/* * Copyright (c) 2014, 2016, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2015 SAP AG. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "asm/macroAssembler.inline.hpp" #include "interpreter/bytecodeHistogram.hpp" #include "interpreter/interpreter.hpp" #include "interpreter/interpreterRuntime.hpp" #include "interpreter/interp_masm.hpp" #include "interpreter/templateInterpreterGenerator.hpp" #include "interpreter/templateTable.hpp" #include "oops/arrayOop.hpp" #include "oops/methodData.hpp" #include "oops/method.hpp" #include "oops/oop.inline.hpp" #include "prims/jvmtiExport.hpp" #include "prims/jvmtiThreadState.hpp" #include "runtime/arguments.hpp" #include "runtime/deoptimization.hpp" #include "runtime/frame.inline.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/stubRoutines.hpp" #include "runtime/synchronizer.hpp" #include "runtime/timer.hpp" #include "runtime/vframeArray.hpp" #include "utilities/debug.hpp" #include "utilities/macros.hpp" #undef __ #define __ _masm-> // Size of interpreter code. Increase if too small. Interpreter will // fail with a guarantee ("not enough space for interpreter generation"); // if too small. // Run with +PrintInterpreter to get the VM to print out the size. // Max size with JVMTI int TemplateInterpreter::InterpreterCodeSize = 230*K; #ifdef PRODUCT #define BLOCK_COMMENT(str) /* nothing */ #else #define BLOCK_COMMENT(str) __ block_comment(str) #endif #define BIND(label) __ bind(label); BLOCK_COMMENT(#label ":") //----------------------------------------------------------------------------- address TemplateInterpreterGenerator::generate_slow_signature_handler() { // Slow_signature handler that respects the PPC C calling conventions. // // We get called by the native entry code with our output register // area == 8. First we call InterpreterRuntime::get_result_handler // to copy the pointer to the signature string temporarily to the // first C-argument and to return the result_handler in // R3_RET. Since native_entry will copy the jni-pointer to the // first C-argument slot later on, it is OK to occupy this slot // temporarilly. Then we copy the argument list on the java // expression stack into native varargs format on the native stack // and load arguments into argument registers. Integer arguments in // the varargs vector will be sign-extended to 8 bytes. // // On entry: // R3_ARG1 - intptr_t* Address of java argument list in memory. // R15_prev_state - BytecodeInterpreter* Address of interpreter state for // this method // R19_method // // On exit (just before return instruction): // R3_RET - contains the address of the result_handler. // R4_ARG2 - is not updated for static methods and contains "this" otherwise. // R5_ARG3-R10_ARG8: - When the (i-2)th Java argument is not of type float or double, // ARGi contains this argument. Otherwise, ARGi is not updated. // F1_ARG1-F13_ARG13 - contain the first 13 arguments of type float or double. const int LogSizeOfTwoInstructions = 3; // FIXME: use Argument:: GL: Argument names different numbers! const int max_fp_register_arguments = 13; const int max_int_register_arguments = 6; // first 2 are reserved const Register arg_java = R21_tmp1; const Register arg_c = R22_tmp2; const Register signature = R23_tmp3; // is string const Register sig_byte = R24_tmp4; const Register fpcnt = R25_tmp5; const Register argcnt = R26_tmp6; const Register intSlot = R27_tmp7; const Register target_sp = R28_tmp8; const FloatRegister floatSlot = F0; address entry = __ function_entry(); __ save_LR_CR(R0); __ save_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14)); // We use target_sp for storing arguments in the C frame. __ mr(target_sp, R1_SP); __ push_frame_reg_args_nonvolatiles(0, R11_scratch1); __ mr(arg_java, R3_ARG1); __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_signature), R16_thread, R19_method); // Signature is in R3_RET. Signature is callee saved. __ mr(signature, R3_RET); // Get the result handler. __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_result_handler), R16_thread, R19_method); { Label L; // test if static // _access_flags._flags must be at offset 0. // TODO PPC port: requires change in shared code. //assert(in_bytes(AccessFlags::flags_offset()) == 0, // "MethodDesc._access_flags == MethodDesc._access_flags._flags"); // _access_flags must be a 32 bit value. assert(sizeof(AccessFlags) == 4, "wrong size"); __ lwa(R11_scratch1/*access_flags*/, method_(access_flags)); // testbit with condition register. __ testbitdi(CCR0, R0, R11_scratch1/*access_flags*/, JVM_ACC_STATIC_BIT); __ btrue(CCR0, L); // For non-static functions, pass "this" in R4_ARG2 and copy it // to 2nd C-arg slot. // We need to box the Java object here, so we use arg_java // (address of current Java stack slot) as argument and don't // dereference it as in case of ints, floats, etc. __ mr(R4_ARG2, arg_java); __ addi(arg_java, arg_java, -BytesPerWord); __ std(R4_ARG2, _abi(carg_2), target_sp); __ bind(L); } // Will be incremented directly after loop_start. argcnt=0 // corresponds to 3rd C argument. __ li(argcnt, -1); // arg_c points to 3rd C argument __ addi(arg_c, target_sp, _abi(carg_3)); // no floating-point args parsed so far __ li(fpcnt, 0); Label move_intSlot_to_ARG, move_floatSlot_to_FARG; Label loop_start, loop_end; Label do_int, do_long, do_float, do_double, do_dontreachhere, do_object, do_array, do_boxed; // signature points to '(' at entry #ifdef ASSERT __ lbz(sig_byte, 0, signature); __ cmplwi(CCR0, sig_byte, '('); __ bne(CCR0, do_dontreachhere); #endif __ bind(loop_start); __ addi(argcnt, argcnt, 1); __ lbzu(sig_byte, 1, signature); __ cmplwi(CCR0, sig_byte, ')'); // end of signature __ beq(CCR0, loop_end); __ cmplwi(CCR0, sig_byte, 'B'); // byte __ beq(CCR0, do_int); __ cmplwi(CCR0, sig_byte, 'C'); // char __ beq(CCR0, do_int); __ cmplwi(CCR0, sig_byte, 'D'); // double __ beq(CCR0, do_double); __ cmplwi(CCR0, sig_byte, 'F'); // float __ beq(CCR0, do_float); __ cmplwi(CCR0, sig_byte, 'I'); // int __ beq(CCR0, do_int); __ cmplwi(CCR0, sig_byte, 'J'); // long __ beq(CCR0, do_long); __ cmplwi(CCR0, sig_byte, 'S'); // short __ beq(CCR0, do_int); __ cmplwi(CCR0, sig_byte, 'Z'); // boolean __ beq(CCR0, do_int); __ cmplwi(CCR0, sig_byte, 'L'); // object __ beq(CCR0, do_object); __ cmplwi(CCR0, sig_byte, '['); // array __ beq(CCR0, do_array); // __ cmplwi(CCR0, sig_byte, 'V'); // void cannot appear since we do not parse the return type // __ beq(CCR0, do_void); __ bind(do_dontreachhere); __ unimplemented("ShouldNotReachHere in slow_signature_handler", 120); __ bind(do_array); { Label start_skip, end_skip; __ bind(start_skip); __ lbzu(sig_byte, 1, signature); __ cmplwi(CCR0, sig_byte, '['); __ beq(CCR0, start_skip); // skip further brackets __ cmplwi(CCR0, sig_byte, '9'); __ bgt(CCR0, end_skip); // no optional size __ cmplwi(CCR0, sig_byte, '0'); __ bge(CCR0, start_skip); // skip optional size __ bind(end_skip); __ cmplwi(CCR0, sig_byte, 'L'); __ beq(CCR0, do_object); // for arrays of objects, the name of the object must be skipped __ b(do_boxed); // otherwise, go directly to do_boxed } __ bind(do_object); { Label L; __ bind(L); __ lbzu(sig_byte, 1, signature); __ cmplwi(CCR0, sig_byte, ';'); __ bne(CCR0, L); } // Need to box the Java object here, so we use arg_java (address of // current Java stack slot) as argument and don't dereference it as // in case of ints, floats, etc. Label do_null; __ bind(do_boxed); __ ld(R0,0, arg_java); __ cmpdi(CCR0, R0, 0); __ li(intSlot,0); __ beq(CCR0, do_null); __ mr(intSlot, arg_java); __ bind(do_null); __ std(intSlot, 0, arg_c); __ addi(arg_java, arg_java, -BytesPerWord); __ addi(arg_c, arg_c, BytesPerWord); __ cmplwi(CCR0, argcnt, max_int_register_arguments); __ blt(CCR0, move_intSlot_to_ARG); __ b(loop_start); __ bind(do_int); __ lwa(intSlot, 0, arg_java); __ std(intSlot, 0, arg_c); __ addi(arg_java, arg_java, -BytesPerWord); __ addi(arg_c, arg_c, BytesPerWord); __ cmplwi(CCR0, argcnt, max_int_register_arguments); __ blt(CCR0, move_intSlot_to_ARG); __ b(loop_start); __ bind(do_long); __ ld(intSlot, -BytesPerWord, arg_java); __ std(intSlot, 0, arg_c); __ addi(arg_java, arg_java, - 2 * BytesPerWord); __ addi(arg_c, arg_c, BytesPerWord); __ cmplwi(CCR0, argcnt, max_int_register_arguments); __ blt(CCR0, move_intSlot_to_ARG); __ b(loop_start); __ bind(do_float); __ lfs(floatSlot, 0, arg_java); #if defined(LINUX) // Linux uses ELF ABI. Both original ELF and ELFv2 ABIs have float // in the least significant word of an argument slot. #if defined(VM_LITTLE_ENDIAN) __ stfs(floatSlot, 0, arg_c); #else __ stfs(floatSlot, 4, arg_c); #endif #elif defined(AIX) // Although AIX runs on big endian CPU, float is in most significant // word of an argument slot. __ stfs(floatSlot, 0, arg_c); #else #error "unknown OS" #endif __ addi(arg_java, arg_java, -BytesPerWord); __ addi(arg_c, arg_c, BytesPerWord); __ cmplwi(CCR0, fpcnt, max_fp_register_arguments); __ blt(CCR0, move_floatSlot_to_FARG); __ b(loop_start); __ bind(do_double); __ lfd(floatSlot, - BytesPerWord, arg_java); __ stfd(floatSlot, 0, arg_c); __ addi(arg_java, arg_java, - 2 * BytesPerWord); __ addi(arg_c, arg_c, BytesPerWord); __ cmplwi(CCR0, fpcnt, max_fp_register_arguments); __ blt(CCR0, move_floatSlot_to_FARG); __ b(loop_start); __ bind(loop_end); __ pop_frame(); __ restore_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14)); __ restore_LR_CR(R0); __ blr(); Label move_int_arg, move_float_arg; __ bind(move_int_arg); // each case must consist of 2 instructions (otherwise adapt LogSizeOfTwoInstructions) __ mr(R5_ARG3, intSlot); __ b(loop_start); __ mr(R6_ARG4, intSlot); __ b(loop_start); __ mr(R7_ARG5, intSlot); __ b(loop_start); __ mr(R8_ARG6, intSlot); __ b(loop_start); __ mr(R9_ARG7, intSlot); __ b(loop_start); __ mr(R10_ARG8, intSlot); __ b(loop_start); __ bind(move_float_arg); // each case must consist of 2 instructions (otherwise adapt LogSizeOfTwoInstructions) __ fmr(F1_ARG1, floatSlot); __ b(loop_start); __ fmr(F2_ARG2, floatSlot); __ b(loop_start); __ fmr(F3_ARG3, floatSlot); __ b(loop_start); __ fmr(F4_ARG4, floatSlot); __ b(loop_start); __ fmr(F5_ARG5, floatSlot); __ b(loop_start); __ fmr(F6_ARG6, floatSlot); __ b(loop_start); __ fmr(F7_ARG7, floatSlot); __ b(loop_start); __ fmr(F8_ARG8, floatSlot); __ b(loop_start); __ fmr(F9_ARG9, floatSlot); __ b(loop_start); __ fmr(F10_ARG10, floatSlot); __ b(loop_start); __ fmr(F11_ARG11, floatSlot); __ b(loop_start); __ fmr(F12_ARG12, floatSlot); __ b(loop_start); __ fmr(F13_ARG13, floatSlot); __ b(loop_start); __ bind(move_intSlot_to_ARG); __ sldi(R0, argcnt, LogSizeOfTwoInstructions); __ load_const(R11_scratch1, move_int_arg); // Label must be bound here. __ add(R11_scratch1, R0, R11_scratch1); __ mtctr(R11_scratch1/*branch_target*/); __ bctr(); __ bind(move_floatSlot_to_FARG); __ sldi(R0, fpcnt, LogSizeOfTwoInstructions); __ addi(fpcnt, fpcnt, 1); __ load_const(R11_scratch1, move_float_arg); // Label must be bound here. __ add(R11_scratch1, R0, R11_scratch1); __ mtctr(R11_scratch1/*branch_target*/); __ bctr(); return entry; } address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) { // // Registers alive // R3_RET // LR // // Registers updated // R3_RET // Label done; address entry = __ pc(); switch (type) { case T_BOOLEAN: // convert !=0 to 1 __ neg(R0, R3_RET); __ orr(R0, R3_RET, R0); __ srwi(R3_RET, R0, 31); break; case T_BYTE: // sign extend 8 bits __ extsb(R3_RET, R3_RET); break; case T_CHAR: // zero extend 16 bits __ clrldi(R3_RET, R3_RET, 48); break; case T_SHORT: // sign extend 16 bits __ extsh(R3_RET, R3_RET); break; case T_INT: // sign extend 32 bits __ extsw(R3_RET, R3_RET); break; case T_LONG: break; case T_OBJECT: // unbox result if not null __ cmpdi(CCR0, R3_RET, 0); __ beq(CCR0, done); __ ld(R3_RET, 0, R3_RET); __ verify_oop(R3_RET); break; case T_FLOAT: break; case T_DOUBLE: break; case T_VOID: break; default: ShouldNotReachHere(); } BIND(done); __ blr(); return entry; } // Abstract method entry. // address TemplateInterpreterGenerator::generate_abstract_entry(void) { address entry = __ pc(); // // Registers alive // R16_thread - JavaThread* // R19_method - callee's method (method to be invoked) // R1_SP - SP prepared such that caller's outgoing args are near top // LR - return address to caller // // Stack layout at this point: // // 0 [TOP_IJAVA_FRAME_ABI] <-- R1_SP // alignment (optional) // [outgoing Java arguments] // ... // PARENT [PARENT_IJAVA_FRAME_ABI] // ... // // Can't use call_VM here because we have not set up a new // interpreter state. Make the call to the vm and make it look like // our caller set up the JavaFrameAnchor. __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R12_scratch2/*tmp*/); // Push a new C frame and save LR. __ save_LR_CR(R0); __ push_frame_reg_args(0, R11_scratch1); // This is not a leaf but we have a JavaFrameAnchor now and we will // check (create) exceptions afterward so this is ok. __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError), R16_thread); // Pop the C frame and restore LR. __ pop_frame(); __ restore_LR_CR(R0); // Reset JavaFrameAnchor from call_VM_leaf above. __ reset_last_Java_frame(); // We don't know our caller, so jump to the general forward exception stub, // which will also pop our full frame off. Satisfy the interface of // SharedRuntime::generate_forward_exception() __ load_const_optimized(R11_scratch1, StubRoutines::forward_exception_entry(), R0); __ mtctr(R11_scratch1); __ bctr(); return entry; } // Interpreter intrinsic for WeakReference.get(). // 1. Don't push a full blown frame and go on dispatching, but fetch the value // into R8 and return quickly // 2. If G1 is active we *must* execute this intrinsic for corrrectness: // It contains a GC barrier which puts the reference into the satb buffer // to indicate that someone holds a strong reference to the object the // weak ref points to! address TemplateInterpreterGenerator::generate_Reference_get_entry(void) { // Code: _aload_0, _getfield, _areturn // parameter size = 1 // // The code that gets generated by this routine is split into 2 parts: // 1. the "intrinsified" code for G1 (or any SATB based GC), // 2. the slow path - which is an expansion of the regular method entry. // // Notes: // * In the G1 code we do not check whether we need to block for // a safepoint. If G1 is enabled then we must execute the specialized // code for Reference.get (except when the Reference object is null) // so that we can log the value in the referent field with an SATB // update buffer. // If the code for the getfield template is modified so that the // G1 pre-barrier code is executed when the current method is // Reference.get() then going through the normal method entry // will be fine. // * The G1 code can, however, check the receiver object (the instance // of java.lang.Reference) and jump to the slow path if null. If the // Reference object is null then we obviously cannot fetch the referent // and so we don't need to call the G1 pre-barrier. Thus we can use the // regular method entry code to generate the NPE. // if (UseG1GC) { address entry = __ pc(); const int referent_offset = java_lang_ref_Reference::referent_offset; guarantee(referent_offset > 0, "referent offset not initialized"); Label slow_path; // Debugging not possible, so can't use __ skip_if_jvmti_mode(slow_path, GR31_SCRATCH); // In the G1 code we don't check if we need to reach a safepoint. We // continue and the thread will safepoint at the next bytecode dispatch. // If the receiver is null then it is OK to jump to the slow path. __ ld(R3_RET, Interpreter::stackElementSize, R15_esp); // get receiver // Check if receiver == NULL and go the slow path. __ cmpdi(CCR0, R3_RET, 0); __ beq(CCR0, slow_path); // Load the value of the referent field. __ load_heap_oop(R3_RET, referent_offset, R3_RET); // Generate the G1 pre-barrier code to log the value of // the referent field in an SATB buffer. Note with // these parameters the pre-barrier does not generate // the load of the previous value. // Restore caller sp for c2i case. #ifdef ASSERT __ ld(R9_ARG7, 0, R1_SP); __ ld(R10_ARG8, 0, R21_sender_SP); __ cmpd(CCR0, R9_ARG7, R10_ARG8); __ asm_assert_eq("backlink", 0x544); #endif // ASSERT __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started. __ g1_write_barrier_pre(noreg, // obj noreg, // offset R3_RET, // pre_val R11_scratch1, // tmp R12_scratch2, // tmp true); // needs_frame __ blr(); // Generate regular method entry. __ bind(slow_path); __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals), R11_scratch1); return entry; } return NULL; } // Actually we should never reach here since we do stack overflow checks before pushing any frame. address TemplateInterpreterGenerator::generate_StackOverflowError_handler() { address entry = __ pc(); __ unimplemented("generate_StackOverflowError_handler"); return entry; } address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) { address entry = __ pc(); __ empty_expression_stack(); __ load_const_optimized(R4_ARG2, (address) name); // Index is in R17_tos. __ mr(R5_ARG3, R17_tos); __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException)); return entry; } #if 0 // Call special ClassCastException constructor taking object to cast // and target class as arguments. address TemplateInterpreterGenerator::generate_ClassCastException_verbose_handler() { address entry = __ pc(); // Expression stack must be empty before entering the VM if an // exception happened. __ empty_expression_stack(); // Thread will be loaded to R3_ARG1. // Target class oop is in register R5_ARG3 by convention! __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException_verbose), R17_tos, R5_ARG3); // Above call must not return here since exception pending. DEBUG_ONLY(__ should_not_reach_here();) return entry; } #endif address TemplateInterpreterGenerator::generate_ClassCastException_handler() { address entry = __ pc(); // Expression stack must be empty before entering the VM if an // exception happened. __ empty_expression_stack(); // Load exception object. // Thread will be loaded to R3_ARG1. __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException), R17_tos); #ifdef ASSERT // Above call must not return here since exception pending. __ should_not_reach_here(); #endif return entry; } address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) { address entry = __ pc(); //__ untested("generate_exception_handler_common"); Register Rexception = R17_tos; // Expression stack must be empty before entering the VM if an exception happened. __ empty_expression_stack(); __ load_const_optimized(R4_ARG2, (address) name, R11_scratch1); if (pass_oop) { __ mr(R5_ARG3, Rexception); __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), false); } else { __ load_const_optimized(R5_ARG3, (address) message, R11_scratch1); __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), false); } // Throw exception. __ mr(R3_ARG1, Rexception); __ load_const_optimized(R11_scratch1, Interpreter::throw_exception_entry(), R12_scratch2); __ mtctr(R11_scratch1); __ bctr(); return entry; } address TemplateInterpreterGenerator::generate_continuation_for(TosState state) { address entry = __ pc(); __ unimplemented("generate_continuation_for"); return entry; } // This entry is returned to when a call returns to the interpreter. // When we arrive here, we expect that the callee stack frame is already