // Result in register (must do this at the end because int_flag_success can be the // same register as one above). if (use_result_reg) { li(int_flag_success, 1); } if (semantics & MemBarFenceAfter) { fence(); } else if (semantics & MemBarAcq) { isync(); } if (use_result_reg && !preset_result_reg) { b(done); } bind(failed); if (use_result_reg && !preset_result_reg) { li(int_flag_success, 0); } bind(done); // (flag == ne) => (dest_current_value != compare_value), (!swapped) // (flag == eq) => (dest_current_value == compare_value), ( swapped) } // Preforms atomic compare exchange: // if (compare_value == *addr_base) // *addr_base = exchange_value // int_flag_success = 1; // else // int_flag_success = 0; // // ConditionRegister flag = cmp(compare_value, *addr_base) // Register dest_current_value = *addr_base // Register compare_value Used to compare with value in memory // Register exchange_value Written to memory if compare_value == *addr_base // Register addr_base The memory location to compareXChange // Register int_flag_success Set to 1 if exchange_value was written to *addr_base // // To avoid the costly compare exchange the value is tested beforehand. // Several special cases exist to avoid that unnecessary information is generated. // void MacroAssembler::cmpxchgd(ConditionRegister flag, Register dest_current_value, RegisterOrConstant compare_value, Register exchange_value, Register addr_base, int semantics, bool cmpxchgx_hint, Register int_flag_success, Label* failed_ext, bool contention_hint) { Label retry; Label failed_int; Label& failed = (failed_ext != NULL) ? *failed_ext : failed_int; Label done; // Save one branch if result is returned via register and result register is different from the other ones. bool use_result_reg = (int_flag_success!=noreg); bool preset_result_reg = (int_flag_success!=dest_current_value && int_flag_success!=compare_value.register_or_noreg() && int_flag_success!=exchange_value && int_flag_success!=addr_base); assert(int_flag_success == noreg || failed_ext == NULL, "cannot have both"); if (use_result_reg && preset_result_reg) { li(int_flag_success, 0); // preset (assume cas failed) } // Add simple guard in order to reduce risk of starving under high contention (recommended by IBM). if (contention_hint) { // Don't try to reserve if cmp fails. ld(dest_current_value, 0, addr_base); cmpd(flag, compare_value, dest_current_value); bne(flag, failed); } // release/fence semantics if (semantics & MemBarRel) { release(); } // atomic emulation loop bind(retry); ldarx(dest_current_value, addr_base, cmpxchgx_hint); cmpd(flag, compare_value, dest_current_value); if (UseStaticBranchPredictionInCompareAndSwapPPC64) { bne_predict_not_taken(flag, failed); } else { bne( flag, failed); } stdcx_(exchange_value, addr_base); if (UseStaticBranchPredictionInCompareAndSwapPPC64) { bne_predict_not_taken(CCR0, retry); // stXcx_ sets CCR0 } else { bne( CCR0, retry); // stXcx_ sets CCR0 } // result in register (must do this at the end because int_flag_success can be the same register as one above) if (use_result_reg) { li(int_flag_success, 1); } if (semantics & MemBarFenceAfter) { fence(); } else if (semantics & MemBarAcq) { isync(); } if (use_result_reg && !preset_result_reg) { b(done); } bind(failed_int); if (use_result_reg && !preset_result_reg) { li(int_flag_success, 0); } bind(done); // (flag == ne) => (dest_current_value != compare_value), (!swapped) // (flag == eq) => (dest_current_value == compare_value), ( swapped) } // Look up the method for a megamorphic invokeinterface call. // The target method is determined by . // The receiver klass is in recv_klass. // On success, the result will be in method_result, and execution falls through. // On failure, execution transfers to the given label. void MacroAssembler::lookup_interface_method(Register recv_klass, Register intf_klass, RegisterOrConstant itable_index, Register method_result, Register scan_temp, Register sethi_temp, Label& L_no_such_interface) { assert_different_registers(recv_klass, intf_klass, method_result, scan_temp); assert(itable_index.is_constant() || itable_index.as_register() == method_result, "caller must use same register for non-constant itable index as for method"); // Compute start of first itableOffsetEntry (which is at the end of the vtable). int vtable_base = in_bytes(InstanceKlass::vtable_start_offset()); int itentry_off = itableMethodEntry::method_offset_in_bytes(); int logMEsize = exact_log2(itableMethodEntry::size() * wordSize); int scan_step = itableOffsetEntry::size() * wordSize; int log_vte_size= exact_log2(vtableEntry::size_in_bytes()); lwz(scan_temp, in_bytes(InstanceKlass::vtable_length_offset()), recv_klass); // %%% We should store the aligned, prescaled offset in the klassoop. // Then the next several instructions would fold away. sldi(scan_temp, scan_temp, log_vte_size); addi(scan_temp, scan_temp, vtable_base); add(scan_temp, recv_klass, scan_temp); // Adjust recv_klass by scaled itable_index, so we can free itable_index. if (itable_index.is_register()) { Register itable_offset = itable_index.as_register(); sldi(itable_offset, itable_offset, logMEsize); if (itentry_off) addi(itable_offset, itable_offset, itentry_off); add(recv_klass, itable_offset, recv_klass); } else { long itable_offset = (long)itable_index.as_constant(); load_const_optimized(sethi_temp, (itable_offset<itable(); scan->interface() != NULL; scan += scan_step) { // if (scan->interface() == intf) { // result = (klass + scan->offset() + itable_index); // } // } Label search, found_method; for (int peel = 1; peel >= 0; peel--) { // %%%% Could load both offset and interface in one ldx, if they were // in the opposite order. This would save a load. ld(method_result, itableOffsetEntry::interface_offset_in_bytes(), scan_temp); // Check that this entry is non-null. A null entry means that // the receiver class doesn't implement the interface, and wasn't the // same as when the caller was compiled. cmpd(CCR0, method_result, intf_klass); if (peel) { beq(CCR0, found_method); } else { bne(CCR0, search); // (invert the test to fall through to found_method...) } if (!peel) break; bind(search); cmpdi(CCR0, method_result, 0); beq(CCR0, L_no_such_interface); addi(scan_temp, scan_temp, scan_step); } bind(found_method); // Got a hit. int ito_offset = itableOffsetEntry::offset_offset_in_bytes(); lwz(scan_temp, ito_offset, scan_temp); ldx(method_result, scan_temp, recv_klass); } // virtual method calling void MacroAssembler::lookup_virtual_method(Register recv_klass, RegisterOrConstant vtable_index, Register method_result) { assert_different_registers(recv_klass, method_result, vtable_index.register_or_noreg()); const int base = in_bytes(InstanceKlass::vtable_start_offset()); assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); if (vtable_index.is_register()) { sldi(vtable_index.as_register(), vtable_index.as_register(), LogBytesPerWord); add(recv_klass, vtable_index.as_register(), recv_klass); } else { addi(recv_klass, recv_klass, vtable_index.as_constant() << LogBytesPerWord); } ld(R19_method, base + vtableEntry::method_offset_in_bytes(), recv_klass); } /////////////////////////////////////////// subtype checking //////////////////////////////////////////// void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, Register super_klass, Register temp1_reg, Register temp2_reg, Label* L_success, Label* L_failure, Label* L_slow_path, RegisterOrConstant super_check_offset) { const Register check_cache_offset = temp1_reg; const Register cached_super = temp2_reg; assert_different_registers(sub_klass, super_klass, check_cache_offset, cached_super); int sco_offset = in_bytes(Klass::super_check_offset_offset()); int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); bool must_load_sco = (super_check_offset.constant_or_zero() == -1); bool need_slow_path = (must_load_sco || super_check_offset.constant_or_zero() == sco_offset); Label L_fallthrough; int label_nulls = 0; if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; } if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; } if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; } assert(label_nulls <= 1 || (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path), "at most one NULL in the batch, usually"); // If the pointers are equal, we are done (e.g., String[] elements). // This self-check enables sharing of secondary supertype arrays among // non-primary types such as array-of-interface. Otherwise, each such // type would need its own customized SSA. // We move this check to the front of the fast path because many // type checks are in fact trivially successful in this manner, // so we get a nicely predicted branch right at the start of the check. cmpd(CCR0, sub_klass, super_klass); beq(CCR0, *L_success); // Check the supertype display: if (must_load_sco) { // The super check offset is always positive... lwz(check_cache_offset, sco_offset, super_klass); super_check_offset = RegisterOrConstant(check_cache_offset); // super_check_offset is register. assert_different_registers(sub_klass, super_klass, cached_super, super_check_offset.as_register()); } // The loaded value is the offset from KlassOopDesc. ld(cached_super, super_check_offset, sub_klass); cmpd(CCR0, cached_super, super_klass); // This check has worked decisively for primary supers. // Secondary supers are sought in the super_cache ('super_cache_addr'). // (Secondary supers are interfaces and very deeply nested subtypes.) // This works in the same check above because of a tricky aliasing // between the super_cache and the primary super display elements. // (The 'super_check_addr' can address either, as the case requires.) // Note that the cache is updated below if it does not help us find // what we need immediately. // So if it was a primary super, we can just fail immediately. // Otherwise, it's the slow path for us (no success at this point). #define FINAL_JUMP(label) if (&(label) != &L_fallthrough) { b(label); } if (super_check_offset.is_register()) { beq(CCR0, *L_success); cmpwi(CCR0, super_check_offset.as_register(), sc_offset); if (L_failure == &L_fallthrough) { beq(CCR0, *L_slow_path); } else { bne(CCR0, *L_failure); FINAL_JUMP(*L_slow_path); } } else { if (super_check_offset.as_constant() == sc_offset) { // Need a slow path; fast failure is impossible. if (L_slow_path == &L_fallthrough) { beq(CCR0, *L_success); } else { bne(CCR0, *L_slow_path); FINAL_JUMP(*L_success); } } else { // No slow path; it's a fast decision. if (L_failure == &L_fallthrough) { beq(CCR0, *L_success); } else { bne(CCR0, *L_failure); FINAL_JUMP(*L_success); } } } bind(L_fallthrough); #undef FINAL_JUMP } void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, Register super_klass, Register temp1_reg, Register temp2_reg, Label* L_success, Register result_reg) { const Register array_ptr = temp1_reg; // current value from cache array const Register temp = temp2_reg; assert_different_registers(sub_klass, super_klass, array_ptr, temp); int source_offset = in_bytes(Klass::secondary_supers_offset()); int target_offset = in_bytes(Klass::secondary_super_cache_offset()); int length_offset = Array::length_offset_in_bytes(); int base_offset = Array::base_offset_in_bytes(); Label hit, loop, failure, fallthru; ld(array_ptr, source_offset, sub_klass); // TODO: PPC port: assert(4 == arrayOopDesc::length_length_in_bytes(), "precondition violated."); lwz(temp, length_offset, array_ptr); cmpwi(CCR0, temp, 0); beq(CCR0, result_reg!=noreg ? failure : fallthru); // length 0 mtctr(temp); // load ctr bind(loop); // Oops in table are NO MORE compressed. ld(temp, base_offset, array_ptr); cmpd(CCR0, temp, super_klass); beq(CCR0, hit); addi(array_ptr, array_ptr, BytesPerWord); bdnz(loop); bind(failure); if (result_reg!