/* * Copyright (c) 2013, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/g1/g1CardCounts.hpp" #include "gc/g1/g1CollectedHeap.inline.hpp" #include "gc/shared/cardTableBarrierSet.hpp" #include "services/memTracker.hpp" #include "utilities/copy.hpp" void G1CardCountsMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) { if (zero_filled) { return; } MemRegion mr(G1CollectedHeap::heap()->bottom_addr_for_region(start_idx), num_regions * HeapRegion::GrainWords); _counts->clear_range(mr); } size_t G1CardCounts::compute_size(size_t mem_region_size_in_words) { // We keep card counts for every card, so the size of the card counts table must // be the same as the card table. return G1CardTable::compute_size(mem_region_size_in_words); } size_t G1CardCounts::heap_map_factor() { // See G1CardCounts::compute_size() why we reuse the card table value. return G1CardTable::heap_map_factor(); } void G1CardCounts::clear_range(size_t from_card_num, size_t to_card_num) { if (has_count_table()) { assert(from_card_num < to_card_num, "Wrong order? from: " SIZE_FORMAT ", to: " SIZE_FORMAT, from_card_num, to_card_num); Copy::fill_to_bytes(&_card_counts[from_card_num], (to_card_num - from_card_num)); } } G1CardCounts::G1CardCounts(G1CollectedHeap *g1h): _listener(), _g1h(g1h), _ct(NULL), _card_counts(NULL), _reserved_max_card_num(0), _ct_bot(NULL) { _listener.set_cardcounts(this); } void G1CardCounts::initialize(G1RegionToSpaceMapper* mapper) { assert(_g1h->max_reserved_capacity() > 0, "initialization order"); assert(_g1h->capacity() == 0, "initialization order"); if (G1ConcRSHotCardLimit > 0) { // The max value we can store in the counts table is // max_jubyte. Guarantee the value of the hot // threshold limit is no more than this. guarantee(G1ConcRSHotCardLimit <= max_jubyte, "sanity"); _ct = _g1h->card_table(); _ct_bot = _ct->byte_for_const(_g1h->reserved_region().start()); _card_counts = (jubyte*) mapper->reserved().start(); _reserved_max_card_num = mapper->reserved().byte_size(); mapper->set_mapping_changed_listener(&_listener); } } uint G1CardCounts::add_card_count(jbyte* card_ptr) { // Returns the number of times the card has been refined. // If we failed to reserve/commit the counts table, return 0. // If card_ptr is beyond the committed end of the counts table, // return 0. // Otherwise return the actual count. // Unless G1ConcRSHotCardLimit has been set appropriately, // returning 0 will result in the card being considered // cold and will be refined immediately. uint count = 0; if (has_count_table()) { size_t card_num = ptr_2_card_num(card_ptr); assert(card_num < _reserved_max_card_num, "Card " SIZE_FORMAT " outside of card counts table (max size " SIZE_FORMAT ")", card_num, _reserved_max_card_num); count = (uint) _card_counts[card_num]; if (count < G1ConcRSHotCardLimit) { _card_counts[card_num] = (jubyte)(MIN2((uintx)(_card_counts[card_num] + 1), G1ConcRSHotCardLimit)); } } return count; } bool G1CardCounts::is_hot(uint count) { return (count >= G1ConcRSHotCardLimit); } void G1CardCounts::clear_region(HeapRegion* hr) { MemRegion mr(hr->bottom(), hr->end()); clear_range(mr); } void G1CardCounts::clear_range(MemRegion mr) { if (has_count_table()) { const jbyte* from_card_ptr = _ct->byte_for_const(mr.start()); // We use the last address in the range as the range could represent the // last region in the heap. In which case trying to find the card will be an // OOB access to the card table. const jbyte* last_card_ptr = _ct->byte_for_const(mr.last()); #ifdef ASSERT HeapWord* start_addr = _ct->addr_for(from_card_ptr); assert(start_addr == mr.start(), "MemRegion start must be aligned to a card."); HeapWord* last_addr = _ct->addr_for(last_card_ptr); assert((last_addr + G1CardTable::card_size_in_words) == mr.end(), "MemRegion end must be aligned to a card."); #endif // ASSERT // Clear the counts for the (exclusive) card range. size_t from_card_num = ptr_2_card_num(from_card_ptr); size_t to_card_num = ptr_2_card_num(last_card_ptr) + 1; clear_range(from_card_num, to_card_num); } } class G1CardCountsClearClosure : public HeapRegionClosure { private: G1CardCounts* _card_counts; public: G1CardCountsClearClosure(G1CardCounts* card_counts) : HeapRegionClosure(), _card_counts(card_counts) { } virtual bool do_heap_region(HeapRegion* r) { _card_counts->clear_region(r); return false; } }; void G1CardCounts::clear_all() { assert(SafepointSynchronize::is_at_safepoint(), "don't call this otherwise"); G1CardCountsClearClosure cl(this); _g1h->heap_region_iterate(&cl); }