popped. address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) { address entry = __ pc(); // Move the value out of the return register back to the TOS cache of current frame. switch (state) { case ltos: case btos: case ctos: case stos: case atos: case itos: __ mr(R17_tos, R3_RET); break; // RET -> TOS cache case ftos: case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET case vtos: break; // Nothing to do, this was a void return. default : ShouldNotReachHere(); } __ restore_interpreter_state(R11_scratch1); // Sets R11_scratch1 = fp. __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1); __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0); // Compiled code destroys templateTableBase, reload. __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R12_scratch2); if (state == atos) { __ profile_return_type(R3_RET, R11_scratch1, R12_scratch2); } const Register cache = R11_scratch1; const Register size = R12_scratch2; __ get_cache_and_index_at_bcp(cache, 1, index_size); // Get least significant byte of 64 bit value: #if defined(VM_LITTLE_ENDIAN) __ lbz(size, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()), cache); #else __ lbz(size, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()) + 7, cache); #endif __ sldi(size, size, Interpreter::logStackElementSize); __ add(R15_esp, R15_esp, size); __ dispatch_next(state, step); return entry; } address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) { address entry = __ pc(); // If state != vtos, we're returning from a native method, which put it's result // into the result register. So move the value out of the return register back // to the TOS cache of current frame. switch (state) { case ltos: case btos: case ctos: case stos: case atos: case itos: __ mr(R17_tos, R3_RET); break; // GR_RET -> TOS cache case ftos: case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET case vtos: break; // Nothing to do, this was a void return. default : ShouldNotReachHere(); } // Load LcpoolCache @@@ should be already set! __ get_constant_pool_cache(R27_constPoolCache); // Handle a pending exception, fall through if none. __ check_and_forward_exception(R11_scratch1, R12_scratch2); // Start executing bytecodes. __ dispatch_next(state, step); return entry; } address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) { address entry = __ pc(); __ push(state); __ call_VM(noreg, runtime_entry); __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos)); return entry; } // Helpers for commoning out cases in the various type of method entries. // Increment invocation count & check for overflow. // // Note: checking for negative value instead of overflow // so we have a 'sticky' overflow test. // void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) { // Note: In tiered we increment either counters in method or in MDO depending if we're profiling or not. Register Rscratch1 = R11_scratch1; Register Rscratch2 = R12_scratch2; Register R3_counters = R3_ARG1; Label done; if (TieredCompilation) { const int increment = InvocationCounter::count_increment; Label no_mdo; if (ProfileInterpreter) { const Register Rmdo = R3_counters; // If no method data exists, go to profile_continue. __ ld(Rmdo, in_bytes(Method::method_data_offset()), R19_method); __ cmpdi(CCR0, Rmdo, 0); __ beq(CCR0, no_mdo); // Increment invocation counter in the MDO. const int mdo_ic_offs = in_bytes(MethodData::invocation_counter_offset()) + in_bytes(InvocationCounter::counter_offset()); __ lwz(Rscratch2, mdo_ic_offs, Rmdo); __ lwz(Rscratch1, in_bytes(MethodData::invoke_mask_offset()), Rmdo); __ addi(Rscratch2, Rscratch2, increment); __ stw(Rscratch2, mdo_ic_offs, Rmdo); __ and_(Rscratch1, Rscratch2, Rscratch1); __ bne(CCR0, done); __ b(*overflow); } // Increment counter in MethodCounters*. const int mo_ic_offs = in_bytes(MethodCounters::invocation_counter_offset()) + in_bytes(InvocationCounter::counter_offset()); __ bind(no_mdo); __ get_method_counters(R19_method, R3_counters, done); __ lwz(Rscratch2, mo_ic_offs, R3_counters); __ lwz(Rscratch1, in_bytes(MethodCounters::invoke_mask_offset()), R3_counters); __ addi(Rscratch2, Rscratch2, increment); __ stw(Rscratch2, mo_ic_offs, R3_counters); __ and_(Rscratch1, Rscratch2, Rscratch1); __ beq(CCR0, *overflow); __ bind(done); } else { // Update standard invocation counters. Register Rsum_ivc_bec = R4_ARG2; __ get_method_counters(R19_method, R3_counters, done); __ increment_invocation_counter(R3_counters, Rsum_ivc_bec, R12_scratch2); // Increment interpreter invocation counter. if (ProfileInterpreter) { // %%% Merge this into methodDataOop. __ lwz(R12_scratch2, in_bytes(MethodCounters::interpreter_invocation_counter_offset()), R3_counters); __ addi(R12_scratch2, R12_scratch2, 1); __ stw(R12_scratch2, in_bytes(MethodCounters::interpreter_invocation_counter_offset()), R3_counters); } // Check if we must create a method data obj. if (ProfileInterpreter && profile_method != NULL) { const Register profile_limit = Rscratch1; __ lwz(profile_limit, in_bytes(MethodCounters::interpreter_profile_limit_offset()), R3_counters); // Test to see if we should create a method data oop. __ cmpw(CCR0, Rsum_ivc_bec, profile_limit); __ blt(CCR0, *profile_method_continue); // If no method data exists, go to profile_method. __ test_method_data_pointer(*profile_method); } // Finally check for counter overflow. if (overflow) { const Register invocation_limit = Rscratch1; __ lwz(invocation_limit, in_bytes(MethodCounters::interpreter_invocation_limit_offset()), R3_counters); __ cmpw(CCR0, Rsum_ivc_bec, invocation_limit); __ bge(CCR0, *overflow); } __ bind(done); } } // Generate code to initiate compilation on invocation counter overflow. void TemplateInterpreterGenerator::generate_counter_overflow(Label& continue_entry) { // Generate code to initiate compilation on the counter overflow. // InterpreterRuntime::frequency_counter_overflow takes one arguments, // which indicates if the counter overflow occurs at a backwards branch (NULL bcp) // We pass zero in. // The call returns the address of the verified entry point for the method or NULL // if the compilation did not complete (either went background or bailed out). // // Unlike the C++ interpreter above: Check exceptions! // Assumption: Caller must set the flag "do_not_unlock_if_sychronized" if the monitor of a sync'ed // method has not yet been created. Thus, no unlocking of a non-existing monitor can occur. __ li(R4_ARG2, 0); __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R4_ARG2, true); // Returns verified_entry_point or NULL. // We ignore it in any case. __ b(continue_entry); } void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rmem_frame_size, Register Rscratch1) { assert_different_registers(Rmem_frame_size, Rscratch1); __ generate_stack_overflow_check_with_compare_and_throw(Rmem_frame_size, Rscratch1); } void TemplateInterpreterGenerator::unlock_method(bool check_exceptions) { __ unlock_object(R26_monitor, check_exceptions); } // Lock the current method, interpreter register window must be set up! void TemplateInterpreterGenerator::lock_method(Register Rflags, Register Rscratch1, Register Rscratch2, bool flags_preloaded) { const Register Robj_to_lock = Rscratch2; { if (!flags_preloaded) { __ lwz(Rflags, method_(access_flags)); } #ifdef ASSERT // Check if methods needs synchronization. { Label Lok; __ testbitdi(CCR0, R0, Rflags, JVM_ACC_SYNCHRONIZED_BIT); __ btrue(CCR0,Lok); __ stop("method doesn't need synchronization"); __ bind(Lok); } #endif // ASSERT } // Get synchronization object to Rscratch2. { const int mirror_offset = in_bytes(Klass::java_mirror_offset()); Label Lstatic; Label Ldone; __ testbitdi(CCR0, R0, Rflags, JVM_ACC_STATIC_BIT); __ btrue(CCR0, Lstatic); // Non-static case: load receiver obj from stack and we're done. __ ld(Robj_to_lock, R18_locals); __ b(Ldone); __ bind(Lstatic); // Static case: Lock the java mirror __ ld(Robj_to_lock, in_bytes(Method::const_offset()), R19_method); __ ld(Robj_to_lock, in_bytes(ConstMethod::constants_offset()), Robj_to_lock); __ ld(Robj_to_lock, ConstantPool::pool_holder_offset_in_bytes(), Robj_to_lock); __ ld(Robj_to_lock, mirror_offset, Robj_to_lock); __ bind(Ldone); __ verify_oop(Robj_to_lock); } // Got the oop to lock => execute! __ add_monitor_to_stack(true, Rscratch1, R0); __ std(Robj_to_lock, BasicObjectLock::obj_offset_in_bytes(), R26_monitor); __ lock_object(R26_monitor, Robj_to_lock); } // Generate a fixed interpreter frame for pure interpreter // and I2N native transition frames. // // Before (stack grows downwards): // // | ... | // |------------- | // | java arg0 | // | ... | // | java argn | // | | <- R15_esp // | | // |--------------| // | abi_112 | // | | <- R1_SP // |==============| // // // After: // // | ... | // | java arg0 |<- R18_locals // | ... | // | java argn | // |--------------| // | | // | java locals | // | | // |--------------| // | abi_48 | // |==============| // | | // | istate | // | | // |--------------| // | monitor |<- R26_monitor // |--------------| // | |<- R15_esp // | expression | // | stack | // | | // |--------------| // | | // | abi_112 |<- R1_SP // |==============| // // The top most frame needs an abi space of 112 bytes. This space is needed, // since we call to c. The c function may spill their arguments to the caller // frame. When we call to java, we don't need these spill slots. In order to save // space on the stack, we resize the caller. However, java local reside in // the caller frame and the frame has to be increased. The frame_size for the // current frame was calculated based on max_stack as size for the expression // stack. At the call, just a part of the expression stack might be used. // We don't want to waste this space and cut the