=noreg) li(result_reg, 1); // load non-zero result (indicates a miss) b(fallthru); bind(hit); std(super_klass, target_offset, sub_klass); // save result to cache if (result_reg != noreg) { li(result_reg, 0); } // load zero result (indicates a hit) if (L_success != NULL) { b(*L_success); } else if (result_reg == noreg) { blr(); } // return with CR0.eq if neither label nor result reg provided bind(fallthru); } // Try fast path, then go to slow one if not successful void MacroAssembler::check_klass_subtype(Register sub_klass, Register super_klass, Register temp1_reg, Register temp2_reg, Label& L_success) { Label L_failure; check_klass_subtype_fast_path(sub_klass, super_klass, temp1_reg, temp2_reg, &L_success, &L_failure); check_klass_subtype_slow_path(sub_klass, super_klass, temp1_reg, temp2_reg, &L_success); bind(L_failure); // Fallthru if not successful. } void MacroAssembler::check_method_handle_type(Register mtype_reg, Register mh_reg, Register temp_reg, Label& wrong_method_type) { assert_different_registers(mtype_reg, mh_reg, temp_reg); // Compare method type against that of the receiver. load_heap_oop_not_null(temp_reg, delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg), mh_reg); cmpd(CCR0, temp_reg, mtype_reg); bne(CCR0, wrong_method_type); } RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot, Register temp_reg, int extra_slot_offset) { // cf. TemplateTable::prepare_invoke(), if (load_receiver). int stackElementSize = Interpreter::stackElementSize; int offset = extra_slot_offset * stackElementSize; if (arg_slot.is_constant()) { offset += arg_slot.as_constant() * stackElementSize; return offset; } else { assert(temp_reg != noreg, "must specify"); sldi(temp_reg, arg_slot.as_register(), exact_log2(stackElementSize)); if (offset != 0) addi(temp_reg, temp_reg, offset); return temp_reg; } } // Supports temp2_reg = R0. void MacroAssembler::biased_locking_enter(ConditionRegister cr_reg, Register obj_reg, Register mark_reg, Register temp_reg, Register temp2_reg, Label& done, Label* slow_case) { assert(UseBiasedLocking, "why call this otherwise?"); #ifdef ASSERT assert_different_registers(obj_reg, mark_reg, temp_reg, temp2_reg); #endif Label cas_label; // Branch to done if fast path fails and no slow_case provided. Label *slow_case_int = (slow_case != NULL) ? slow_case : &done; // Biased locking // See whether the lock is currently biased toward our thread and // whether the epoch is still valid // Note that the runtime guarantees sufficient alignment of JavaThread // pointers to allow age to be placed into low bits assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout"); if (PrintBiasedLockingStatistics) { load_const(temp2_reg, (address) BiasedLocking::total_entry_count_addr(), temp_reg); lwzx(temp_reg, temp2_reg); addi(temp_reg, temp_reg, 1); stwx(temp_reg, temp2_reg); } andi(temp_reg, mark_reg, markOopDesc::biased_lock_mask_in_place); cmpwi(cr_reg, temp_reg, markOopDesc::biased_lock_pattern); bne(cr_reg, cas_label); load_klass(temp_reg, obj_reg); load_const_optimized(temp2_reg, ~((int) markOopDesc::age_mask_in_place)); ld(temp_reg, in_bytes(Klass::prototype_header_offset()), temp_reg); orr(temp_reg, R16_thread, temp_reg); xorr(temp_reg, mark_reg, temp_reg); andr(temp_reg, temp_reg, temp2_reg); cmpdi(cr_reg, temp_reg, 0); if (PrintBiasedLockingStatistics) { Label l; bne(cr_reg, l); load_const(temp2_reg, (address) BiasedLocking::biased_lock_entry_count_addr()); lwzx(mark_reg, temp2_reg); addi(mark_reg, mark_reg, 1); stwx(mark_reg, temp2_reg); // restore mark_reg ld(mark_reg, oopDesc::mark_offset_in_bytes(), obj_reg); bind(l); } beq(cr_reg, done); Label try_revoke_bias; Label try_rebias; // At this point we know that the header has the bias pattern and // that we are not the bias owner in the current epoch. We need to // figure out more details about the state of the header in order to // know what operations can be legally performed on the object's // header. // If the low three bits in the xor result aren't clear, that means // the prototype header is no longer biased and we have to revoke // the bias on this object. andi(temp2_reg, temp_reg, markOopDesc::biased_lock_mask_in_place); cmpwi(cr_reg, temp2_reg, 0); bne(cr_reg, try_revoke_bias); // Biasing is still enabled for this data type. See whether the // epoch of the current bias is still valid, meaning that the epoch // bits of the mark word are equal to the epoch bits of the // prototype header. (Note that the prototype header's epoch bits // only change at a safepoint.) If not, attempt to rebias the object // toward the current thread. Note that we must be absolutely sure // that the current epoch is invalid in order to do this because // otherwise the manipulations it performs on the mark word are // illegal. int shift_amount = 64 - markOopDesc::epoch_shift; // rotate epoch bits to right (little) end and set other bits to 0 // [ big part | epoch | little part ] -> [ 0..0 | epoch ] rldicl_(temp2_reg, temp_reg, shift_amount, 64 - markOopDesc::epoch_bits); // branch if epoch bits are != 0, i.e. they differ, because the epoch has been incremented bne(CCR0, try_rebias); // The epoch of the current bias is still valid but we know nothing // about the owner; it might be set or it might be clear. Try to // acquire the bias of the object using an atomic operation. If this // fails we will go in to the runtime to revoke the object's bias. // Note that we first construct the presumed unbiased header so we // don't accidentally blow away another thread's valid bias. andi(mark_reg, mark_reg, (markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place)); orr(temp_reg, R16_thread, mark_reg); assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0"); // CmpxchgX sets cr_reg to cmpX(temp2_reg, mark_reg). cmpxchgd(/*flag=*/cr_reg, /*current_value=*/temp2_reg, /*compare_value=*/mark_reg, /*exchange_value=*/temp_reg, /*where=*/obj_reg, MacroAssembler::MemBarAcq, MacroAssembler::cmpxchgx_hint_acquire_lock(), noreg, slow_case_int); // bail out if failed // If the biasing toward our thread failed, this means that // another thread succeeded in biasing it toward itself and we // need to revoke that bias. The revocation will occur in the // interpreter runtime in the slow case. if (PrintBiasedLockingStatistics) { load_const(temp2_reg, (address) BiasedLocking::anonymously_biased_lock_entry_count_addr(), temp_reg); lwzx(temp_reg, temp2_reg); addi(temp_reg, temp_reg, 1); stwx(temp_reg, temp2_reg); } b(done); bind(try_rebias); // At this point we know the epoch has expired, meaning that the // current "bias owner", if any, is actually invalid. Under these // circumstances _only_, we are allowed to use the current header's // value as the comparison value when doing the cas to acquire the // bias in the current epoch. In other words, we allow transfer of // the bias from one thread to another directly in this situation. load_klass(temp_reg, obj_reg); andi(temp2_reg, mark_reg, markOopDesc::age_mask_in_place); orr(temp2_reg, R16_thread, temp2_reg); ld(temp_reg, in_bytes(Klass::prototype_header_offset()), temp_reg); orr(temp_reg, temp2_reg, temp_reg); assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0"); cmpxchgd(/*flag=*/cr_reg, /*current_value=*/temp2_reg, /*compare_value=*/mark_reg, /*exchange_value=*/temp_reg, /*where=*/obj_reg, MacroAssembler::MemBarAcq, MacroAssembler::cmpxchgx_hint_acquire_lock(), noreg, slow_case_int); // bail out if failed // If the biasing toward our thread failed, this means that // another thread succeeded in biasing it toward itself and we // need to revoke that bias. The revocation will occur in the // interpreter runtime in the slow case. if (PrintBiasedLockingStatistics) { load_const(temp2_reg, (address) BiasedLocking::rebiased_lock_entry_count_addr(), temp_reg); lwzx(temp_reg, temp2_reg); addi(temp_reg, temp_reg, 1); stwx(temp_reg, temp2_reg); } b(done); bind(try_revoke_bias); // The prototype mark in the klass doesn't have the bias bit set any // more, indicating that objects of this data type are not supposed // to be biased any more. We are going to try to reset the mark of // this object to the prototype value and fall through to the // CAS-based locking scheme. Note that if our CAS fails, it means // that another thread raced us for the privilege of revoking the // bias of this particular object, so it's okay to continue in the // normal locking code. load_klass(temp_reg, obj_reg); ld(temp_reg, in_bytes(Klass::prototype_header_offset()), temp_reg); andi(temp2_reg, mark_reg, markOopDesc::age_mask_in_place); orr(temp_reg, temp_reg, temp2_reg); assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0"); // CmpxchgX sets cr_reg to cmpX(temp2_reg, mark_reg). cmpxchgd(/*flag=*/cr_reg, /*current_value=*/temp2_reg, /*compare_value=*/mark_reg, /*exchange_value=*/temp_reg, /*where=*/obj_reg, MacroAssembler::MemBarAcq, MacroAssembler::cmpxchgx_hint_acquire_lock()); // reload markOop in mark_reg before continuing with lightweight locking ld(mark_reg, oopDesc::mark_offset_in_bytes(), obj_reg); // Fall through to the normal CAS-based lock, because no matter what // the result of the above CAS, some thread must have succeeded in // removing the bias bit from the object's header. if (PrintBiasedLockingStatistics) { Label l; bne(cr_reg, l); load_const(temp2_reg, (address) BiasedLocking::revoked_lock_entry_count_addr(), temp_reg); lwzx(temp_reg, temp2_reg); addi(temp_reg, temp_reg, 1); stwx(temp_reg, temp2_reg); bind(l); } bind(cas_label); } void MacroAssembler::biased_locking_exit (ConditionRegister cr_reg, Register mark_addr, Register temp_reg, Label& done) { // Check for biased locking unlock case, which is a no-op // Note: we do not have to check the thread ID for two reasons. // First, the interpreter checks for IllegalMonitorStateException at // a higher level. Second, if the bias was revoked while we held the // lock, the object could not be rebiased toward another thread, so // the bias bit would be clear. ld(temp_reg, 0, mark_addr); andi(temp_reg, temp_reg, markOopDesc::biased_lock_mask_in_place); cmpwi(cr_reg, temp_reg, markOopDesc::biased_lock_pattern); beq(cr_reg, done); } // allocation (for C1) void MacroAssembler::eden_allocate( Register obj, // result: pointer to object after successful allocation Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise int con_size_in_bytes, // object size in bytes if known at compile time Register t1, // temp register Register t2, // temp register Label& slow_case // continuation point if fast allocation fails ) { b(slow_case); } void MacroAssembler::tlab_allocate( Register obj, // result: pointer to object after successful allocation Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise int con_size_in_bytes, // object size in bytes if known at compile time Register t1, // temp register Label& slow_case // continuation point if fast allocation fails ) { // make sure arguments make sense assert_different_registers(obj, var_size_in_bytes, t1); assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size"); assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment"); const Register new_top = t1; //verify_tlab(); not implemented ld(obj, in_bytes(JavaThread::tlab_top_offset()), R16_thread); ld(R0, in_bytes(JavaThread::tlab_end_offset()), R16_thread); if (var_size_in_bytes == noreg) { addi(new_top, obj, con_size_in_bytes); } else { add(new_top, obj, var_size_in_bytes); } cmpld(CCR0, new_top, R0); bc_far_optimized(Assembler::bcondCRbiIs1, bi0(CCR0, Assembler::greater), slow_case); #ifdef ASSERT // make sure new free pointer is properly aligned { Label L; andi_(R0, new_top, MinObjAlignmentInBytesMask); beq(CCR0, L); stop("updated TLAB free is not properly aligned", 0x934); bind(L); } #endif // ASSERT // update the tlab top pointer std(new_top, in_bytes(JavaThread::tlab_top_offset()), R16_thread); //verify_tlab(); not implemented } void MacroAssembler::tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case) { unimplemented("tlab_refill"); } void MacroAssembler::incr_allocated_bytes(RegisterOrConstant size_in_bytes, Register t1, Register t2) { unimplemented("incr_allocated_bytes"); } address MacroAssembler::emit_trampoline_stub(int destination_toc_offset, int insts_call_instruction_offset, Register Rtoc) { // Start the stub. address stub = start_a_stub(64); if (stub == NULL) { return NULL; } // CodeCache full: bail out // Create a trampoline stub relocation which relates this trampoline stub // with the call instruction at insts_call_instruction_offset in the // instructions code-section. relocate(trampoline_stub_Relocation::spec(code()->insts()->start() + insts_call_instruction_offset)); const int stub_start_offset = offset(); // For java_to_interp stubs we use R11_scratch1 as scratch register // and in call trampoline stubs we use R12_scratch2. This way we // can distinguish them (see is_NativeCallTrampolineStub_at()). Register reg_scratch = R12_scratch2; // Now, create the trampoline stub's code: // - load the TOC // - load the call target from the constant pool // - call if (Rtoc == noreg) { calculate_address_from_global_toc(reg_scratch, method_toc()); Rtoc = reg_scratch; } ld_largeoffset_unchecked(reg_scratch, destination_toc_offset, Rtoc, false); mtctr(reg_scratch); bctr(); const address stub_start_addr = addr_at(stub_start_offset); // Assert that the encoded destination_toc_offset can be identified and that it is correct. assert(destination_toc_offset == NativeCallTrampolineStub_at(stub_start_addr)->destination_toc_offset(), "encoded offset into the constant pool must match"); // Trampoline_stub_size should be good. assert((uint)(offset() - stub_start_offset) <= trampoline_stub_size, "should be good size"); assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline"); // End the stub. end_a_stub(); return stub; } // TM on PPC64. void MacroAssembler::atomic_inc_ptr(Register addr, Register result, int simm16) { Label retry; bind(retry); ldarx(result, addr, /*hint*/ false); addi(result, result, simm16); stdcx_(result, addr); if (UseStaticBranchPredictionInCompareAndSwapPPC64) { bne_predict_not_taken(CCR0, retry); // stXcx_ sets CCR0 } else { bne( CCR0, retry); // stXcx_ sets CCR0 } } void MacroAssembler::atomic_ori_int(Register addr, Register result, int uimm16) { Label retry; bind(retry); lwarx(result, addr, /*hint*/ false); ori(result, result, uimm16); stwcx_(result, addr); if (UseStaticBranchPredictionInCompareAndSwapPPC64) { bne_predict_not_taken(CCR0, retry); // stXcx_ sets CCR0 } else { bne( CCR0, retry); // stXcx_ sets CCR0 } } #if INCLUDE_RTM_OPT // Update rtm_counters based on abort status // input: abort_status // rtm_counters (RTMLockingCounters*) void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters_Reg) { // Mapping to keep PreciseRTMLockingStatistics similar to x86. // x86 ppc (! means inverted, ? means not the same) // 0 31 Set if abort caused by XABORT instruction. // 1 ! 7 If set, the transaction may succeed on a retry. This bit is always clear if bit 0 is set. // 2 13 Set if another logical processor conflicted with a memory address that was part of the transaction that aborted. // 3 10 Set if an internal buffer overflowed. // 4 ?12 Set if a debug breakpoint was hit. // 5 ?32 Set if an abort occurred during execution of a nested transaction. const int tm_failure_bit[] = {Assembler::tm_tabort, // Note: Seems like signal handler sets this, too. Assembler::tm_failure_persistent, // inverted: transient Assembler::tm_trans_cf, Assembler::tm_footprint_of, Assembler::tm_non_trans_cf, Assembler::tm_suspended}; const bool tm_failure_inv[] = {false, true, false, false, false, false}; assert(sizeof(tm_failure_bit)/sizeof(int) == RTMLockingCounters::ABORT_STATUS_LIMIT, "adapt mapping!"); const Register addr_Reg = R0; // Keep track of offset to where rtm_counters_Reg had pointed to. int counters_offs = RTMLockingCounters::abort_count_offset(); addi(addr_Reg, rtm_counters_Reg, counters_offs); const Register temp_Reg = rtm_counters_Reg; //atomic_inc_ptr(addr_Reg, temp_Reg); We don't increment atomically ldx(temp_Reg, addr_Reg); addi(temp_Reg, temp_Reg, 1); stdx(temp_Reg, addr_Reg); if (PrintPreciseRTMLockingStatistics) { int counters_offs_delta = RTMLockingCounters::abortX_count_offset() - counters_offs; //mftexasr(abort_status); done by caller for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) { counters_offs += counters_offs_delta; li(temp_Reg, counters_offs_delta); // can't use addi with R0 add(addr_Reg, addr_Reg, temp_Reg); // point to next counter counters_offs_delta = sizeof(uintx); Label check_abort; rldicr_(temp_Reg, abort_status, tm_failure_bit[i], 0); if (tm_failure_inv[i]) { bne(CCR0, check_abort); } else { beq(CCR0, check_abort); } //atomic_inc_ptr(addr_Reg, temp_Reg); We don't increment atomically ldx(temp_Reg, addr_Reg); addi(temp_Reg, temp_Reg, 1); stdx(temp_Reg, addr_Reg); bind(check_abort); } } li(temp_Reg, -counters_offs); // can't use addi with R0 add(rtm_counters_Reg, addr_Reg, temp_Reg); // restore } // Branch if (random & (count-1) != 0), count is 2^n // tmp and CR0 are killed void MacroAssembler::branch_on_random_using_tb(Register tmp, int count, Label& brLabel) { mftb(tmp); andi_(tmp, tmp, count-1); bne(CCR0, brLabel); } // Perform abort ratio calculation, set no_rtm bit if high ratio. // input: rtm_counters_Reg (RTMLockingCounters* address) - KILLED void MacroAssembler::rtm_abort_ratio_calculation(Register rtm_counters_Reg, RTMLockingCounters* rtm_counters, Metadata* method_data) { Label L_done, L_check_always_rtm1, L_check_always_rtm2; if (RTMLockingCalculationDelay > 0) { // Delay calculation. ld(rtm_counters_Reg, (RegisterOrConstant)(intptr_t)RTMLockingCounters::rtm_calculation_flag_addr()); cmpdi(CCR0, rtm_counters_Reg, 0); beq(CCR0, L_done); load_const_optimized(rtm_counters_Reg, (address)rtm_counters, R0); // reload } // Abort ratio calculation only if abort_count > RTMAbortThreshold. // Aborted transactions = abort_count * 100 // All transactions = total_count * RTMTotalCountIncrRate // Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio) ld(R0, RTMLockingCounters::abort_count_offset(), rtm_counters_Reg); cmpdi(CCR0, R0, RTMAbortThreshold); blt(CCR0, L_check_always_rtm2); mulli(R0, R0, 100); const Register tmpReg = rtm_counters_Reg; ld(tmpReg, RTMLockingCounters::total_count_offset(), rtm_counters_Reg); mulli(tmpReg, tmpReg, RTMTotalCountIncrRate); mulli(tmpReg, tmpReg, RTMAbortRatio); cmpd(CCR0, R0, tmpReg); blt(CCR0, L_check_always_rtm1); // jump to reload if (method_data != NULL) { // Set rtm_state to "no rtm" in MDO. // Not using a metadata relocation. Method and Class Loader are kept alive anyway. // (See nmethod::metadata_do and CodeBuffer::finalize_oop_references.) load_const(R0, (address)method_data + MethodData::rtm_state_offset_in_bytes(), tmpReg); atomic_ori_int(R0, tmpReg, NoRTM); } b(L_done); bind(L_check_always_rtm1); load_const_optimized(rtm_counters_Reg, (address)rtm_counters, R0); // reload bind(L_check_always_rtm2); ld(tmpReg, RTMLockingCounters::total_count_offset(), rtm_counters_Reg); cmpdi(CCR0, tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate); blt(CCR0, L_done); if (method_data != NULL) { // Set rtm_state to "always rtm" in MDO. // Not using a metadata relocation. See above. load_const(R0, (address)method_data + MethodData::rtm_state_offset_in_bytes(), tmpReg); atomic_ori_int(R0, tmpReg, UseRTM); } bind(L_done); } // Update counters and perform abort ratio calculation. // input: abort_status_Reg void MacroAssembler::rtm_profiling(Register abort_status_Reg, Register temp_Reg, RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm) { assert(rtm_counters != NULL, "should not be NULL when profiling RTM"); // Update rtm counters based on state at abort. // Reads abort_status_Reg, updates flags. assert_different_registers(abort_status_Reg, temp_Reg); load_const_optimized(temp_Reg, (address)rtm_counters, R0); rtm_counters_update(abort_status_Reg, temp_Reg); if (profile_rtm) { assert(rtm_counters != NULL, "should not be NULL when profiling RTM"); rtm_abort_ratio_calculation(temp_Reg, rtm_counters, method_data); } } // Retry on abort if abort's status indicates non-persistent failure. // inputs: retry_count_Reg // : abort_status_Reg // output: retry_count_Reg decremented by 1 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel, Label* checkRetry) { Label doneRetry; rldicr_(R0, abort_status_Reg, tm_failure_persistent, 0); bne(CCR0, doneRetry); if (checkRetry) { bind(*checkRetry); } addic_(retry_count_Reg, retry_count_Reg, -1); blt(CCR0, doneRetry); smt_yield(); // Can't use wait(). No permission (SIGILL). b(retryLabel); bind(doneRetry); } // Spin and retry if lock is busy. // inputs: box_Reg (monitor address) // : retry_count_Reg // output: retry_count_Reg decremented by 1 // CTR is killed void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register owner_addr_Reg, Label& retryLabel) { Label SpinLoop, doneRetry; addic_(retry_count_Reg, retry_count_Reg, -1); blt(CCR0, doneRetry); li(R0, RTMSpinLoopCount); mtctr(R0); bind(SpinLoop); smt_yield(); // Can't use waitrsv(). No permission (SIGILL). bdz(retryLabel); ld(R0, 0, owner_addr_Reg); cmpdi(CCR0, R0, 0); bne(CCR0, SpinLoop); b(retryLabel); bind(doneRetry); } // Use RTM for normal stack locks. // Input: objReg (object to lock) void MacroAssembler::rtm_stack_locking(ConditionRegister flag, Register obj, Register mark_word, Register tmp, Register retry_on_abort_count_Reg, RTMLockingCounters* stack_rtm_counters, Metadata* method_data, bool profile_rtm, Label& DONE_LABEL, Label& IsInflated) { assert(UseRTMForStackLocks, "why call this otherwise?"); assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking"); Label L_rtm_retry, L_decrement_retry, L_on_abort; if (RTMRetryCount > 0) { load_const_optimized(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort bind(L_rtm_retry); } andi_(R0, mark_word, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased bne(CCR0, IsInflated); if (PrintPreciseRTMLockingStatistics || profile_rtm) { Label L_noincrement; if (RTMTotalCountIncrRate > 1) { branch_on_random_using_tb(tmp, (int)RTMTotalCountIncrRate, L_noincrement); } assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM"); load_const_optimized(tmp, (address)stack_rtm_counters->total_count_addr(), R0); //atomic_inc_ptr(tmp, /*temp, will be reloaded*/mark_word); We don't increment atomically ldx(mark_word, tmp); addi(mark_word, mark_word, 1); stdx(mark_word, tmp); bind(L_noincrement); } tbegin_(); beq(CCR0, L_on_abort); ld(mark_word, oopDesc::mark_offset_in_bytes(), obj); // Reload in transaction, conflicts need to be tracked. andi(R0, mark_word, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits cmpwi(flag, R0, markOopDesc::unlocked_value); // bits = 001 unlocked beq(flag, DONE_LABEL); // all done if unlocked if (UseRTMXendForLockBusy) { tend_(); b(L_decrement_retry); } else { tabort_(); } bind(L_on_abort); const Register abort_status_Reg = tmp; mftexasr(abort_status_Reg); if (PrintPreciseRTMLockingStatistics || profile_rtm) { rtm_profiling(abort_status_Reg, /*temp*/mark_word, stack_rtm_counters, method_data, profile_rtm); } ld(mark_word, oopDesc::mark_offset_in_bytes(), obj); // reload if (RTMRetryCount > 0) { // Retry on lock abort if abort status is not permanent. rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry, &L_decrement_retry); } else { bind(L_decrement_retry); } } // Use RTM for inflating locks // inputs: obj (object to lock) // mark_word (current header - KILLED) // boxReg (on-stack box address (displaced header location) - KILLED) void MacroAssembler::rtm_inflated_locking(ConditionRegister flag, Register obj, Register mark_word, Register boxReg, Register retry_on_busy_count_Reg, Register retry_on_abort_count_Reg, RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm, Label& DONE_LABEL) { assert(UseRTMLocking, "why call this otherwise?"); Label L_rtm_retry, L_decrement_retry, L_on_abort; // Clean monitor_value bit to get valid pointer. int owner_offset = ObjectMonitor::owner_offset_in_bytes() - markOopDesc::monitor_value; // Store non-null, using boxReg instead of (intptr_t)markOopDesc::unused_mark(). std(boxReg, BasicLock::displaced_header_offset_in_bytes(), boxReg); const Register tmpReg = boxReg; const Register owner_addr_Reg = mark_word; addi(owner_addr_Reg, mark_word, owner_offset); if (RTMRetryCount > 0) { load_const_optimized(retry_on_busy_count_Reg, RTMRetryCount); // Retry on lock busy. load_const_optimized(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort. bind(L_rtm_retry); } if (PrintPreciseRTMLockingStatistics || profile_rtm) { Label L_noincrement; if (RTMTotalCountIncrRate > 1) { branch_on_random_using_tb(R0, (int)RTMTotalCountIncrRate, L_noincrement); } assert(rtm_counters != NULL, "should not be NULL when profiling RTM"); load_const(R0, (address)rtm_counters->total_count_addr(), tmpReg); //atomic_inc_ptr(R0, tmpReg); We don't increment atomically ldx(tmpReg, R0); addi(tmpReg, tmpReg, 1); stdx(tmpReg, R0); bind(L_noincrement); } tbegin_(); beq(CCR0, L_on_abort); // We