/* * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * This file is available under and governed by the GNU General Public * License version 2 only, as published by the Free Software Foundation. * However, the following notice accompanied the original version of this * file: * * Written by Doug Lea with assistance from members of JCP JSR-166 * Expert Group and released to the public domain, as explained at * http://creativecommons.org/publicdomain/zero/1.0/ */ /* * @test * @bug 4486658 * @summary Checks for responsiveness of blocking queues to cancellation. */ import java.util.ArrayList; import java.util.List; import java.util.SplittableRandom; import java.util.concurrent.ArrayBlockingQueue; import java.util.concurrent.BlockingQueue; import java.util.concurrent.Callable; import java.util.concurrent.CancellationException; import java.util.concurrent.CountDownLatch; import java.util.concurrent.CyclicBarrier; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.Future; import java.util.concurrent.LinkedBlockingDeque; import java.util.concurrent.LinkedBlockingQueue; import java.util.concurrent.SynchronousQueue; import java.util.concurrent.TimeUnit; public class CancelledProducerConsumerLoops { static ExecutorService pool; public static void main(String[] args) throws Exception { final int maxPairs = (args.length > 0) ? Integer.parseInt(args[0]) : 5; pool = Executors.newCachedThreadPool(); for (int i = 1; i <= maxPairs; i += (i+1) >>> 1) { final List> queues = new ArrayList<>(); queues.add(new ArrayBlockingQueue(100)); queues.add(new LinkedBlockingQueue(100)); queues.add(new LinkedBlockingDeque(100)); queues.add(new SynchronousQueue()); // unbounded queue implementations are prone to OOME: // PriorityBlockingQueue, LinkedTransferQueue for (BlockingQueue queue : queues) new CancelledProducerConsumerLoops(i, queue).run(); } pool.shutdown(); if (! pool.awaitTermination(10L, TimeUnit.SECONDS)) throw new AssertionError("timed out"); pool = null; } final int npairs; final BlockingQueue queue; final CountDownLatch producersInterrupted; final CountDownLatch consumersInterrupted; final LoopHelpers.BarrierTimer timer = new LoopHelpers.BarrierTimer(); final CyclicBarrier barrier; final SplittableRandom rnd = new SplittableRandom(); volatile boolean done = false; CancelledProducerConsumerLoops(int npairs, BlockingQueue queue) { this.npairs = npairs; this.queue = queue; this.producersInterrupted = new CountDownLatch(npairs - 1); this.consumersInterrupted = new CountDownLatch(npairs - 1); this.barrier = new CyclicBarrier(npairs * 2 + 1, timer); } void run() throws Exception { Future[] prods = new Future[npairs]; Future[] cons = new Future[npairs]; for (int i = 0; i < npairs; i++) { prods[i] = pool.submit(new Producer()); cons[i] = pool.submit(new Consumer()); } barrier.await(); Thread.sleep(rnd.nextInt(5)); for (int i = 1; i < npairs; i++) { if (!prods[i].cancel(true) || !cons[i].cancel(true)) throw new AssertionError("completed before done"); } for (int i = 1; i < npairs; i++) { assertCancelled(prods[i]); assertCancelled(cons[i]); } if (!producersInterrupted.await(10L, TimeUnit.SECONDS)) throw new AssertionError("timed out"); if (!consumersInterrupted.await(10L, TimeUnit.SECONDS)) throw new AssertionError("timed out"); if (prods[0].isDone() || prods[0].isCancelled()) throw new AssertionError("completed too early"); done = true; if (! (prods[0].get(10L, TimeUnit.SECONDS) instanceof Integer)) throw new AssertionError("expected Integer"); if (! (cons[0].get(10L, TimeUnit.SECONDS) instanceof Integer)) throw new AssertionError("expected Integer"); } void assertCancelled(Future future) throws Exception { if (!future.isDone()) throw new AssertionError("not done"); if (!future.isCancelled()) throw new AssertionError("not cancelled"); try { future.get(10L, TimeUnit.SECONDS); throw new AssertionError("should throw CancellationException"); } catch (CancellationException success) {} } class Producer implements Callable { public Integer call() throws Exception { barrier.await(); int sum = 0; try { int x = 4321; while (!done) { if (Thread.interrupted()) throw new InterruptedException(); x = LoopHelpers.compute1(x); sum += LoopHelpers.compute2(x); queue.offer(new Integer(x), 1, TimeUnit.MILLISECONDS); } } catch (InterruptedException cancelled) { producersInterrupted.countDown(); } return sum; } } class Consumer implements Callable { public Integer call() throws Exception { barrier.await(); int sum = 0; try { while (!done) { Integer x = queue.poll(1, TimeUnit.MILLISECONDS); if (x != null) sum += LoopHelpers.compute1(x.intValue()); } } catch (InterruptedException cancelled) { consumersInterrupted.countDown(); } return sum; } } }