frame back accordingly. // The resulting amount for resizing is calculated as follows: // resize = (number_of_locals - number_of_arguments) * slot_size // + (R1_SP - R15_esp) + 48 // // The size for the callee frame is calculated: // framesize = 112 + max_stack + monitor + state_size // // maxstack: Max number of slots on the expression stack, loaded from the method. // monitor: We statically reserve room for one monitor object. // state_size: We save the current state of the interpreter to this area. // void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call, Register Rsize_of_parameters, Register Rsize_of_locals) { Register parent_frame_resize = R6_ARG4, // Frame will grow by this number of bytes. top_frame_size = R7_ARG5, Rconst_method = R8_ARG6; assert_different_registers(Rsize_of_parameters, Rsize_of_locals, parent_frame_resize, top_frame_size); __ ld(Rconst_method, method_(const)); __ lhz(Rsize_of_parameters /* number of params */, in_bytes(ConstMethod::size_of_parameters_offset()), Rconst_method); if (native_call) { // If we're calling a native method, we reserve space for the worst-case signature // handler varargs vector, which is max(Argument::n_register_parameters, parameter_count+2). // We add two slots to the parameter_count, one for the jni // environment and one for a possible native mirror. Label skip_native_calculate_max_stack; __ addi(top_frame_size, Rsize_of_parameters, 2); __ cmpwi(CCR0, top_frame_size, Argument::n_register_parameters); __ bge(CCR0, skip_native_calculate_max_stack); __ li(top_frame_size, Argument::n_register_parameters); __ bind(skip_native_calculate_max_stack); __ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize); __ sldi(top_frame_size, top_frame_size, Interpreter::logStackElementSize); __ sub(parent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize! assert(Rsize_of_locals == noreg, "Rsize_of_locals not initialized"); // Only relevant value is Rsize_of_parameters. } else { __ lhz(Rsize_of_locals /* number of params */, in_bytes(ConstMethod::size_of_locals_offset()), Rconst_method); __ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize); __ sldi(Rsize_of_locals, Rsize_of_locals, Interpreter::logStackElementSize); __ lhz(top_frame_size, in_bytes(ConstMethod::max_stack_offset()), Rconst_method); __ sub(R11_scratch1, Rsize_of_locals, Rsize_of_parameters); // >=0 __ sub(parent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize! __ sldi(top_frame_size, top_frame_size, Interpreter::logStackElementSize); __ add(parent_frame_resize, parent_frame_resize, R11_scratch1); } // Compute top frame size. __ addi(top_frame_size, top_frame_size, frame::abi_reg_args_size + frame::ijava_state_size); // Cut back area between esp and max_stack. __ addi(parent_frame_resize, parent_frame_resize, frame::abi_minframe_size - Interpreter::stackElementSize); __ round_to(top_frame_size, frame::alignment_in_bytes); __ round_to(parent_frame_resize, frame::alignment_in_bytes); // parent_frame_resize = (locals-parameters) - (ESP-SP-ABI48) Rounded to frame alignment size. // Enlarge by locals-parameters (not in case of native_call), shrink by ESP-SP-ABI48. { // -------------------------------------------------------------------------- // Stack overflow check Label cont; __ add(R11_scratch1, parent_frame_resize, top_frame_size); generate_stack_overflow_check(R11_scratch1, R12_scratch2); } // Set up interpreter state registers. __ add(R18_locals, R15_esp, Rsize_of_parameters); __ ld(R27_constPoolCache, in_bytes(ConstMethod::constants_offset()), Rconst_method); __ ld(R27_constPoolCache, ConstantPool::cache_offset_in_bytes(), R27_constPoolCache); // Set method data pointer. if (ProfileInterpreter) { Label zero_continue; __ ld(R28_mdx, method_(method_data)); __ cmpdi(CCR0, R28_mdx, 0); __ beq(CCR0, zero_continue); __ addi(R28_mdx, R28_mdx, in_bytes(MethodData::data_offset())); __ bind(zero_continue); } if (native_call) { __ li(R14_bcp, 0); // Must initialize. } else { __ add(R14_bcp, in_bytes(ConstMethod::codes_offset()), Rconst_method); } // Resize parent frame. __ mflr(R12_scratch2); __ neg(parent_frame_resize, parent_frame_resize); __ resize_frame(parent_frame_resize, R11_scratch1); __ std(R12_scratch2, _abi(lr), R1_SP); __ addi(R26_monitor, R1_SP, - frame::ijava_state_size); __ addi(R15_esp, R26_monitor, - Interpreter::stackElementSize); // Store values. // R15_esp, R14_bcp, R26_monitor, R28_mdx are saved at java calls // in InterpreterMacroAssembler::call_from_interpreter. __ std(R19_method, _ijava_state_neg(method), R1_SP); __ std(R21_sender_SP, _ijava_state_neg(sender_sp), R1_SP); __ std(R27_constPoolCache, _ijava_state_neg(cpoolCache), R1_SP); __ std(R18_locals, _ijava_state_neg(locals), R1_SP); // Note: esp, bcp, monitor, mdx live in registers. Hence, the correct version can only // be found in the frame after save_interpreter_state is done. This is always true // for non-top frames. But when a signal occurs, dumping the top frame can go wrong, // because e.g. frame::interpreter_frame_bcp() will not access the correct value // (Enhanced Stack Trace). // The signal handler does not save the interpreter state into the frame. __ li(R0, 0); #ifdef ASSERT // Fill remaining slots with constants. __ load_const_optimized(R11_scratch1, 0x5afe); __ load_const_optimized(R12_scratch2, 0xdead); #endif // We have to initialize some frame slots for native calls (accessed by GC). if (native_call) { __ std(R26_monitor, _ijava_state_neg(monitors), R1_SP); __ std(R14_bcp, _ijava_state_neg(bcp), R1_SP); if (ProfileInterpreter) { __ std(R28_mdx, _ijava_state_neg(mdx), R1_SP); } } #ifdef ASSERT else { __ std(R12_scratch2, _ijava_state_neg(monitors), R1_SP); __ std(R12_scratch2, _ijava_state_neg(bcp), R1_SP); __ std(R12_scratch2, _ijava_state_neg(mdx), R1_SP); } __ std(R11_scratch1, _ijava_state_neg(ijava_reserved), R1_SP); __ std(R12_scratch2, _ijava_state_neg(esp), R1_SP); __ std(R12_scratch2, _ijava_state_neg(lresult), R1_SP); __ std(R12_scratch2, _ijava_state_neg(fresult), R1_SP); #endif __ subf(R12_scratch2, top_frame_size, R1_SP); __ std(R0, _ijava_state_neg(oop_tmp), R1_SP); __ std(R12_scratch2, _ijava_state_neg(top_frame_sp), R1_SP); // Push top frame. __ push_frame(top_frame_size, R11_scratch1); } // End of helpers address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) { if (!Interpreter::math_entry_available(kind)) { NOT_PRODUCT(__ should_not_reach_here();) return NULL; } address entry = __ pc(); __ lfd(F1_RET, Interpreter::stackElementSize, R15_esp); // Pop c2i arguments (if any) off when we return. #ifdef ASSERT __ ld(R9_ARG7, 0, R1_SP); __ ld(R10_ARG8, 0, R21_sender_SP); __ cmpd(CCR0, R9_ARG7, R10_ARG8); __ asm_assert_eq("backlink", 0x545); #endif // ASSERT __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started. if (kind == Interpreter::java_lang_math_sqrt) { __ fsqrt(F1_RET, F1_RET); } else if (kind == Interpreter::java_lang_math_abs) { __ fabs(F1_RET, F1_RET); } else { ShouldNotReachHere(); } // And we're done. __ blr(); __ flush(); return entry; } // Interpreter stub for calling a native method. (asm interpreter) // This sets up a somewhat different looking stack for calling the // native method than the typical interpreter frame setup. // // On entry: // R19_method - method // R16_thread - JavaThread* // R15_esp - intptr_t* sender tos // // abstract stack (grows up) // [ IJava (caller of JNI callee) ] <-- ASP // ... address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) { address entry = __ pc(); const bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods; // ----------------------------------------------------------------------------- // Allocate a new frame that represents the native callee (i2n frame). // This is not a full-blown interpreter frame, but in particular, the // following registers are valid after this: // - R19_method // - R18_local (points to start of argumuments to native function) // // abstract stack (grows up) // [ IJava (caller of JNI callee) ] <-- ASP // ... const Register signature_handler_fd = R11_scratch1; const Register pending_exception = R0; const Register result_handler_addr = R31; const Register native_method_fd = R11_scratch1; const Register access_flags = R22_tmp2; const Register active_handles = R11_scratch1; // R26_monitor saved to state. const Register sync_state = R12_scratch2; const Register sync_state_addr = sync_state; // Address is dead after use. const Register suspend_flags = R11_scratch1; //============================================================================= // Allocate new frame and initialize interpreter state. Label exception_return; Label exception_return_sync_check; Label stack_overflow_return; // Generate new interpreter state and jump to stack_overflow_return in case of // a stack overflow. //generate_compute_interpreter_state(stack_overflow_return); Register size_of_parameters = R22_tmp2; generate_fixed_frame(true, size_of_parameters, noreg /* unused */); //============================================================================= // Increment invocation counter. On overflow, entry to JNI method // will be compiled. Label invocation_counter_overflow, continue_after_compile; if (inc_counter) { if (synchronized) { // Since at this point in the method invocation the exception handler // would try to exit the monitor of synchronized methods which hasn't // been entered yet, we set the thread local variable // _do_not_unlock_if_synchronized to true. If any exception was thrown by // runtime, exception handling i.e. unlock_if_synchronized_method will // check this thread local flag. // This flag has two effects, one is to force an unwind in the topmost // interpreter frame and not perform an unlock while doing