don't reload mark word. Will only be reset at safepoint. ld(R0, 0, owner_addr_Reg); // Load in transaction, conflicts need to be tracked. cmpdi(flag, R0, 0); beq(flag, DONE_LABEL); if (UseRTMXendForLockBusy) { tend_(); b(L_decrement_retry); } else { tabort_(); } bind(L_on_abort); const Register abort_status_Reg = tmpReg; mftexasr(abort_status_Reg); if (PrintPreciseRTMLockingStatistics || profile_rtm) { rtm_profiling(abort_status_Reg, /*temp*/ owner_addr_Reg, rtm_counters, method_data, profile_rtm); // Restore owner_addr_Reg ld(mark_word, oopDesc::mark_offset_in_bytes(), obj); #ifdef ASSERT andi_(R0, mark_word, markOopDesc::monitor_value); asm_assert_ne("must be inflated", 0xa754); // Deflating only allowed at safepoint. #endif addi(owner_addr_Reg, mark_word, owner_offset); } if (RTMRetryCount > 0) { // Retry on lock abort if abort status is not permanent. rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry); } // Appears unlocked - try to swing _owner from null to non-null. cmpxchgd(flag, /*current val*/ R0, (intptr_t)0, /*new val*/ R16_thread, owner_addr_Reg, MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq, MacroAssembler::cmpxchgx_hint_acquire_lock(), noreg, &L_decrement_retry, true); if (RTMRetryCount > 0) { // success done else retry b(DONE_LABEL); bind(L_decrement_retry); // Spin and retry if lock is busy. rtm_retry_lock_on_busy(retry_on_busy_count_Reg, owner_addr_Reg, L_rtm_retry); } else { bind(L_decrement_retry); } } #endif // INCLUDE_RTM_OPT // "The box" is the space on the stack where we copy the object mark. void MacroAssembler::compiler_fast_lock_object(ConditionRegister flag, Register oop, Register box, Register temp, Register displaced_header, Register current_header, bool try_bias, RTMLockingCounters* rtm_counters, RTMLockingCounters* stack_rtm_counters, Metadata* method_data, bool use_rtm, bool profile_rtm) { assert_different_registers(oop, box, temp, displaced_header, current_header); assert(flag != CCR0, "bad condition register"); Label cont; Label object_has_monitor; Label cas_failed; // Load markOop from object into displaced_header. ld(displaced_header, oopDesc::mark_offset_in_bytes(), oop); // Always do locking in runtime. if (EmitSync & 0x01) { cmpdi(flag, oop, 0); // Oop can't be 0 here => always false. return; } if (try_bias) { biased_locking_enter(flag, oop, displaced_header, temp, current_header, cont); } #if INCLUDE_RTM_OPT if (UseRTMForStackLocks && use_rtm) { rtm_stack_locking(flag, oop, displaced_header, temp, /*temp*/ current_header, stack_rtm_counters, method_data, profile_rtm, cont, object_has_monitor); } #endif // INCLUDE_RTM_OPT // Handle existing monitor. if ((EmitSync & 0x02) == 0) { // The object has an existing monitor iff (mark & monitor_value) != 0. andi_(temp, displaced_header, markOopDesc::monitor_value); bne(CCR0, object_has_monitor); } // Set displaced_header to be (markOop of object | UNLOCK_VALUE). ori(displaced_header, displaced_header, markOopDesc::unlocked_value); // Load Compare Value application register. // Initialize the box. (Must happen before we update the object mark!) std(displaced_header, BasicLock::displaced_header_offset_in_bytes(), box); // Must fence, otherwise, preceding store(s) may float below cmpxchg. // Compare object markOop with mark and if equal exchange scratch1 with object markOop. cmpxchgd(/*flag=*/flag, /*current_value=*/current_header, /*compare_value=*/displaced_header, /*exchange_value=*/box, /*where=*/oop, MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq, MacroAssembler::cmpxchgx_hint_acquire_lock(), noreg, &cas_failed, /*check without membar and ldarx first*/true); assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0"); // If the compare-and-exchange succeeded, then we found an unlocked // object and we have now locked it. b(cont); bind(cas_failed); // We did not see an unlocked object so try the fast recursive case. // Check if the owner is self by comparing the value in the markOop of object // (current_header) with the stack pointer. sub(current_header, current_header, R1_SP); load_const_optimized(temp, ~(os::vm_page_size()-1) | markOopDesc::lock_mask_in_place); and_(R0/*==0?*/, current_header, temp); // If condition is true we are cont and hence we can store 0 as the // displaced header in the box, which indicates that it is a recursive lock. mcrf(flag,CCR0); std(R0/*==0, perhaps*/, BasicLock::displaced_header_offset_in_bytes(), box); // Handle existing monitor. if ((EmitSync & 0x02) == 0) { b(cont); bind(object_has_monitor); // The object's monitor m is unlocked iff m->owner == NULL, // otherwise m->owner may contain a thread or a stack address. #if INCLUDE_RTM_OPT // Use the same RTM locking code in 32- and 64-bit VM. if (use_rtm) { rtm_inflated_locking(flag, oop, displaced_header, box, temp, /*temp*/ current_header, rtm_counters, method_data, profile_rtm, cont); } else { #endif // INCLUDE_RTM_OPT // Try to CAS m->owner from NULL to current thread. addi(temp, displaced_header, ObjectMonitor::owner_offset_in_bytes()-markOopDesc::monitor_value); cmpxchgd(/*flag=*/flag, /*current_value=*/current_header, /*compare_value=*/(intptr_t)0, /*exchange_value=*/R16_thread, /*where=*/temp, MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq, MacroAssembler::cmpxchgx_hint_acquire_lock()); // Store a non-null value into the box. std(box, BasicLock::displaced_header_offset_in_bytes(), box); # ifdef ASSERT bne(flag, cont); // We have acquired the monitor, check some invariants. addi(/*monitor=*/temp, temp, -ObjectMonitor::owner_offset_in_bytes()); // Invariant 1: _recursions should be 0. //assert(ObjectMonitor::recursions_size_in_bytes() == 8, "unexpected size"); asm_assert_mem8_is_zero(ObjectMonitor::recursions_offset_in_bytes(), temp, "monitor->_recursions should be 0", -1); // Invariant 2: OwnerIsThread shouldn't be 0. //assert(ObjectMonitor::OwnerIsThread_size_in_bytes() == 4, "unexpected size"); //asm_assert_mem4_isnot_zero(ObjectMonitor::OwnerIsThread_offset_in_bytes(), temp, // "monitor->OwnerIsThread shouldn't be 0", -1); # endif #if INCLUDE_RTM_OPT } // use_rtm() #endif } bind(cont); // flag == EQ indicates success // flag == NE indicates failure } void MacroAssembler::compiler_fast_unlock_object(ConditionRegister flag, Register oop, Register box, Register temp, Register displaced_header, Register current_header, bool try_bias, bool use_rtm) { assert_different_registers(oop, box, temp, displaced_header, current_header); assert(flag != CCR0, "bad condition register"); Label cont; Label object_has_monitor; // Always do locking in runtime. if (EmitSync & 0x01) { cmpdi(flag, oop, 0); // Oop can't be 0 here => always false. return; } if (try_bias) { biased_locking_exit(flag, oop, current_header, cont); } #if INCLUDE_RTM_OPT if (UseRTMForStackLocks && use_rtm) { assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking"); Label L_regular_unlock; ld(current_header, oopDesc::mark_offset_in_bytes(), oop); // fetch markword andi(R0, current_header, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits cmpwi(flag, R0, markOopDesc::unlocked_value); // bits = 001 unlocked bne(flag, L_regular_unlock); // else RegularLock tend_(); // otherwise end... b(cont); // ... and we're done bind(L_regular_unlock); } #endif // Find the lock address and load the displaced header from the stack. ld(displaced_header, BasicLock::displaced_header_offset_in_bytes(), box); // If the displaced header is 0, we have a recursive unlock. cmpdi(flag, displaced_header, 0); beq(flag, cont); // Handle existing monitor. if ((EmitSync & 0x02) == 0) { // The object has an existing monitor iff (mark & monitor_value) != 0. RTM_OPT_ONLY( if (!(UseRTMForStackLocks && use_rtm)) ) // skip load if already done ld(current_header, oopDesc::mark_offset_in_bytes(), oop); andi_(R0, current_header, markOopDesc::monitor_value); bne(CCR0, object_has_monitor); } // Check if it is still a light weight lock, this is is true if we see // the stack address of the basicLock in the markOop of the object. // Cmpxchg sets flag to cmpd(current_header, box). cmpxchgd(/*flag=*/flag, /*current_value=*/current_header, /*compare_value=*/box, /*exchange_value=*/displaced_header, /*where=*/oop, MacroAssembler::MemBarRel, MacroAssembler::cmpxchgx_hint_release_lock(), noreg, &cont); assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0"); // Handle existing monitor. if ((EmitSync & 0x02) == 0) { b(cont); bind(object_has_monitor); addi(current_header, current_header, -markOopDesc::monitor_value); // monitor ld(temp, ObjectMonitor::owner_offset_in_bytes(), current_header); // It's inflated. #if INCLUDE_RTM_OPT if (use_rtm) { Label L_regular_inflated_unlock; // Clean monitor_value bit to get valid pointer cmpdi(flag, temp, 0); bne(flag, L_regular_inflated_unlock); tend_(); b(cont); bind(L_regular_inflated_unlock); } #endif ld(displaced_header, ObjectMonitor::recursions_offset_in_bytes(), current_header); xorr(temp, R16_thread, temp); // Will be 0 if we are the owner. orr(temp, temp, displaced_header); // Will be 0 if there are 0 recursions. cmpdi(flag, temp, 0); bne(flag, cont); ld(temp, ObjectMonitor::EntryList_offset_in_bytes(), current_header); ld(displaced_header, ObjectMonitor::cxq_offset_in_bytes(), current_header); orr(temp, temp, displaced_header); // Will be 0 if both are 0. cmpdi(flag, temp, 0); bne(flag, cont); release(); std(temp, ObjectMonitor::owner_offset_in_bytes(), current_header); } bind(cont); // flag == EQ indicates success // flag == NE indicates failure } // Write serialization page so VM thread can do a pseudo remote membar. // We use the current thread pointer to calculate a thread specific // offset to write to within the page. This minimizes bus traffic // due to cache line collision. void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) { srdi(tmp2, thread, os::get_serialize_page_shift_count()); int mask = os::vm_page_size() - sizeof(int); if (Assembler::is_simm(mask, 16)) { andi(tmp2, tmp2, mask); } else { lis(tmp1, (int)((signed short) (mask >> 16))); ori(tmp1, tmp1, mask & 0x0000ffff); andr(tmp2, tmp2, tmp1); } load_const(tmp1, (long) os::get_memory_serialize_page()); release(); stwx(R0, tmp1, tmp2); } // GC barrier helper macros // Write the card table byte if needed. void MacroAssembler::card_write_barrier_post(Register Rstore_addr, Register Rnew_val, Register Rtmp) { CardTableModRefBS* bs = barrier_set_cast(Universe::heap()->barrier_set()); assert(bs->kind() == BarrierSet::CardTableForRS || bs->kind() == BarrierSet::CardTableExtension, "wrong barrier"); #ifdef ASSERT cmpdi(CCR0, Rnew_val, 0); asm_assert_ne("null oop not allowed", 0x321); #endif card_table_write(bs->byte_map_base, Rtmp, Rstore_addr); } // Write the card table byte. void MacroAssembler::card_table_write(jbyte* byte_map_base, Register Rtmp, Register Robj) { assert_different_registers(Robj, Rtmp, R0); load_const_optimized(Rtmp, (address)byte_map_base, R0); srdi(Robj, Robj, CardTableModRefBS::card_shift); li(R0, 0); // dirty if (UseConcMarkSweepGC) membar(Assembler::StoreStore); stbx(R0, Rtmp, Robj); } #if INCLUDE_ALL_GCS // General G1 pre-barrier generator. // Goal: record the previous value if it is not null. void MacroAssembler::g1_write_barrier_pre(Register Robj, RegisterOrConstant offset, Register Rpre_val, Register Rtmp1, Register Rtmp2, bool needs_frame) { Label runtime, filtered; // Is marking active? if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) { lwz(Rtmp1, in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_active()), R16_thread); } else { guarantee(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption"); lbz(Rtmp1, in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_active()), R16_thread); } cmpdi(CCR0, Rtmp1, 0); beq(CCR0, filtered); // Do we need to load the previous value? if (Robj != noreg) { // Load the previous value... if (UseCompressedOops) { lwz(Rpre_val, offset, Robj); } else { ld(Rpre_val, offset, Robj); } // Previous value has been loaded into Rpre_val. } assert(Rpre_val != noreg, "must have a real register"); // Is the previous value null? cmpdi(CCR0, Rpre_val, 0); beq(CCR0, filtered); if (Robj != noreg && UseCompressedOops) { decode_heap_oop_not_null(Rpre_val); } // OK, it's not filtered, so we'll need to call enqueue. In