so. __ li(R0, 1); __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread); } generate_counter_incr(&invocation_counter_overflow, NULL, NULL); BIND(continue_after_compile); // Reset the _do_not_unlock_if_synchronized flag. if (synchronized) { __ li(R0, 0); __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread); } } // access_flags = method->access_flags(); // Load access flags. assert(access_flags->is_nonvolatile(), "access_flags must be in a non-volatile register"); // Type check. assert(4 == sizeof(AccessFlags), "unexpected field size"); __ lwz(access_flags, method_(access_flags)); // We don't want to reload R19_method and access_flags after calls // to some helper functions. assert(R19_method->is_nonvolatile(), "R19_method must be a non-volatile register"); // Check for synchronized methods. Must happen AFTER invocation counter // check, so method is not locked if counter overflows. if (synchronized) { lock_method(access_flags, R11_scratch1, R12_scratch2, true); // Update monitor in state. __ ld(R11_scratch1, 0, R1_SP); __ std(R26_monitor, _ijava_state_neg(monitors), R11_scratch1); } // jvmti/jvmpi support __ notify_method_entry(); //============================================================================= // Get and call the signature handler. __ ld(signature_handler_fd, method_(signature_handler)); Label call_signature_handler; __ cmpdi(CCR0, signature_handler_fd, 0); __ bne(CCR0, call_signature_handler); // Method has never been called. Either generate a specialized // handler or point to the slow one. // // Pass parameter 'false' to avoid exception check in call_VM. __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), R19_method, false); // Check for an exception while looking up the target method. If we // incurred one, bail. __ ld(pending_exception, thread_(pending_exception)); __ cmpdi(CCR0, pending_exception, 0); __ bne(CCR0, exception_return_sync_check); // Has pending exception. // Reload signature handler, it may have been created/assigned in the meanwhile. __ ld(signature_handler_fd, method_(signature_handler)); __ twi_0(signature_handler_fd); // Order wrt. load of klass mirror and entry point (isync is below). BIND(call_signature_handler); // Before we call the signature handler we push a new frame to // protect the interpreter frame volatile registers when we return // from jni but before we can get back to Java. // First set the frame anchor while the SP/FP registers are // convenient and the slow signature handler can use this same frame // anchor. // We have a TOP_IJAVA_FRAME here, which belongs to us. __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R12_scratch2/*tmp*/); // Now the interpreter frame (and its call chain) have been // invalidated and flushed. We are now protected against eager // being enabled in native code. Even if it goes eager the // registers will be reloaded as clean and we will invalidate after // the call so no spurious flush should be possible. // Call signature handler and pass locals address. // // Our signature handlers copy required arguments to the C stack // (outgoing C args), R3_ARG1 to R10_ARG8, and FARG1 to FARG13. __ mr(R3_ARG1, R18_locals); #if !defined(ABI_ELFv2) __ ld(signature_handler_fd, 0, signature_handler_fd); #endif __ call_stub(signature_handler_fd); // Remove the register parameter varargs slots we allocated in // compute_interpreter_state. SP+16 ends up pointing to the ABI // outgoing argument area. // // Not needed on PPC64. //__ add(SP, SP, Argument::n_register_parameters*BytesPerWord); assert(result_handler_addr->is_nonvolatile(), "result_handler_addr must be in a non-volatile register"); // Save across call to native method. __ mr(result_handler_addr, R3_RET); __ isync(); // Acquire signature handler before trying to fetch the native entry point and klass mirror. // Set up fixed parameters and call the native method. // If the method is static, get mirror into R4_ARG2. { Label method_is_not_static; // Access_flags is non-volatile and still, no need to restore it. // Restore access flags. __ testbitdi(CCR0, R0, access_flags, JVM_ACC_STATIC_BIT); __ bfalse(CCR0, method_is_not_static); // constants = method->constants(); __ ld(R11_scratch1, in_bytes(Method::const_offset()), R19_method); __ ld(R11_scratch1, in_bytes(ConstMethod::constants_offset()), R11_scratch1); // pool_holder = method->constants()->pool_holder(); __ ld(R11_scratch1/*pool_holder*/, ConstantPool::pool_holder_offset_in_bytes(), R11_scratch1/*constants*/); const int mirror_offset = in_bytes(Klass::java_mirror_offset()); // mirror = pool_holder->klass_part()->java_mirror(); __ ld(R0/*mirror*/, mirror_offset, R11_scratch1/*pool_holder*/); // state->_native_mirror = mirror; __ ld(R11_scratch1, 0, R1_SP); __ std(R0/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1); // R4_ARG2 = &state->_oop_temp; __ addi(R4_ARG2, R11_scratch1, _ijava_state_neg(oop_tmp)); BIND(method_is_not_static); } // At this point, arguments have been copied off the stack into // their JNI positions. Oops are boxed in-place on the stack, with // handles copied to arguments. The result handler address is in a // register. // Pass JNIEnv address as first parameter. __ addir(R3_ARG1, thread_(jni_environment)); // Load the native_method entry before we change the thread state. __ ld(native_method_fd, method_(native_function)); //============================================================================= // Transition from _thread_in_Java to _thread_in_native. As soon as // we make this change the safepoint code needs to be certain that // the last Java frame we established is good. The pc in that frame // just needs to be near here not an actual return address. // We use release_store_fence to update values like the thread state, where // we don't want the current thread to continue until all our prior memory // accesses (including the new thread state) are visible to other threads. __ li(R0, _thread_in_native); __ release(); // TODO PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size"); __ stw(R0, thread_(thread_state)); if (UseMembar) { __ fence(); } //============================================================================= // Call the native method. Argument registers must not have been // overwritten since "__ call_stub(signature_handler);" (except for // ARG1 and ARG2 for static methods). __ call_c(native_method_fd); __ li(R0, 0); __ ld(R11_scratch1, 0, R1_SP); __ std(R3_RET, _ijava_state_neg(lresult), R11_scratch1); __ stfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1); __ std(R0/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1); // reset // Note: C++ interpreter needs the following here: // The frame_manager_lr field, which we use for setting the last // java frame, gets overwritten by the signature handler. Restore // it now. //__ get_PC_trash_LR(R11_scratch1); //__ std(R11_scratch1, _top_ijava_frame_abi(frame_manager_lr), R1_SP); // Because of GC R19_method may no longer be valid. // Block, if necessary, before resuming in _thread_in_Java state. // In order for GC to work, don't clear the last_Java_sp until after // blocking. //============================================================================= // Switch thread to "native transition" state before reading the // synchronization state. This additional state is necessary // because reading and testing the synchronization state is not // atomic w.r.t. GC, as this scenario demonstrates: Java thread A, // in _thread_in_native state, loads _not_synchronized and is // preempted. VM thread changes sync state to synchronizing and // suspends threads for GC. Thread A is resumed to finish this // native method, but doesn't block here since it didn't see any // synchronization in progress, and escapes. // We use release_store_fence to update values like the thread state, where // we don't want the current thread to continue until all our prior memory // accesses (including the new thread state) are visible to other threads. __ li(R0/*thread_state*/, _thread_in_native_trans); __ release(); __ stw(R0/*thread_state*/, thread_(thread_state)); if (UseMembar) { __ fence(); } // Write serialization page so that the VM thread can do a pseudo remote // membar. We use the current thread pointer to calculate a thread // specific offset to write to within the page. This minimizes bus // traffic due to cache line collision. else { __ serialize_memory(R16_thread, R11_scratch1, R12_scratch2); } // Now before we return to java we must look for a current safepoint // (a new safepoint can not start since we entered native_trans). // We must check here because a current safepoint could be modifying // the callers registers right this moment. // Acquire isn't strictly necessary here because of the fence, but // sync_state is declared to be volatile, so we do it anyway // (cmp-br-isync on one path, release (same as acquire on PPC64) on the other path). int sync_state_offs = __ load_const_optimized(sync_state_addr, SafepointSynchronize::address_of_state(), /*temp*/R0, true); // TODO PPC port assert(4 == SafepointSynchronize::sz_state(), "unexpected field size"); __ lwz(sync_state, sync_state_offs, sync_state_addr); // TODO PPC port assert(4 == Thread::sz_suspend_flags(), "unexpected field size"); __ lwz(suspend_flags, thread_(suspend_flags)); Label sync_check_done; Label do_safepoint; // No synchronization in progress nor yet synchronized. __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized); // Not suspended. __ cmpwi(CCR1, suspend_flags, 0); __ bne(CCR0, do_safepoint); __ beq(CCR1, sync_check_done); __ bind(do_safepoint); __ isync(); // Block. We do the call directly and leave the current // last_Java_frame setup undisturbed. We