the normal // case, pre_val will be a scratch G-reg, but there are some cases in // which it's an O-reg. In the first case, do a normal call. In the // latter, do a save here and call the frameless version. // Can we store original value in the thread's buffer? // Is index == 0? // (The index field is typed as size_t.) const Register Rbuffer = Rtmp1, Rindex = Rtmp2; ld(Rindex, in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_index()), R16_thread); cmpdi(CCR0, Rindex, 0); beq(CCR0, runtime); // If index == 0, goto runtime. ld(Rbuffer, in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_buf()), R16_thread); addi(Rindex, Rindex, -wordSize); // Decrement index. std(Rindex, in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_index()), R16_thread); // Record the previous value. stdx(Rpre_val, Rbuffer, Rindex); b(filtered); bind(runtime); // VM call need frame to access(write) O register. if (needs_frame) { save_LR_CR(Rtmp1); push_frame_reg_args(0, Rtmp2); } if (Rpre_val->is_volatile() && Robj == noreg) mr(R31, Rpre_val); // Save pre_val across C call if it was preloaded. call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), Rpre_val, R16_thread); if (Rpre_val->is_volatile() && Robj == noreg) mr(Rpre_val, R31); // restore if (needs_frame) { pop_frame(); restore_LR_CR(Rtmp1); } bind(filtered); } // General G1 post-barrier generator // Store cross-region card. void MacroAssembler::g1_write_barrier_post(Register Rstore_addr, Register Rnew_val, Register Rtmp1, Register Rtmp2, Register Rtmp3, Label *filtered_ext) { Label runtime, filtered_int; Label& filtered = (filtered_ext != NULL) ? *filtered_ext : filtered_int; assert_different_registers(Rstore_addr, Rnew_val, Rtmp1, Rtmp2); G1SATBCardTableLoggingModRefBS* bs = barrier_set_cast(Universe::heap()->barrier_set()); // Does store cross heap regions? if (G1RSBarrierRegionFilter) { xorr(Rtmp1, Rstore_addr, Rnew_val); srdi_(Rtmp1, Rtmp1, HeapRegion::LogOfHRGrainBytes); beq(CCR0, filtered); } // Crosses regions, storing NULL? #ifdef ASSERT cmpdi(CCR0, Rnew_val, 0); asm_assert_ne("null oop not allowed (G1)", 0x322); // Checked by caller on PPC64, so following branch is obsolete: //beq(CCR0, filtered); #endif // Storing region crossing non-NULL, is card already dirty? assert(sizeof(*bs->byte_map_base) == sizeof(jbyte), "adjust this code"); const Register Rcard_addr = Rtmp1; Register Rbase = Rtmp2; load_const_optimized(Rbase, (address)bs->byte_map_base, /*temp*/ Rtmp3); srdi(Rcard_addr, Rstore_addr, CardTableModRefBS::card_shift); // Get the address of the card. lbzx(/*card value*/ Rtmp3, Rbase, Rcard_addr); cmpwi(CCR0, Rtmp3, (int)G1SATBCardTableModRefBS::g1_young_card_val()); beq(CCR0, filtered); membar(Assembler::StoreLoad); lbzx(/*card value*/ Rtmp3, Rbase, Rcard_addr); // Reload after membar. cmpwi(CCR0, Rtmp3 /* card value */, CardTableModRefBS::dirty_card_val()); beq(CCR0, filtered); // Storing a region crossing, non-NULL oop, card is clean. // Dirty card and log. li(Rtmp3, CardTableModRefBS::dirty_card_val()); //release(); // G1: oops are allowed to get visible after dirty marking. stbx(Rtmp3, Rbase, Rcard_addr); add(Rcard_addr, Rbase, Rcard_addr); // This is the address which needs to get enqueued. Rbase = noreg; // end of lifetime const Register Rqueue_index = Rtmp2, Rqueue_buf = Rtmp3; ld(Rqueue_index, in_bytes(JavaThread::dirty_card_queue_offset() + DirtyCardQueue::byte_offset_of_index()), R16_thread); cmpdi(CCR0, Rqueue_index, 0); beq(CCR0, runtime); // index == 0 then jump to runtime ld(Rqueue_buf, in_bytes(JavaThread::dirty_card_queue_offset() + DirtyCardQueue::byte_offset_of_buf()), R16_thread); addi(Rqueue_index, Rqueue_index, -wordSize); // decrement index std(Rqueue_index, in_bytes(JavaThread::dirty_card_queue_offset() + DirtyCardQueue::byte_offset_of_index()), R16_thread); stdx(Rcard_addr, Rqueue_buf, Rqueue_index); // store card b(filtered); bind(runtime); // Save the live input values. call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), Rcard_addr, R16_thread); bind(filtered_int); } #endif // INCLUDE_ALL_GCS // Values for last_Java_pc, and last_Java_sp must comply to the rules // in frame_ppc.hpp. void MacroAssembler::set_last_Java_frame(Register last_Java_sp, Register last_Java_pc) { // Always set last_Java_pc and flags first because once last_Java_sp // is visible has_last_Java_frame is true and users will look at the // rest of the fields. (Note: flags should always be zero before we // get here so doesn't need to be set.) // Verify that last_Java_pc was zeroed on return to Java asm_assert_mem8_is_zero(in_bytes(JavaThread::last_Java_pc_offset()), R16_thread, "last_Java_pc not zeroed before leaving Java", 0x200); // When returning from calling out from Java mode the frame anchor's // last_Java_pc will always be set to NULL. It is set here so that // if we are doing a call to native (not VM) that we capture the // known pc and don't have to rely on the native call having a // standard frame linkage where we can find the pc. if (last_Java_pc != noreg) std(last_Java_pc, in_bytes(JavaThread::last_Java_pc_offset()), R16_thread); // Set last_Java_sp last. std(last_Java_sp, in_bytes(JavaThread::last_Java_sp_offset()), R16_thread); } void MacroAssembler::reset_last_Java_frame(void) { asm_assert_mem8_isnot_zero(in_bytes(JavaThread::last_Java_sp_offset()), R16_thread, "SP was not set, still zero", 0x202); BLOCK_COMMENT("reset_last_Java_frame {"); li(R0, 0); // _last_Java_sp = 0 std(R0, in_bytes(JavaThread::last_Java_sp_offset()), R16_thread); // _last_Java_pc = 0 std(R0, in_bytes(JavaThread::last_Java_pc_offset()), R16_thread); BLOCK_COMMENT("} reset_last_Java_frame"); } void MacroAssembler::set_top_ijava_frame_at_SP_as_last_Java_frame(Register sp, Register tmp1) { assert_different_registers(sp, tmp1); // sp points to a TOP_IJAVA_FRAME, retrieve frame's PC via // TOP_IJAVA_FRAME_ABI. // FIXME: assert that we really have a TOP_IJAVA_FRAME here! address entry = pc(); load_const_optimized(tmp1, entry); set_last_Java_frame(/*sp=*/sp, /*pc=*/tmp1); } void MacroAssembler::get_vm_result(Register oop_result) { // Read: // R16_thread // R16_thread->in_bytes(JavaThread::vm_result_offset()) // // Updated: // oop_result // R16_thread->in_bytes(JavaThread::vm_result_offset()) verify_thread(); ld(oop_result, in_bytes(JavaThread::vm_result_offset()), R16_thread); li(R0, 0); std(R0, in_bytes(JavaThread::vm_result_offset()), R16_thread); verify_oop(oop_result); } void MacroAssembler::get_vm_result_2(Register metadata_result) { // Read: // R16_thread // R16_thread->in_bytes(JavaThread::vm_result_2_offset()) // // Updated: // metadata_result // R16_thread->in_bytes(JavaThread::vm_result_2_offset()) ld(metadata_result, in_bytes(JavaThread::vm_result_2_offset()), R16_thread); li(R0, 0); std(R0, in_bytes(JavaThread::vm_result_2_offset()), R16_thread); } Register MacroAssembler::encode_klass_not_null(Register dst, Register src) { Register current = (src != noreg) ? src : dst; // Klass is in dst if no src provided. if (Universe::narrow_klass_base() != 0) { // Use dst as temp if it is free. sub_const_optimized(dst, current, Universe::narrow_klass_base(), R0); current = dst; } if (Universe::narrow_klass_shift() != 0) { srdi(dst, current, Universe::narrow_klass_shift()); current = dst; } return current; } void MacroAssembler::store_klass(Register dst_oop, Register klass, Register ck) { if (UseCompressedClassPointers) { Register compressedKlass = encode_klass_not_null(ck, klass); stw(compressedKlass, oopDesc::klass_offset_in_bytes(), dst_oop); } else { std(klass, oopDesc::klass_offset_in_bytes(), dst_oop); } } void MacroAssembler::store_klass_gap(Register dst_oop, Register val) { if (UseCompressedClassPointers) { if (val == noreg) { val = R0; li(val, 0); } stw(val, oopDesc::klass_gap_offset_in_bytes(), dst_oop); // klass gap if compressed } } int MacroAssembler::instr_size_for_decode_klass_not_null() { if (!UseCompressedClassPointers) return 0; int num_instrs = 1; // shift or move if (Universe::narrow_klass_base() != 0) num_instrs = 7; // shift + load const + add return num_instrs * BytesPerInstWord; } void MacroAssembler::decode_klass_not_null(Register dst, Register src) { assert(dst != R0, "Dst reg may not be R0, as R0 is used here."); if (src == noreg) src = dst; Register shifted_src = src; if (Universe::narrow_klass_shift() != 0 || Universe::narrow_klass_base() == 0 && src != dst) { // Move required. shifted_src = dst; sldi(shifted_src, src, Universe::narrow_klass_shift()); } if (Universe::narrow_klass_base() != 0) { add_const_optimized(dst, shifted_src, Universe::narrow_klass_base(), R0); } } void MacroAssembler::load_klass(Register dst, Register src) { if (UseCompressedClassPointers) { lwz(dst, oopDesc::klass_offset_in_bytes(), src); // Attention: no null check here! decode_klass_not_null(dst, dst); } else { ld(dst, oopDesc::klass_offset_in_bytes(), src); } } // Clear Array // Kills both input registers. tmp == R0 is allowed. void MacroAssembler::clear_memory_doubleword(Register base_ptr, Register cnt_dwords, Register tmp) { // Procedure for large arrays (uses data cache block zero instruction). Label startloop, fast, fastloop, small_rest, restloop, done; const int cl_size = VM_Version::L1_data_cache_line_size(), cl_dwords = cl_size>>3, cl_dw_addr_bits = exact_log2(cl_dwords), dcbz_min = 1; // Min count of dcbz executions, needs to be >0. //2: cmpdi(CCR1, cnt_dwords, ((dcbz_min+1)<=dcbz_min lines included). blt(CCR1, small_rest); // Too small. rldicl_(tmp, base_ptr, 64-3, 64-cl_dw_addr_bits); // Extract dword offset within first cache line. beq(CCR0, fast); // Already 128byte aligned. subfic(tmp, tmp, cl_dwords); mtctr(tmp); // Set ctr to hit 128byte boundary (00). andi(cnt_dwords, cnt_dwords, cl_dwords-1); // Rest in dwords. mtctr(tmp); // Load counter. //16: bind(fastloop); dcbz(base_ptr); // Clear 128byte aligned block. addi(base_ptr, base_ptr, cl_size); bdnz(fastloop); if (InsertEndGroupPPC64) { endgroup(); } else { nop(); } //20: bind(small_rest); cmpdi(CCR0, cnt_dwords, 0); // size 0? beq(CCR0, done); // rest == 0 li(tmp, 0); mtctr(cnt_dwords); // Load counter. //24: bind(restloop); // Clear rest. std(tmp, 0, base_ptr); // Clear 8byte aligned block. addi(base_ptr, base_ptr, 8); bdnz(restloop); //27: bind(done); } /////////////////////////////////////////// String intrinsics //////////////////////////////////////////// // Search for a single jchar in an jchar[]. // // Assumes that result differs from all other registers. // // Haystack, needle are the addresses of jchar-arrays. // NeedleChar is needle[0] if it is known at compile time. // Haycnt is the length of the haystack. We assume haycnt >=1. // // Preserves haystack, haycnt, kills all other registers. // // If needle == R0, we search for the constant needleChar. void MacroAssembler::string_indexof_1(Register result, Register haystack, Register haycnt, Register needle, jchar needleChar, Register tmp1, Register tmp2) { assert_different_registers(result, haystack, haycnt, needle, tmp1, tmp2); Label L_InnerLoop, L_FinalCheck, L_Found1, L_Found2, L_Found3, L_NotFound, L_End; Register needle0 = needle, // Contains needle[0]. addr = tmp1, ch1 = tmp2, ch2 = R0; //2 (variable) or 3 (const): if (needle != R0) lhz(needle0, 0, needle); // Preload needle character, needle has len==1. dcbtct(haystack, 0x00); // Indicate R/O access to haystack. srwi_(tmp2, haycnt, 1); // Shift right by exact_log2(UNROLL_FACTOR). mr(addr, haystack); beq(CCR0, L_FinalCheck); mtctr(tmp2); // Move to count register. //8: bind(L_InnerLoop); // Main work horse (2x unrolled search loop). lhz(ch1, 0, addr); // Load characters from haystack. lhz(ch2, 2, addr); (needle != R0) ? cmpw(CCR0, ch1, needle0) : cmplwi(CCR0, ch1, needleChar); (needle != R0) ? cmpw(CCR1, ch2, needle0) : cmplwi(CCR1, ch2, needleChar); beq(CCR0, L_Found1); // Did we find the needle? beq(CCR1, L_Found2); addi(addr, addr, 4); bdnz(L_InnerLoop); //16: bind(L_FinalCheck); andi_(R0, haycnt, 1); beq(CCR0, L_NotFound); lhz(ch1, 0, addr); // One position left at which we have to compare. (needle != R0) ? cmpw(CCR1, ch1, needle0) : cmplwi(CCR1, ch1, needleChar); beq(CCR1, L_Found3); //21: bind(L_NotFound); li(result, -1); // Not found. b(L_End); bind(L_Found2); addi(addr, addr, 2); //24: bind(L_Found1); bind(L_Found3); // Return index ... subf(addr, haystack, addr); // relative to haystack, srdi(result, addr, 1); // in characters. bind(L_End); } // Implementation of IndexOf for jchar arrays. // // The length of haystack and needle are not constant, i.e. passed in a register. // // Preserves registers haystack, needle. // Kills registers haycnt, needlecnt. // Assumes that result differs from all other registers. // Haystack, needle are the addresses of jchar-arrays. // Haycnt, needlecnt are the lengths of them, respectively. // // Needlecntval must be zero or 15-bit unsigned immediate and > 1. void MacroAssembler::string_indexof(Register result, Register haystack, Register haycnt, Register needle, ciTypeArray* needle_values, Register needlecnt, int needlecntval, Register tmp1, Register tmp2, Register tmp3, Register tmp4) { // Ensure 0=2, bail out otherwise. // ************************************************************************************************** //1 (variable) or 3 (const): dcbtct(needle, 0x00); // Indicate R/O access to str1. dcbtct(haystack, 0x00); // Indicate R/O access to str2. // Compute last haystack addr to use if no match gets found. if (needlecntval == 0) { // variable needlecnt //3: subf(ch1, needlecnt, haycnt); // Last character index to compare is haycnt-needlecnt. addi(addr, haystack, -2); // Accesses use pre-increment. cmpwi(CCR6, needlecnt, 2); blt(CCR6, L_TooShort); // Variable needlecnt: handle short needle separately. slwi(ch1, ch1, 1); // Scale to number of bytes. lwz(n_start, 0, needle); // Load first 2 characters of needle. add(last_addr, haystack, ch1); // Point to last address to compare (haystack+2*(haycnt-needlecnt)). addi(needlecnt, needlecnt, -2); // Rest of needle. } else { // constant needlecnt guarantee(needlecntval != 1, "IndexOf with single-character needle must be handled separately"); assert((needlecntval & 0x7fff) == needlecntval, "wrong immediate"); //5: addi(ch1, haycnt, -needlecntval); // Last character index to compare is haycnt-needlecnt. lwz(n_start, 0, needle); // Load first 2 characters of needle. addi(addr, haystack, -2); // Accesses use pre-increment. slwi(ch1, ch1, 1); // Scale to number of bytes. add(last_addr, haystack, ch1); // Point to last address to compare (haystack+2*(haycnt-needlecnt)). li(needlecnt, needlecntval-2); // Rest of needle. } // Main Loop (now we have at least 3 characters). //11: Label L_OuterLoop, L_InnerLoop, L_FinalCheck, L_Comp1, L_Comp2, L_Comp3; bind(L_OuterLoop); // Search for 1st 2 characters. Register addr_diff = tmp4; subf(addr_diff, addr, last_addr); // Difference between already checked address and last address to check. addi(addr, addr, 2); // This is the new address we want to use for comparing. srdi_(ch2, addr_diff, 2); beq(CCR0, L_FinalCheck); // 2 characters left? mtctr(ch2); // addr_diff/4 //16: bind(L_InnerLoop); // Main work horse (2x unrolled search loop) lwz(ch1, 0, addr); // Load 2 characters of haystack (ignore alignment). lwz(ch2, 2, addr); cmpw(CCR0, ch1, n_start); // Compare 2 characters (1 would be sufficient but try to reduce branches to CompLoop). cmpw(CCR1, ch2, n_start); beq(CCR0, L_Comp1); // Did we find the needle start? beq(CCR1, L_Comp2); addi(addr, addr, 4); bdnz(L_InnerLoop); //24: bind(L_FinalCheck); rldicl_(addr_diff, addr_diff, 64-1, 63); // Remaining characters not covered by InnerLoop: (addr_diff>>1)&1. beq(CCR0, L_NotFound); lwz(ch1, 0, addr); // One position left at which we have to compare. cmpw(CCR1, ch1, n_start); beq(CCR1, L_Comp3); //29: bind(L_NotFound); li(result, -1); // not found b(L_End); // ************************************************************************************************** // Special Case: unfortunately, the variable needle case can be called with needlecnt<2 // ************************************************************************************************** //31: if ((needlecntval>>1) !=1 ) { // Const needlecnt is 2 or 3? Reduce code size. int nopcnt = 5; if (needlecntval !=0 ) ++nopcnt; // Balance alignment (other case: see below). if (needlecntval == 0) { // We have to handle these cases separately. Label L_OneCharLoop; bind(L_TooShort); mtctr(haycnt); lhz(n_start, 0, needle); // First character of needle bind(L_OneCharLoop); lhzu(ch1, 2, addr); cmpw(CCR1, ch1, n_start); beq(CCR1, L_Found); // Did we find the one character needle? bdnz(L_OneCharLoop); li(result, -1); // Not found. b(L_End); } // 8 instructions, so no impact on alignment. for (int x = 0; x < nopcnt; ++x) nop(); } // ************************************************************************************************** // Regular Case Part II: compare rest of needle (first 2 characters have been compared already) // ************************************************************************************************** // Compare the rest //36 if needlecntval==0, else 37: bind(L_Comp2); addi(addr, addr, 2); // First comparison has failed, 2nd one hit. bind(L_Comp1); // Addr points to possible needle start. bind(L_Comp3); // Could have created a copy and use a different return address but saving code size here. if (needlecntval != 2) { // Const needlecnt==2? if (needlecntval != 3) { if (needlecntval == 0) beq(CCR6, L_Found); // Variable needlecnt==2? Register ind_reg = tmp4; li(ind_reg, 2*2); // First 2 characters are already compared, use index 2. mtctr(needlecnt); // Decremented by 2, still > 0. //40: Label L_CompLoop; bind(L_CompLoop); lhzx(ch2, needle, ind_reg); lhzx(ch1, addr, ind_reg); cmpw(CCR1, ch1, ch2); bne(CCR1, L_OuterLoop); addi(ind_reg, ind_reg, 2); bdnz(L_CompLoop); } else { // No loop required if there's only one needle character left. lhz(ch2, 2*2, needle); lhz(ch1, 2*2, addr); cmpw(CCR1, ch1, ch2); bne(CCR1, L_OuterLoop); } } // Return index ... //46: bind(L_Found); subf(addr, haystack, addr); // relative to haystack, ... srdi(result, addr, 1); // in characters. //48: bind(L_End); } // Implementation of Compare for jchar arrays. // // Kills the registers str1, str2, cnt1, cnt2. // Kills cr0, ctr. // Assumes that result differes from the input registers. void MacroAssembler::string_compare(Register str1_reg, Register str2_reg, Register cnt1_reg, Register cnt2_reg, Register result_reg, Register tmp_reg) { assert_different_registers(result_reg, str1_reg, str2_reg, cnt1_reg, cnt2_reg, tmp_reg); Label Ldone, Lslow_case, Lslow_loop, Lfast_loop; Register cnt_diff = R0, limit_reg = cnt1_reg, chr1_reg = result_reg, chr2_reg = cnt2_reg, addr_diff = str2_reg; // Offset 0 should be 32 byte aligned. //-4: dcbtct(str1_reg, 0x00); // Indicate R/O access to str1. dcbtct(str2_reg, 0x00); // Indicate R/O access to str2. //-2: // Compute min(cnt1, cnt2) and check if 0 (bail out if we don't need to compare characters). subf(result_reg, cnt2_reg, cnt1_reg); // difference between cnt1/2 subf_(addr_diff, str1_reg, str2_reg); // alias? beq(CCR0, Ldone); // return cnt difference if both ones are identical srawi(limit_reg, result_reg, 31); // generate signmask (cnt1/2 must be non-negative so cnt_diff can't overflow) mr(cnt_diff, result_reg); andr(limit_reg, result_reg, limit_reg); // difference or zero (negative): cnt14 characters for fast loop andi(limit_reg, tmp_reg, 4-1); // remaining characters // Adapt str1_reg str2_reg for the first loop iteration mtctr(chr2_reg); // (min(cnt1, cnt2)-1)/4 addi(limit_reg, limit_reg, 4+1); // compare last 5-8 characters in slow_case if mismatch found in fast_loop //16: // Compare the rest of the characters bind(Lfast_loop); ld(chr1_reg, 0, str1_reg); ldx(chr2_reg, str1_reg, addr_diff); cmpd(CCR0, chr2_reg, chr1_reg); bne(CCR0, Lslow_case); // return chr1_reg addi(str1_reg, str1_reg, 4*2); bdnz(Lfast_loop); addi(limit_reg, limit_reg, -4); // no mismatch found in fast_loop, only 1-4 characters missing //23: bind(Lslow_case); mtctr(limit_reg); //24: bind(Lslow_loop); lhz(chr1_reg, 0, str1_reg); lhzx(chr2_reg, str1_reg, addr_diff); subf_(result_reg, chr2_reg, chr1_reg); bne(CCR0, Ldone); // return chr1_reg addi(str1_reg, str1_reg, 1*2); bdnz(Lslow_loop); //30: // If strings are equal up to min length, return the length difference. mr(result_reg, cnt_diff); nop(); // alignment //32: // Otherwise, return the difference between the first mismatched chars. bind(Ldone); } // Compare char[] arrays. // // str1_reg USE only // str2_reg USE only // cnt_reg USE_DEF, due to tmp reg shortage // result_reg DEF only, might compromise USE only registers void MacroAssembler::char_arrays_equals(Register str1_reg, Register str2_reg, Register cnt_reg, Register result_reg, Register tmp1_reg, Register tmp2_reg, Register tmp3_reg, Register tmp4_reg, Register tmp5_reg) { // Str1 may be the same register as str2 which can occur e.g. after scalar replacement. assert_different_registers(result_reg, str1_reg, cnt_reg, tmp1_reg, tmp2_reg, tmp3_reg, tmp4_reg, tmp5_reg); assert_different_registers(result_reg, str2_reg, cnt_reg, tmp1_reg, tmp2_reg, tmp3_reg, tmp4_reg, tmp5_reg); // Offset 0 should be 32 byte aligned. Label Linit_cbc, Lcbc, Lloop, Ldone_true, Ldone_false; Register index_reg = tmp5_reg; Register cbc_iter = tmp4_reg; //-1: dcbtct(str1_reg, 0x00); // Indicate R/O access to str1. dcbtct(str2_reg, 0x00); // Indicate R/O access to str2. //1: andi(cbc_iter, cnt_reg, 4-1); // Remaining iterations after 4 java characters per iteration loop. li(index_reg, 0); // init li(result_reg, 0); // assume false srwi_(tmp2_reg, cnt_reg, exact_log2(4)); // Div: 4 java characters per iteration (main loop). cmpwi(CCR1, cbc_iter, 0); // CCR1 = (cbc_iter==0) beq(CCR0, Linit_cbc); // too short mtctr(tmp2_reg); //8: bind(Lloop); ldx(tmp1_reg, str1_reg, index_reg); ldx(tmp2_reg, str2_reg, index_reg); cmpd(CCR0, tmp1_reg, tmp2_reg); bne(CCR0, Ldone_false); // Unequal char pair found -> done. addi(index_reg, index_reg, 4*sizeof(jchar)); bdnz(Lloop); //14: bind(Linit_cbc); beq(CCR1, Ldone_true); mtctr(cbc_iter); //16: bind(Lcbc); lhzx(tmp1_reg, str1_reg, index_reg); lhzx(tmp2_reg, str2_reg, index_reg); cmpw(CCR0, tmp1_reg, tmp2_reg); bne(CCR0, Ldone_false); // Unequal char pair found -> done. addi(index_reg, index_reg, 1*sizeof(jchar)); bdnz(Lcbc); nop(); bind(Ldone_true); li(result_reg, 1); //24: bind(Ldone_false); } void MacroAssembler::char_arrays_equalsImm(Register str1_reg, Register str2_reg, int cntval, Register result_reg, Register tmp1_reg, Register tmp2_reg) { // Str1 may be the same register as str2 which can occur e.g. after scalar replacement. assert_different_registers(result_reg, str1_reg, tmp1_reg, tmp2_reg); assert_different_registers(result_reg, str2_reg, tmp1_reg, tmp2_reg); assert(sizeof(jchar) == 2, "must be"); assert(cntval >= 0 && ((cntval & 0x7fff) == cntval), "wrong immediate"); Label Ldone_false; if (cntval < 16) { // short case if (cntval != 0) li(result_reg, 0); // assume false const int num_bytes = cntval*sizeof(jchar); int index = 0; for (int next_index; (next_index = index + 8) <= num_bytes; index = next_index) { ld(tmp1_reg, index, str1_reg); ld(tmp2_reg, index, str2_reg); cmpd(CCR0, tmp1_reg, tmp2_reg); bne(CCR0, Ldone_false); } if (cntval & 2) { lwz(tmp1_reg, index, str1_reg); lwz(tmp2_reg, index, str2_reg); cmpw(CCR0, tmp1_reg, tmp2_reg); bne(CCR0, Ldone_false); index += 4; } if (cntval & 1) { lhz(tmp1_reg, index, str1_reg); lhz(tmp2_reg, index, str2_reg); cmpw(CCR0, tmp1_reg, tmp2_reg); bne(CCR0, Ldone_false); } // fallthrough: true } else { Label Lloop; Register index_reg = tmp1_reg; const int loopcnt = cntval/4; assert(loopcnt > 0, "must be"); // Offset 0 should be 32 byte aligned. //2: dcbtct(str1_reg, 0x00); // Indicate R/O access to str1. dcbtct(str2_reg, 0x00); // Indicate R/O access to str2. li(tmp2_reg, loopcnt); li(index_reg, 0); // init li(result_reg, 0); // assume false mtctr(tmp2_reg); //8: bind(Lloop); ldx(R0, str1_reg, index_reg); ldx(tmp2_reg, str2_reg, index_reg); cmpd(CCR0, R0, tmp2_reg); bne(CCR0, Ldone_false); // Unequal char pair found -> done. addi(index_reg, index_reg, 4*sizeof(jchar)); bdnz(Lloop); //14: if (cntval & 2) { lwzx(R0, str1_reg, index_reg); lwzx(tmp2_reg, str2_reg, index_reg); cmpw(CCR0, R0, tmp2_reg); bne(CCR0, Ldone_false); if (cntval & 1) addi(index_reg, index_reg, 2*sizeof(jchar)); } if (cntval & 1) { lhzx(R0, str1_reg, index_reg); lhzx(tmp2_reg, str2_reg, index_reg); cmpw(CCR0, R0, tmp2_reg); bne(CCR0, Ldone_false); } // fallthru: true } li(result_reg, 1); bind(Ldone_false); } // Helpers for Intrinsic Emitters // // Revert the byte order of a 32bit value in a register // src: 0x44556677 // dst: 0x77665544 // Three steps to obtain the result: // 1) Rotate src (as doubleword) left 5 bytes. That puts the leftmost byte of the src word // into the rightmost byte position. Afterwards, everything left of the rightmost byte is cleared. // This value initializes dst. // 2) Rotate src (as word) left 3 bytes. That puts the rightmost byte of the src word into the leftmost // byte position. Furthermore, byte 5 is rotated into byte 6 position where it is supposed to go. // This value is mask inserted into dst with a [0..23] mask of 1s. // 3) Rotate src (as word) left 1 byte. That puts byte 6 into byte 5 position. // This value is mask inserted into dst with a [8..15] mask of 1s. void MacroAssembler::load_reverse_32(Register dst, Register src) { assert_different_registers(dst, src); rldicl(dst, src, (4+1)*8, 56); // Rotate byte 4 into position 7 (rightmost), clear all to the left. rlwimi(dst, src, 3*8, 0, 23); // Insert byte 5 into position 6, 7 into 4, leave pos 7 alone. rlwimi(dst, src, 1*8, 8, 15); // Insert byte 6 into position 5, leave the rest alone. } // Calculate the column addresses of the crc32 lookup table into distinct registers. // This loop-invariant calculation is moved out of the loop body, reducing the loop // body size from 20 to 16 instructions. // Returns the offset that was used to calculate the address of column tc3. // Due to register shortage, setting tc3 may overwrite table. With the return offset // at hand, the original table address can be easily reconstructed. int MacroAssembler::crc32_table_columns(Register table, Register tc0, Register tc1, Register tc2, Register tc3) { #ifdef VM_LITTLE_ENDIAN // This is what we implement (the DOLIT4 part): // ========================================================================= */ // #define DOLIT4 c ^= *buf4++; \ // c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \ // crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24] // #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4 // ========================================================================= */ const int ix0 = 3*(4*CRC32_COLUMN_SIZE); const int ix1 = 2*(4*CRC32_COLUMN_SIZE); const int ix2 = 1*(4*CRC32_COLUMN_SIZE); const int ix3 = 0*(4*CRC32_COLUMN_SIZE); #else // This is what we implement (the DOBIG4 part): // ========================================================================= // #define DOBIG4 c ^= *++buf4; \ // c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \ // crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24] // #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4 // ========================================================================= const int ix0 = 4*(4*CRC32_COLUMN_SIZE); const int ix1 = 5*(4*CRC32_COLUMN_SIZE); const int ix2 = 6*(4*CRC32_COLUMN_SIZE); const int ix3 = 7*(4*CRC32_COLUMN_SIZE); #endif assert_different_registers(table, tc0, tc1, tc2); assert(table == tc3, "must be!"); if (ix0 != 0) addi(tc0, table, ix0); if (ix1 != 0) addi(tc1, table, ix1); if (ix2 != 0) addi(tc2, table, ix2); if (ix3 != 0) addi(tc3, table, ix3); return ix3; } /** * uint32_t crc; * timesXtoThe32[crc & 0xFF] ^ (crc >> 8); */ void MacroAssembler::fold_byte_crc32(Register crc, Register val, Register table, Register tmp) { assert_different_registers(crc, table, tmp); assert_different_registers(val, table); if (crc == val) { // Must rotate first to use the unmodified value. rlwinm(tmp, val, 2, 24-2, 31-2); // Insert (rightmost) byte 7 of val, shifted left by 2, into byte 6..7 of tmp, clear the rest. // As we use a word (4-byte) instruction, we have to adapt the mask bit positions. srwi(crc, crc, 8); // Unsigned shift, clear leftmost 8 bits. } else { srwi(crc, crc, 8); // Unsigned shift, clear leftmost 8 bits. rlwinm(tmp, val, 2, 24-2, 31-2); // Insert (rightmost) byte 7 of val, shifted left by 2, into byte 6..7 of tmp, clear the rest. } lwzx(tmp, table, tmp); xorr(crc, crc, tmp); } /** * uint32_t crc; * timesXtoThe32[crc & 0xFF] ^ (crc >> 8); */ void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) { fold_byte_crc32(crc, crc, table, tmp); } /** * Emits code to update CRC-32 with a byte value according to constants in table. * * @param [in,out]crc Register containing the crc. * @param [in]val Register containing the byte to fold into the CRC. * @param [in]table Register containing the table of crc constants. * * uint32_t crc; * val = crc_table[(val ^ crc) & 0xFF]; * crc = val ^ (crc >> 8); */ void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { BLOCK_COMMENT("update_byte_crc32:"); xorr(val, val, crc); fold_byte_crc32(crc, val, table, val); } /** * @param crc register containing existing CRC (32-bit) * @param buf register pointing to input byte buffer (byte*) * @param len register containing number of bytes * @param table register pointing to CRC table */ void MacroAssembler::update_byteLoop_crc32(Register crc, Register buf, Register len, Register table, Register data, bool loopAlignment, bool invertCRC) { assert_different_registers(crc, buf, len, table, data); Label L_mainLoop, L_done; const int mainLoop_stepping = 1; const int mainLoop_alignment = loopAlignment ? 32 : 4; // (InputForNewCode > 4 ? InputForNewCode : 32) : 4; // Process all bytes in a single-byte loop. cmpdi(CCR0, len, 0); // Anything to do? mtctr(len); beq(CCR0, L_done); if (invertCRC) { nand(crc, crc, crc); // ~c } align(mainLoop_alignment); BIND(L_mainLoop); lbz(data, 0, buf); // Byte from buffer, zero-extended. addi(buf, buf, mainLoop_stepping); // Advance buffer position. update_byte_crc32(crc, data, table); bdnz(L_mainLoop); // Iterate. if (invertCRC) { nand(crc, crc, crc); // ~c } bind(L_done); } /** * Emits code to update CRC-32 with a 4-byte value according to constants in table * Implementation according to jdk/src/share/native/java/util/zip/zlib-1.2.8/crc32.c */ // A not on the lookup table address(es): // The lookup table consists of two sets of four columns each. // The columns {0..3} are used for little-endian machines. // The columns {4..7} are used for big-endian machines. // To save the effort of adding the column offset to the table address each time // a table element is looked up, it is possible to pass the pre-calculated // column addresses. // Uses R9..R12 as work register. Must be saved/restored by caller, if necessary. void MacroAssembler::update_1word_crc32(Register crc, Register buf, Register table, int bufDisp, int bufInc, Register t0, Register t1, Register t2, Register t3, Register tc0, Register tc1, Register tc2, Register tc3) { assert_different_registers(crc, t3); // XOR crc with next four bytes of buffer. lwz(t3, bufDisp, buf); if (bufInc != 0) { addi(buf, buf, bufInc); } xorr(t3, t3, crc); // Chop crc into 4 single-byte pieces, shifted left 2 bits, to form the table indices. rlwinm(t0, t3, 2, 24-2, 31-2); // ((t1 >> 0) & 0xff) << 2 rlwinm(t1, t3, 32+(2- 8), 24-2, 31-2); // ((t1 >> 8) & 0xff) << 2 rlwinm(t2, t3, 32+(2-16), 24-2, 31-2); // ((t1 >> 16) & 0xff) << 2 rlwinm(t3, t3, 32+(2-24), 24-2, 31-2); // ((t1 >> 24) & 0xff) << 2 // Use the pre-calculated column addresses. // Load pre-calculated table values. lwzx(t0, tc0, t0); lwzx(t1, tc1, t1); lwzx(t2, tc2, t2); lwzx(t3, tc3, t3); // Calculate new crc from table values. xorr(t0, t0, t1); xorr(t2, t2, t3); xorr(crc, t0, t2); // Now crc contains the final checksum value. } /** * @param crc register containing existing CRC (32-bit) * @param buf register pointing to input byte buffer (byte*) * @param len register containing number of bytes * @param table register pointing to CRC table * * Uses R9..R12 as work register. Must be saved/restored by caller! */ void MacroAssembler::kernel_crc32_2word(Register crc, Register buf, Register len, Register table, Register t0, Register t1, Register t2, Register t3, Register tc0, Register tc1, Register tc2, Register tc3) { assert_different_registers(crc, buf, len, table); Label L_mainLoop, L_tail; Register tmp = t0; Register data = t0; Register tmp2 = t1; const int mainLoop_stepping = 8; const int tailLoop_stepping = 1; const int log_stepping = exact_log2(mainLoop_stepping); const int mainLoop_alignment = 32; // InputForNewCode > 4 ? InputForNewCode : 32; const int complexThreshold = 2*mainLoop_stepping; // Don't test for len <= 0 here. This pathological case should not occur anyway. // Optimizing for it by adding a test and a branch seems to be a waste of CPU cycles. // The situation itself is detected and handled correctly by the conditional branches // following aghi(len, -stepping) and aghi(len, +stepping). assert(tailLoop_stepping == 1, "check tailLoop_stepping!"); BLOCK_COMMENT("kernel_crc32_2word {"); nand(crc, crc, crc); // ~c // Check for short ( mainLoop_stepping) { sub(len, len, tmp2); // Remaining bytes for main loop (>=mainLoop_stepping is guaranteed). } else { sub(tmp, len, tmp2); // Remaining bytes for main loop. cmpdi(CCR0, tmp, mainLoop_stepping); blt(CCR0, L_tail); // For less than one mainloop_stepping left, do only tail processing mr(len, tmp); // remaining bytes for main loop (>=mainLoop_stepping is guaranteed). } update_byteLoop_crc32(crc, buf, tmp2, table, data, false, false); } srdi(tmp2, len, log_stepping); // #iterations for mainLoop andi(len, len, mainLoop_stepping-1); // remaining bytes for tailLoop mtctr(tmp2); #ifdef VM_LITTLE_ENDIAN Register crc_rv = crc; #else Register crc_rv = tmp; // Load_reverse needs separate registers to work on. // Occupies tmp, but frees up crc. load_reverse_32(crc_rv, crc); // Revert byte order because we are dealing with big-endian data. tmp = crc; #endif int reconstructTableOffset = crc32_table_columns(table, tc0, tc1, tc2, tc3); align(mainLoop_alignment); // Octoword-aligned loop address. Shows 2% improvement. BIND(L_mainLoop); update_1word_crc32(crc_rv, buf, table, 0, 0, crc_rv, t1, t2, t3, tc0, tc1, tc2, tc3); update_1word_crc32(crc_rv, buf, table, 4, mainLoop_stepping, crc_rv, t1, t2, t3, tc0, tc1, tc2, tc3); bdnz(L_mainLoop); #ifndef VM_LITTLE_ENDIAN load_reverse_32(crc, crc_rv); // Revert byte order because we are dealing with big-endian data. tmp = crc_rv; // Tmp uses it's original register again. #endif // Restore original table address for tailLoop. if (reconstructTableOffset != 0) { addi(table, table, -reconstructTableOffset); } // Process last few ( 4 ? InputForNewCode : 32; const int complexThreshold = 2*mainLoop_stepping; // Don't test for len <= 0 here. This pathological case should not occur anyway. // Optimizing for it by adding a test and a branch seems to be a waste of CPU cycles. // The situation itself is detected and handled correctly by the conditional branches // following aghi(len, -stepping) and aghi(len, +stepping). assert(tailLoop_stepping == 1, "check tailLoop_stepping!"); BLOCK_COMMENT("kernel_crc32_1word {"); nand(crc, crc, crc); // ~c // Check for short ( mainLoop_stepping) { sub(len, len, tmp2); // Remaining bytes for main loop (>=mainLoop_stepping is guaranteed). } else { sub(tmp, len, tmp2); // Remaining bytes for main loop. cmpdi(CCR0, tmp, mainLoop_stepping); blt(CCR0, L_tail); // For less than one mainloop_stepping left, do only tail processing mr(len, tmp); // remaining bytes for main loop (>=mainLoop_stepping is guaranteed). } update_byteLoop_crc32(crc, buf, tmp2, table, data, false, false); } srdi(tmp2, len, log_stepping); // #iterations for mainLoop andi(len, len, mainLoop_stepping-1); // remaining bytes for tailLoop mtctr(tmp2); #ifdef VM_LITTLE_ENDIAN Register crc_rv = crc; #else Register crc_rv = tmp; // Load_reverse needs separate registers to work on. // Occupies tmp, but frees up crc. load_reverse_32(crc_rv, crc); // evert byte order because we are dealing with big-endian data. tmp = crc; #endif int reconstructTableOffset = crc32_table_columns(table, tc0, tc1, tc2, tc3); align(mainLoop_alignment); // Octoword-aligned loop address. Shows 2% improvement. BIND(L_mainLoop); update_1word_crc32(crc_rv, buf, table, 0, mainLoop_stepping, crc_rv, t1, t2, t3, tc0, tc1, tc2, tc3); bdnz(L_mainLoop); #ifndef VM_LITTLE_ENDIAN load_reverse_32(crc, crc_rv); // Revert