must save any possible // native result across the call. No oop is present. __ mr(R3_ARG1, R16_thread); #if defined(ABI_ELFv2) __ call_c(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans), relocInfo::none); #else __ call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, JavaThread::check_special_condition_for_native_trans), relocInfo::none); #endif __ bind(sync_check_done); //============================================================================= // <<<<<< Back in Interpreter Frame >>>>> // We are in thread_in_native_trans here and back in the normal // interpreter frame. We don't have to do anything special about // safepoints and we can switch to Java mode anytime we are ready. // Note: frame::interpreter_frame_result has a dependency on how the // method result is saved across the call to post_method_exit. For // native methods it assumes that the non-FPU/non-void result is // saved in _native_lresult and a FPU result in _native_fresult. If // this changes then the interpreter_frame_result implementation // will need to be updated too. // On PPC64, we have stored the result directly after the native call. //============================================================================= // Back in Java // We use release_store_fence to update values like the thread state, where // we don't want the current thread to continue until all our prior memory // accesses (including the new thread state) are visible to other threads. __ li(R0/*thread_state*/, _thread_in_Java); __ release(); __ stw(R0/*thread_state*/, thread_(thread_state)); if (UseMembar) { __ fence(); } __ reset_last_Java_frame(); // Jvmdi/jvmpi support. Whether we've got an exception pending or // not, and whether unlocking throws an exception or not, we notify // on native method exit. If we do have an exception, we'll end up // in the caller's context to handle it, so if we don't do the // notify here, we'll drop it on the floor. __ notify_method_exit(true/*native method*/, ilgl /*illegal state (not used for native methods)*/, InterpreterMacroAssembler::NotifyJVMTI, false /*check_exceptions*/); //============================================================================= // Handle exceptions if (synchronized) { // Don't check for exceptions since we're still in the i2n frame. Do that // manually afterwards. unlock_method(false); } // Reset active handles after returning from native. // thread->active_handles()->clear(); __ ld(active_handles, thread_(active_handles)); // TODO PPC port assert(4 == JNIHandleBlock::top_size_in_bytes(), "unexpected field size"); __ li(R0, 0); __ stw(R0, JNIHandleBlock::top_offset_in_bytes(), active_handles); Label exception_return_sync_check_already_unlocked; __ ld(R0/*pending_exception*/, thread_(pending_exception)); __ cmpdi(CCR0, R0/*pending_exception*/, 0); __ bne(CCR0, exception_return_sync_check_already_unlocked); //----------------------------------------------------------------------------- // No exception pending. // Move native method result back into proper registers and return. // Invoke result handler (may unbox/promote). __ ld(R11_scratch1, 0, R1_SP); __ ld(R3_RET, _ijava_state_neg(lresult), R11_scratch1); __ lfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1); __ call_stub(result_handler_addr); __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2); // Must use the return pc which was loaded from the caller's frame // as the VM uses return-pc-patching for deoptimization. __ mtlr(R0); __ blr(); //----------------------------------------------------------------------------- // An exception is pending. We call into the runtime only if the // caller was not interpreted. If it was interpreted the // interpreter will do the correct thing. If it isn't interpreted // (call stub/compiled code) we will change our return and continue. BIND(exception_return_sync_check); if (synchronized) { // Don't check for exceptions since we're still in the i2n frame. Do that // manually afterwards. unlock_method(false); } BIND(exception_return_sync_check_already_unlocked); const Register return_pc = R31; __ ld(return_pc, 0, R1_SP); __ ld(return_pc, _abi(lr), return_pc); // Get the address of the exception handler. __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), R16_thread, return_pc /* return pc */); __ merge_frames(/*top_frame_sp*/ R21_sender_SP, noreg, R11_scratch1, R12_scratch2); // Load the PC of the the exception handler into LR. __ mtlr(R3_RET); // Load exception into R3_ARG1 and clear pending exception in thread. __ ld(R3_ARG1/*exception*/, thread_(pending_exception)); __ li(R4_ARG2, 0); __ std(R4_ARG2, thread_(pending_exception)); // Load the original return pc into R4_ARG2. __ mr(R4_ARG2/*issuing_pc*/, return_pc); // Return to exception handler. __ blr(); //============================================================================= // Counter overflow. if (inc_counter) { // Handle invocation counter overflow. __ bind(invocation_counter_overflow); generate_counter_overflow(continue_after_compile); } return entry; } // Generic interpreted method entry to (asm) interpreter. // address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) { bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods; address entry = __ pc(); // Generate the code to allocate the interpreter stack frame. Register Rsize_of_parameters = R4_ARG2, // Written by generate_fixed_frame. Rsize_of_locals = R5_ARG3; // Written by generate_fixed_frame. generate_fixed_frame(false, Rsize_of_parameters, Rsize_of_locals); // -------------------------------------------------------------------------- // Zero out non-parameter locals. // Note: *Always* zero out non-parameter locals as Sparc does. It's not // worth to ask the flag, just do it. Register Rslot_addr = R6_ARG4, Rnum = R7_ARG5; Label Lno_locals, Lzero_loop; // Set up the zeroing loop. __ subf(Rnum, Rsize_of_parameters, Rsize_of_locals); __ subf(Rslot_addr, Rsize_of_parameters, R18_locals); __ srdi_(Rnum, Rnum, Interpreter::logStackElementSize); __ beq(CCR0, Lno_locals); __ li(R0, 0); __ mtctr(Rnum); // The zero locals loop. __ bind(Lzero_loop); __ std(R0, 0, Rslot_addr); __ addi(Rslot_addr, Rslot_addr, -Interpreter::stackElementSize); __ bdnz(Lzero_loop); __ bind(Lno_locals); // -------------------------------------------------------------------------- // Counter increment and overflow check. Label invocation_counter_overflow, profile_method, profile_method_continue; if (inc_counter || ProfileInterpreter) { Register Rdo_not_unlock_if_synchronized_addr = R11_scratch1; if (synchronized) { // Since at this point in the method invocation the exception handler // would try to exit the monitor of synchronized methods which hasn't // been entered yet, we set the thread local variable // _do_not_unlock_if_synchronized to true. If any exception was thrown by // runtime, exception handling i.e. unlock_if_synchronized_method will // check this thread local flag. // This flag has two effects, one is to force an unwind in the topmost // interpreter frame and not perform an unlock while doing so. __ li(R0, 1); __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread); } // Argument and return type profiling. __ profile_parameters_type(R3_ARG1, R4_ARG2, R5_ARG3, R6_ARG4); // Increment invocation counter and check for overflow. if (inc_counter) { generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue); } __ bind(profile_method_continue); // Reset the _do_not_unlock_if_synchronized flag. if (synchronized) { __ li(R0, 0); __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread); } } // -------------------------------------------------------------------------- // Locking of synchronized methods. Must happen AFTER invocation_counter // check and stack overflow check, so method is not locked if overflows. if (synchronized) { lock_method(R3_ARG1, R4_ARG2, R5_ARG3); } #ifdef ASSERT else { Label Lok; __ lwz(R0, in_bytes(Method::access_flags_offset()), R19_method); __ andi_(R0, R0, JVM_ACC_SYNCHRONIZED); __ asm_assert_eq("method needs synchronization", 0x8521); __ bind(Lok); } #endif // ASSERT __ verify_thread(); // -------------------------------------------------------------------------- // JVMTI support __ notify_method_entry(); // -------------------------------------------------------------------------- // Start executing instructions. __ dispatch_next(vtos); // -------------------------------------------------------------------------- // Out of line counter overflow and MDO creation code. if (ProfileInterpreter) { // We have decided to profile this method in the interpreter. __ bind(profile_method); __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method)); __ set_method_data_pointer_for_bcp(); __ b(profile_method_continue); } if (inc_counter) { // Handle invocation counter overflow. __ bind(invocation_counter_overflow); generate_counter_overflow(profile_method_continue); } return entry; } // CRC32 Intrinsics. // // Contract on scratch and work registers. // ======================================= // // On ppc, the register set {R2..R12} is available in the interpreter as scratch/work registers. // You should, however, keep in mind that {R3_ARG1..R10_ARG8} is the C-ABI argument register set. // You can't rely on these registers across calls. // // The generators for CRC32_update and for CRC32_updateBytes use the // scratch/work register set internally, passing the work registers // as arguments to the MacroAssembler emitters as required. // // R3_ARG1..R6_ARG4 are preset to hold the incoming java arguments. // Their contents is not constant but may change according to the requirements // of the emitted code. // // All other registers from the scratch/work register set