byte order because we are dealing with big-endian data. tmp = crc_rv; // Tmp uses it's original register again. #endif // Restore original table address for tailLoop. if (reconstructTableOffset != 0) { addi(table, table, -reconstructTableOffset); } // Process last few (= 0; idx--, kdx--) { // huge_128 product = y[idx] * x[xstart] + carry; // z[kdx] = (jlong)product; // carry = (jlong)(product >>> 64); // } // z[xstart] = carry; Label L_first_loop, L_first_loop_exit; Label L_one_x, L_one_y, L_multiply; addic_(xstart, xstart, -1); blt(CCR0, L_one_x); // Special case: length of x is 1. // Load next two integers of x. sldi(tmp, xstart, LogBytesPerInt); ldx(x_xstart, x, tmp); #ifdef VM_LITTLE_ENDIAN rldicl(x_xstart, x_xstart, 32, 0); #endif align(32, 16); bind(L_first_loop); cmpdi(CCR0, idx, 1); blt(CCR0, L_first_loop_exit); addi(idx, idx, -2); beq(CCR0, L_one_y); // Load next two integers of y. sldi(tmp, idx, LogBytesPerInt); ldx(y_idx, y, tmp); #ifdef VM_LITTLE_ENDIAN rldicl(y_idx, y_idx, 32, 0); #endif bind(L_multiply); multiply64(product_high, product, x_xstart, y_idx); li(tmp, 0); addc(product, product, carry); // Add carry to result. adde(product_high, product_high, tmp); // Add carry of the last addition. addi(kdx, kdx, -2); // Store result. #ifdef VM_LITTLE_ENDIAN rldicl(product, product, 32, 0); #endif sldi(tmp, kdx, LogBytesPerInt); stdx(product, z, tmp); mr_if_needed(carry, product_high); b(L_first_loop); bind(L_one_y); // Load one 32 bit portion of y as (0,value). lwz(y_idx, 0, y); b(L_multiply); bind(L_one_x); // Load one 32 bit portion of x as (0,value). lwz(x_xstart, 0, x); b(L_first_loop); bind(L_first_loop_exit); } // Multiply 64 bit by 64 bit and add 128 bit. void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z, Register yz_idx, Register idx, Register carry, Register product_high, Register product, Register tmp, int offset) { // huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry; // z[kdx] = (jlong)product; sldi(tmp, idx, LogBytesPerInt); if (offset) { addi(tmp, tmp, offset); } ldx(yz_idx, y, tmp); #ifdef VM_LITTLE_ENDIAN rldicl(yz_idx, yz_idx, 32, 0); #endif multiply64(product_high, product, x_xstart, yz_idx); ldx(yz_idx, z, tmp); #ifdef VM_LITTLE_ENDIAN rldicl(yz_idx, yz_idx, 32, 0); #endif add2_with_carry(product_high, product, carry, yz_idx); sldi(tmp, idx, LogBytesPerInt); if (offset) { addi(tmp, tmp, offset); } #ifdef VM_LITTLE_ENDIAN rldicl(product, product, 32, 0); #endif stdx(product, z, tmp); } // Multiply 128 bit by 128 bit. Unrolled inner loop. void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z, Register yz_idx, Register idx, Register carry, Register product_high, Register product, Register carry2, Register tmp) { // jlong carry, x[], y[], z[]; // int kdx = ystart+1; // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop // huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry; // z[kdx+idx+1] = (jlong)product; // jlong carry2 = (jlong)(product >>> 64); // product = (y[idx] * x_xstart) + z[kdx+idx] + carry2; // z[kdx+idx] = (jlong)product; // carry = (jlong)(product >>> 64); // } // idx += 2; // if (idx > 0) { // product = (y[idx] * x_xstart) + z[kdx+idx] + carry; // z[kdx+idx] = (jlong)product; // carry = (jlong)(product >>> 64); // } Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; const Register jdx = R0; // Scale the index. srdi_(jdx, idx, 2); beq(CCR0, L_third_loop_exit); mtctr(jdx); align(32, 16); bind(L_third_loop); addi(idx, idx, -4); multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product_high, product, tmp, 8); mr_if_needed(carry2, product_high); multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product_high, product, tmp, 0); mr_if_needed(carry, product_high); bdnz(L_third_loop); bind(L_third_loop_exit); // Handle any left-over operand parts. andi_(idx, idx, 0x3); beq(CCR0, L_post_third_loop_done); Label L_check_1; addic_(idx, idx, -2); blt(CCR0, L_check_1); multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product_high, product, tmp, 0); mr_if_needed(carry, product_high); bind(L_check_1); addi(idx, idx, 0x2); andi_(idx, idx, 0x1); addic_(idx, idx, -1); blt(CCR0, L_post_third_loop_done); sldi(tmp, idx, LogBytesPerInt); lwzx(yz_idx, y, tmp); multiply64(product_high, product, x_xstart, yz_idx); lwzx(yz_idx, z, tmp); add2_with_carry(product_high, product, yz_idx, carry); sldi(tmp, idx, LogBytesPerInt); stwx(product, z, tmp); srdi(product, product, 32); sldi(product_high, product_high, 32); orr(product, product, product_high); mr_if_needed(carry, product); bind(L_post_third_loop_done); } // multiply_128_x_128_loop void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register tmp6, Register tmp7, Register tmp8, Register tmp9, Register tmp10, Register tmp11, Register tmp12, Register tmp13) { ShortBranchVerifier sbv(this); assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6); assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, tmp7); assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, tmp8); const Register idx = tmp1; const Register kdx = tmp2; const Register xstart = tmp3; const Register y_idx = tmp4; const Register carry = tmp5; const Register product = tmp6; const Register product_high = tmp7; const Register x_xstart = tmp8; const Register tmp = tmp9; // First Loop. // // final static long LONG_MASK = 0xffffffffL; // int xstart = xlen - 1; // int ystart = ylen - 1; // long carry = 0; // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; // z[kdx] = (int)product; // carry = product >>> 32; // } // z[xstart] = (int)carry; mr_if_needed(idx, ylen); // idx = ylen mr_if_needed(kdx, zlen); // kdx = xlen + ylen li(carry, 0); // carry = 0 Label L_done; addic_(xstart, xlen, -1); blt(CCR0, L_done); multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product_high, product, idx, kdx, tmp); Label L_second_loop; cmpdi(CCR0, kdx, 0); beq(CCR0, L_second_loop); Label L_carry; addic_(kdx, kdx, -1); beq(CCR0, L_carry); // Store lower 32 bits of carry. sldi(tmp, kdx, LogBytesPerInt); stwx(carry, z, tmp); srdi(carry, carry, 32); addi(kdx, kdx, -1); bind(L_carry); // Store upper 32 bits of carry. sldi(tmp, kdx, LogBytesPerInt); stwx(carry, z, tmp); // Second and third (nested) loops. // // for (int i = xstart-1; i >= 0; i--) { // Second loop // carry = 0; // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + // (z[k] & LONG_MASK) + carry; // z[k] = (int)product; // carry = product >>> 32; // } // z[i] = (int)carry; // } // // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx bind(L_second_loop); li(carry, 0); // carry = 0; addic_(xstart, xstart, -1); // i = xstart-1; blt(CCR0, L_done); Register zsave = tmp10; mr(zsave, z); Label L_last_x; sldi(tmp, xstart, LogBytesPerInt); add(z, z, tmp); // z = z + k - j addi(z, z, 4); addic_(xstart, xstart, -1); // i = xstart-1; blt(CCR0, L_last_x); sldi(tmp, xstart, LogBytesPerInt); ldx(x_xstart, x, tmp); #ifdef VM_LITTLE_ENDIAN rldicl(x_xstart, x_xstart, 32, 0); #endif Label L_third_loop_prologue; bind(L_third_loop_prologue); Register xsave = tmp11; Register xlensave = tmp12; Register ylensave = tmp13; mr(xsave, x); mr(xlensave, xstart); mr(ylensave, ylen); multiply_128_x_128_loop(x_xstart, y, z, y_idx, ylen, carry, product_high, product, x, tmp); mr(z, zsave); mr(x, xsave); mr(xlen, xlensave); // This is the decrement of the loop counter! mr(ylen, ylensave); addi(tmp3, xlen, 1); sldi(tmp, tmp3, LogBytesPerInt); stwx(carry, z, tmp); addic_(tmp3, tmp3, -1); blt(CCR0, L_done); srdi(carry, carry, 32); sldi(tmp, tmp3, LogBytesPerInt); stwx(carry, z, tmp); b(L_second_loop); // Next infrequent code is moved outside loops. bind(L_last_x); lwz(x_xstart, 0, x); b(L_third_loop_prologue); bind(L_done); } // multiply_to_len void MacroAssembler::asm_assert(bool check_equal, const char *msg, int id) { #ifdef ASSERT Label ok; if (check_equal) { beq(CCR0, ok); } else { bne(CCR0, ok); } stop(msg, id); bind(ok); #endif } void MacroAssembler::asm_assert_mems_zero(bool check_equal, int size, int mem_offset, Register mem_base, const char* msg, int id) { #ifdef ASSERT switch (size) { case 4: lwz(R0, mem_offset, mem_base); cmpwi(CCR0, R0, 0); break; case 8: ld(R0, mem_offset, mem_base); cmpdi(CCR0, R0, 0); break; default: ShouldNotReachHere(); } asm_assert(check_equal, msg, id); #endif // ASSERT } void MacroAssembler::verify_thread() { if (VerifyThread) { unimplemented("'VerifyThread' currently not implemented on PPC"); } } // READ: oop. KILL: R0. Volatile floats perhaps. void MacroAssembler::verify_oop(Register oop, const char* msg) { if (!VerifyOops) { return; } address/* FunctionDescriptor** */fd = StubRoutines::verify_oop_subroutine_entry_address(); const Register tmp = R11; // Will be preserved. const int nbytes_save = MacroAssembler::num_volatile_regs * 8; save_volatile_gprs(R1_SP, -nbytes_save); // except R0 mr_if_needed(R4_ARG2, oop); save_LR_CR(tmp); // save in old frame push_frame_reg_args(nbytes_save, tmp); // load FunctionDescriptor** / entry_address * load_const_optimized(tmp, fd, R0); // load FunctionDescriptor* / entry_address ld(tmp, 0, tmp); load_const_optimized(R3_ARG1, (address)msg, R0); // Call destination for its side effect. call_c(tmp); pop_frame(); restore_LR_CR(tmp); restore_volatile_gprs(R1_SP, -nbytes_save); // except R0 } void MacroAssembler::verify_oop_addr(RegisterOrConstant offs, Register base, const char* msg) { if (!VerifyOops) { return; } address/* FunctionDescriptor** */fd = StubRoutines::verify_oop_subroutine_entry_address(); const Register tmp = R11; // Will be preserved. const int nbytes_save = MacroAssembler::num_volatile_regs * 8; save_volatile_gprs(R1_SP, -nbytes_save); // except R0 ld(R4_ARG2, offs, base); save_LR_CR(tmp); // save in old frame push_frame_reg_args(nbytes_save, tmp); // load FunctionDescriptor** / entry_address * load_const_optimized(tmp, fd, R0); // load FunctionDescriptor* / entry_address ld(tmp, 0, tmp); load_const_optimized(R3_ARG1, (address)msg, R0); // Call destination for its side effect. call_c(tmp); pop_frame(); restore_LR_CR(tmp); restore_volatile_gprs(R1_SP, -nbytes_save); // except R0 } const char* stop_types[] = { "stop", "untested", "unimplemented", "shouldnotreachhere" }; static void stop_on_request(int tp, const char* msg) { tty->print("PPC assembly code requires stop: (%s) %s\n", stop_types[tp%/*stop_end*/4], msg); guarantee(false, "PPC assembly code requires stop: %s", msg); } // Call a C-function that prints output. void MacroAssembler::stop(int type, const char* msg, int id) { #ifndef PRODUCT block_comment(err_msg("stop: %s %s {", stop_types[type%stop_end], msg)); #else block_comment("stop {"); #endif // setup arguments load_const_optimized(R3_ARG1, type); load_const_optimized(R4_ARG2, (void *)msg, /*tmp=*/R0); call_VM_leaf(CAST_FROM_FN_PTR(address, stop_on_request), R3_ARG1, R4_ARG2); illtrap(); emit_int32(id); block_comment("} stop;"); } #ifndef PRODUCT // Write pattern 0x0101010101010101 in memory region [low-before, high+after]. // Val, addr are temp registers. // If low == addr, addr is killed. // High is preserved. void MacroAssembler::zap_from_to(Register low, int before, Register high, int after, Register val, Register addr) { if (!ZapMemory) return; assert_different_registers(low, val); BLOCK_COMMENT("zap memory region {"); load_const_optimized(val, 0x0101010101010101); int size = before + after; if (low == high && size < 5 && size > 0) { int offset = -before*BytesPerWord; for (int i = 0; i < size; ++i) { std(val, offset, low); offset += (1*BytesPerWord); } } else { addi(addr, low, -before*BytesPerWord); assert_different_registers(high, val); if (after) addi(high, high, after * BytesPerWord); Label loop; bind(loop); std(val, 0, addr); addi(addr, addr, 8); cmpd(CCR6, addr, high); ble(CCR6, loop); if (after) addi(high, high, -after * BytesPerWord); // Correct back to old value. } BLOCK_COMMENT("} zap memory region"); } #endif // !PRODUCT SkipIfEqualZero::SkipIfEqualZero(MacroAssembler* masm, Register temp, const bool* flag_addr) : _masm(masm), _label() { int simm16_offset = masm->load_const_optimized(temp, (address)flag_addr, R0, true); assert(sizeof(bool) == 1, "PowerPC ABI"); masm->lbz(temp, simm16_offset, temp); masm->cmpwi(CCR0, temp, 0); masm->beq(CCR0, _label); } SkipIfEqualZero::~SkipIfEqualZero() { _masm->bind(_label); }