are used "internally" // and contain garbage (i.e. unpredictable values) once blr() is reached. // Basically, only R3_RET contains a defined value which is the function result. // /** * Method entry for static native methods: * int java.util.zip.CRC32.update(int crc, int b) */ address TemplateInterpreterGenerator::generate_CRC32_update_entry() { if (UseCRC32Intrinsics) { address start = __ pc(); // Remember stub start address (is rtn value). Label slow_path; // Safepoint check const Register sync_state = R11_scratch1; int sync_state_offs = __ load_const_optimized(sync_state, SafepointSynchronize::address_of_state(), /*temp*/R0, true); __ lwz(sync_state, sync_state_offs, sync_state); __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized); __ bne(CCR0, slow_path); // We don't generate local frame and don't align stack because // we not even call stub code (we generate the code inline) // and there is no safepoint on this path. // Load java parameters. // R15_esp is callers operand stack pointer, i.e. it points to the parameters. const Register argP = R15_esp; const Register crc = R3_ARG1; // crc value const Register data = R4_ARG2; // address of java byte value (kernel_crc32 needs address) const Register dataLen = R5_ARG3; // source data len (1 byte). Not used because calling the single-byte emitter. const Register table = R6_ARG4; // address of crc32 table const Register tmp = dataLen; // Reuse unused len register to show we don't actually need a separate tmp here. BLOCK_COMMENT("CRC32_update {"); // Arguments are reversed on java expression stack #ifdef VM_LITTLE_ENDIAN __ addi(data, argP, 0+1*wordSize); // (stack) address of byte value. Emitter expects address, not value. // Being passed as an int, the single byte is at offset +0. #else __ addi(data, argP, 3+1*wordSize); // (stack) address of byte value. Emitter expects address, not value. // Being passed from java as an int, the single byte is at offset +3. #endif __ lwz(crc, 2*wordSize, argP); // Current crc state, zero extend to 64 bit to have a clean register. StubRoutines::ppc64::generate_load_crc_table_addr(_masm, table); __ kernel_crc32_singleByte(crc, data, dataLen, table, tmp); // Restore caller sp for c2i case and return. __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started. __ blr(); // Generate a vanilla native entry as the slow path. BLOCK_COMMENT("} CRC32_update"); BIND(slow_path); __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), R11_scratch1); return start; } return NULL; } // CRC32 Intrinsics. /** * Method entry for static native methods: * int java.util.zip.CRC32.updateBytes( int crc, byte[] b, int off, int len) * int java.util.zip.CRC32.updateByteBuffer(int crc, long* buf, int off, int len) */ address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) { if (UseCRC32Intrinsics) { address start = __ pc(); // Remember stub start address (is rtn value). Label slow_path; // Safepoint check const Register sync_state = R11_scratch1; int sync_state_offs = __ load_const_optimized(sync_state, SafepointSynchronize::address_of_state(), /*temp*/R0, true); __ lwz(sync_state, sync_state_offs, sync_state); __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized); __ bne(CCR0, slow_path); // We don't generate local frame and don't align stack because // we not even call stub code (we generate the code inline) // and there is no safepoint on this path. // Load parameters. // Z_esp is callers operand stack pointer, i.e. it points to the parameters. const Register argP = R15_esp; const Register crc = R3_ARG1; // crc value const Register data = R4_ARG2; // address of java byte array const Register dataLen = R5_ARG3; // source data len const Register table = R6_ARG4; // address of crc32 table const Register t0 = R9; // scratch registers for crc calculation const Register t1 = R10; const Register t2 = R11; const Register t3 = R12; const Register tc0 = R2; // registers to hold pre-calculated column addresses const Register tc1 = R7; const Register tc2 = R8; const Register tc3 = table; // table address is reconstructed at the end of kernel_crc32_* emitters const Register tmp = t0; // Only used very locally to calculate byte buffer address. // Arguments are reversed on java expression stack. // Calculate address of start element. if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) { // Used for "updateByteBuffer direct". BLOCK_COMMENT("CRC32_updateByteBuffer {"); // crc @ (SP + 5W) (32bit) // buf @ (SP + 3W) (64bit ptr to long array) // off @ (SP + 2W) (32bit) // dataLen @ (SP + 1W) (32bit) // data = buf + off __ ld( data, 3*wordSize, argP); // start of byte buffer __ lwa( tmp, 2*wordSize, argP); // byte buffer offset __ lwa( dataLen, 1*wordSize, argP); // #bytes to process __ lwz( crc, 5*wordSize, argP); // current crc state __ add( data, data, tmp); // Add byte buffer offset. } else { // Used for "updateBytes update". BLOCK_COMMENT("CRC32_updateBytes {"); // crc @ (SP + 4W) (32bit) // buf @ (SP + 3W) (64bit ptr to byte array) // off @ (SP + 2W) (32bit) // dataLen @ (SP + 1W) (32bit) // data = buf + off + base_offset __ ld( data, 3*wordSize, argP); // start of byte buffer __ lwa( tmp, 2*wordSize, argP); // byte buffer offset __ lwa( dataLen, 1*wordSize, argP); // #bytes to process __ add( data, data, tmp); // add byte buffer offset __ lwz( crc, 4*wordSize, argP); // current crc state __ addi(data, data, arrayOopDesc::base_offset_in_bytes(T_BYTE)); } StubRoutines::ppc64::generate_load_crc_table_addr(_masm, table); // Performance measurements show the 1word and 2word variants to be almost equivalent, // with very light advantages for the 1word variant. We chose the 1word variant for // code compactness. __ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3, tc0, tc1, tc2, tc3); // Restore caller sp for c2i case and return. __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started. __ blr(); // Generate a vanilla native entry as the slow path. BLOCK_COMMENT("} CRC32_updateBytes(Buffer)"); BIND(slow_path); __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), R11_scratch1); return start; } return NULL; } // Not supported address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) { return NULL; } // ============================================================================= // Exceptions void TemplateInterpreterGenerator::generate_throw_exception() { Register Rexception = R17_tos, Rcontinuation = R3_RET; // -------------------------------------------------------------------------- // Entry point if an method returns with a pending exception (rethrow). Interpreter::_rethrow_exception_entry = __ pc(); { __ restore_interpreter_state(R11_scratch1); // Sets R11_scratch1 = fp. __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1); __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0); // Compiled code destroys templateTableBase, reload. __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1); } // Entry point if a interpreted method throws an exception (throw). Interpreter::_throw_exception_entry = __ pc(); { __ mr(Rexception, R3_RET); __ verify_thread(); __ verify_oop(Rexception); // Expression stack must be empty before entering the VM in case of an exception. __ empty_expression_stack(); // Find exception handler address and preserve exception oop. // Call C routine to find handler and jump to it. __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Rexception); __ mtctr(Rcontinuation); // Push exception for exception handler bytecodes. __ push_ptr(Rexception); // Jump to exception handler (may be remove activation entry!). __ bctr(); } // If the exception is not handled in the current frame the frame is // removed and the exception is rethrown (i.e. exception // continuation is _rethrow_exception). // // Note: At this point the bci is still the bxi for the instruction // which caused the exception and the expression stack is // empty. Thus, for any VM calls at this point, GC will find a legal // oop map (with empty expression stack). // In current activation // tos: exception // bcp: exception bcp // -------------------------------------------------------------------------- // JVMTI PopFrame support Interpreter::_remove_activation_preserving_args_entry = __ pc(); { // Set the popframe_processing bit in popframe_condition indicating that we are // currently handling popframe, so that call_VMs that may happen later do not // trigger new popframe handling cycles. __ lwz(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread); __ ori(R11_scratch1, R11_scratch1, JavaThread::popframe_processing_bit); __ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread); // Empty the expression stack, as in normal exception handling. __ empty_expression_stack(); __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false); // Check to see whether we are returning to a deoptimized frame. // (The PopFrame call ensures that the caller of the popped frame is // either interpreted or compiled and deoptimizes it if compiled.) // Note that we don't compare the return PC against the // deoptimization blob's unpack entry because of the presence of // adapter frames in C2. Label Lcaller_not_deoptimized; Register return_pc = R3_ARG1; __ ld(return_pc, 0, R1_SP); __ ld(return_pc, _abi(lr), return_pc); __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), return_pc); __ cmpdi(CCR0, R3_RET, 0); __ bne(CCR0, Lcaller_not_deoptimized); // The deoptimized case. // In this case, we can't call dispatch_next() after the frame is // popped, but instead must save the incoming arguments and restore // them after deoptimization has occurred. __ ld(R4_ARG2, in_bytes(Method::const_offset()), R19_method); __ lhz(R4_ARG2 /* number of params */, in_bytes(ConstMethod::size_of_parameters_offset()), R4_ARG2); __ slwi(R4_ARG2, R4_ARG2, Interpreter::logStackElementSize); __ addi(R5_ARG3, R18_locals, Interpreter::stackElementSize); __ subf(R5_ARG3, R4_ARG2, R5_ARG3); // Save these arguments. __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), R16_thread, R4_ARG2, R5_ARG3); // Inform deoptimization that it is responsible for restoring these arguments. __ load_const_optimized(R11_scratch1, JavaThread::popframe_force_deopt_reexecution_bit); __ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread); // Return from the current method into the deoptimization blob. Will eventually // end up in the deopt interpeter entry, deoptimization prepared everything that // we will reexecute the call that called us. __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*reload return_pc*/ return_pc, R11_scratch1, R12_scratch2); __ mtlr(return_pc); __ blr(); // The non-deoptimized case. __ bind(Lcaller_not_deoptimized); // Clear the popframe condition flag. __ li(R0, 0); __ stw(R0, in_bytes(JavaThread::popframe_condition_offset()), R16_thread); // Get out of the current method and re-execute the call that called us. __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ noreg, R11_scratch1, R12_scratch2); __ restore_interpreter_state(R11_scratch1); __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1); __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0); if (ProfileInterpreter) { __ set_method_data_pointer_for_bcp(); __ ld(R11_scratch1, 0, R1_SP); __ std(R28_mdx, _ijava_state_neg(mdx), R11_scratch1); } #if INCLUDE_JVMTI Label L_done; __ lbz(R11_scratch1, 0, R14_bcp); __ cmpwi(CCR0, R11_scratch1, Bytecodes::_invokestatic); __ bne(CCR0, L_done); // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call. // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL. __ ld(R4_ARG2, 0, R18_locals); __ MacroAssembler::call_VM(R4_ARG2, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), R4_ARG2, R19_method, R14_bcp, false); __ restore_interpreter_state(R11_scratch1, /*bcp_and_mdx_only*/ true); __ cmpdi(CCR0, R4_ARG2, 0); __ beq(CCR0, L_done); __ std(R4_ARG2, wordSize, R15_esp); __ bind(L_done); #endif // INCLUDE_JVMTI __ dispatch_next(vtos); } // end of JVMTI PopFrame support // -------------------------------------------------------------------------- // Remove activation exception entry. // This is jumped to if an interpreted method can't handle an exception itself // (we come from the throw/rethrow exception entry above). We're going to call // into the VM to find the exception handler in the caller, pop the current // frame and return the handler we calculated. Interpreter::_remove_activation_entry = __ pc(); { __ pop_ptr(Rexception); __ verify_thread(); __ verify_oop(Rexception); __ std(Rexception, in_bytes(JavaThread::vm_result_offset()), R16_thread); __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, true); __ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI, false); __ get_vm_result(Rexception); // We are done with this activation frame; find out where to go next. // The continuation point will be an exception handler, which expects // the following registers set up: // // RET: exception oop // ARG2: Issuing PC (see generate_exception_blob()), only used if the caller is compiled. Register return_pc = R31; // Needs to survive the runtime call. __ ld(return_pc, 0, R1_SP); __ ld(return_pc, _abi(lr), return_pc); __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), R16_thread, return_pc); // Remove the current activation. __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ noreg, R11_scratch1, R12_scratch2); __ mr(R4_ARG2, return_pc); __ mtlr(R3_RET); __ mr(R3_RET, Rexception); __ blr(); } } // JVMTI ForceEarlyReturn support. // Returns "in the middle" of a method with a "fake" return value. address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) { Register Rscratch1 = R11_scratch1, Rscratch2 = R12_scratch2; address entry = __ pc(); __ empty_expression_stack(); __ load_earlyret_value(state, Rscratch1); __ ld(Rscratch1, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread); // Clear the earlyret state. __ li(R0, 0); __ stw(R0, in_bytes(JvmtiThreadState::earlyret_state_offset()), Rscratch1); __ remove_activation(state, false, false); // Copied from TemplateTable::_return. // Restoration of lr done by remove_activation. switch (state) { case ltos: case btos: case ctos: case stos: case atos: case itos: __ mr(R3_RET, R17_tos); break; case ftos: case dtos: __ fmr(F1_RET, F15_ftos); break; case vtos: // This might be a constructor. Final fields (and volatile fields on PPC64) need // to get visible before the reference to the object gets stored anywhere. __ membar(Assembler::StoreStore); break; default : ShouldNotReachHere(); } __ blr(); return entry; } // end of ForceEarlyReturn support //----------------------------------------------------------------------------- // Helper for vtos entry point generation void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) { assert(t->is_valid() && t->tos_in() == vtos, "illegal template"); Label L; aep = __ pc(); __ push_ptr(); __ b(L); fep = __ pc(); __ push_f(); __ b(L); dep = __ pc(); __ push_d(); __ b(L); lep = __ pc(); __ push_l(); __ b(L); __ align(32, 12, 24); // align L bep = cep = sep = iep = __ pc(); __ push_i(); vep = __ pc(); __ bind(L); generate_and_dispatch(t); } //----------------------------------------------------------------------------- // Non-product code #ifndef PRODUCT address TemplateInterpreterGenerator::generate_trace_code(TosState state) { //__ flush_bundle(); address entry = __ pc(); const char *bname = NULL; uint tsize = 0; switch(state) { case ftos: bname = "trace_code_ftos {"; tsize = 2; break; case btos: bname = "trace_code_btos {"; tsize = 2; break; case ctos: bname = "trace_code_ctos {"; tsize = 2; break; case stos: bname = "trace_code_stos {"; tsize = 2; break; case itos: bname = "trace_code_itos {"; tsize = 2; break; case ltos: bname = "trace_code_ltos {"; tsize = 3; break; case atos: bname = "trace_code_atos {"; tsize = 2; break; case vtos: // Note: In case of vtos, the topmost of stack value could be a int or doubl // In case of a double (2 slots) we won't see the 2nd stack value. // Maybe we simply should print the topmost 3 stack slots to cope with the problem. bname = "trace_code_vtos {"; tsize = 2; break; case dtos: bname = "trace_code_dtos {"; tsize = 3; break; default: ShouldNotReachHere(); } BLOCK_COMMENT(bname); // Support short-cut for TraceBytecodesAt. // Don't call into the VM if we don't want to trace to speed up things. Label Lskip_vm_call; if (TraceBytecodesAt > 0 && TraceBytecodesAt < max_intx) { int offs1 = __ load_const_optimized(R11_scratch1, (address) &TraceBytecodesAt, R0, true); int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true); __ ld(R11_scratch1, offs1, R11_scratch1); __ lwa(R12_scratch2, offs2, R12_scratch2); __ cmpd(CCR0, R12_scratch2, R11_scratch1); __ blt(CCR0, Lskip_vm_call); } __ push(state); // Load 2 topmost expression stack values. __ ld(R6_ARG4, tsize*Interpreter::stackElementSize, R15_esp); __ ld(R5_ARG3, Interpreter::stackElementSize, R15_esp); __ mflr(R31); __ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), /* unused */ R4_ARG2, R5_ARG3, R6_ARG4, false); __ mtlr(R31); __ pop(state); if (TraceBytecodesAt > 0 && TraceBytecodesAt < max_intx) { __ bind(Lskip_vm_call); } __ blr(); BLOCK_COMMENT("} trace_code"); return entry; } void TemplateInterpreterGenerator::count_bytecode() { int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeCounter::_counter_value, R12_scratch2, true); __ lwz(R12_scratch2, offs, R11_scratch1); __ addi(R12_scratch2, R12_scratch2, 1); __ stw(R12_scratch2, offs, R11_scratch1); } void TemplateInterpreterGenerator::histogram_bytecode(Template* t) { int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeHistogram::_counters[t->bytecode()], R12_scratch2, true); __ lwz(R12_scratch2, offs, R11_scratch1); __ addi(R12_scratch2, R12_scratch2, 1); __ stw(R12_scratch2, offs, R11_scratch1); } void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) { const Register addr = R11_scratch1, tmp = R12_scratch2; // Get index, shift out old bytecode, bring in new bytecode, and store it. // _index = (_index >> log2_number_of_codes) | // (bytecode << log2_number_of_codes); int offs1 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_index, tmp, true); __ lwz(tmp, offs1, addr); __ srwi(tmp, tmp, BytecodePairHistogram::log2_number_of_codes); __ ori(tmp, tmp, ((int) t->bytecode()) << BytecodePairHistogram::log2_number_of_codes); __ stw(tmp, offs1, addr); // Bump bucket contents. // _counters[_index] ++; int offs2 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_counters, R0, true); __ sldi(tmp, tmp, LogBytesPerInt); __ add(addr, tmp, addr); __ lwz(tmp, offs2, addr); __ addi(tmp, tmp, 1); __ stw(tmp, offs2, addr); } void TemplateInterpreterGenerator::trace_bytecode(Template* t) { // Call a little run-time stub to avoid blow-up for each bytecode. // The run-time runtime saves the right registers, depending on // the tosca in-state for the given template. assert(Interpreter::trace_code(t->tos_in()) != NULL, "entry must have been generated"); // Note: we destroy LR here. __ bl(Interpreter::trace_code(t->tos_in())); } void TemplateInterpreterGenerator::stop_interpreter_at() { Label L; int offs1 = __ load_const_optimized(R11_scratch1, (address) &StopInterpreterAt, R0, true); int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true); __ ld(R11_scratch1, offs1, R11_scratch1); __ lwa(R12_scratch2, offs2, R12_scratch2); __ cmpd(CCR0, R12_scratch2, R11_scratch1); __ bne(CCR0, L); __ illtrap(); __ bind(L); } #endif // !PRODUCT