/* * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * This file is available under and governed by the GNU General Public * License version 2 only, as published by the Free Software Foundation. * However, the following notice accompanied the original version of this * file: * * Written by Doug Lea with assistance from members of JCP JSR-166 * Expert Group and released to the public domain, as explained at * http://creativecommons.org/publicdomain/zero/1.0/ */ /* * @test * @bug 6725789 * @summary Check for long overflow in task time comparison. */ import java.util.concurrent.CountDownLatch; import java.util.concurrent.Executors; import java.util.concurrent.ScheduledThreadPoolExecutor; import java.util.concurrent.TimeUnit; public class DelayOverflow { static void waitForNanoTimeTick() { for (long t0 = System.nanoTime(); t0 == System.nanoTime(); ) ; } void scheduleNow(ScheduledThreadPoolExecutor pool, Runnable r, int how) { switch (how) { case 0: pool.schedule(r, 0, TimeUnit.MILLISECONDS); break; case 1: pool.schedule(Executors.callable(r), 0, TimeUnit.DAYS); break; case 2: pool.scheduleWithFixedDelay(r, 0, 1000, TimeUnit.NANOSECONDS); break; case 3: pool.scheduleAtFixedRate(r, 0, 1000, TimeUnit.MILLISECONDS); break; default: fail(String.valueOf(how)); } } void scheduleAtTheEndOfTime(ScheduledThreadPoolExecutor pool, Runnable r, int how) { switch (how) { case 0: pool.schedule(r, Long.MAX_VALUE, TimeUnit.MILLISECONDS); break; case 1: pool.schedule(Executors.callable(r), Long.MAX_VALUE, TimeUnit.DAYS); break; case 2: pool.scheduleWithFixedDelay(r, Long.MAX_VALUE, 1000, TimeUnit.NANOSECONDS); break; case 3: pool.scheduleAtFixedRate(r, Long.MAX_VALUE, 1000, TimeUnit.MILLISECONDS); break; default: fail(String.valueOf(how)); } } /** * Attempts to test exhaustively and deterministically, all 20 * possible ways that one task can be scheduled in the maximal * distant future, while at the same time an existing task's time * has already expired. */ void test(String[] args) throws Throwable { for (int nowHow = 0; nowHow < 4; nowHow++) { for (int thenHow = 0; thenHow < 4; thenHow++) { final ScheduledThreadPoolExecutor pool = new ScheduledThreadPoolExecutor(1); final CountDownLatch runLatch = new CountDownLatch(1); final CountDownLatch busyLatch = new CountDownLatch(1); final CountDownLatch proceedLatch = new CountDownLatch(1); final Runnable notifier = new Runnable() { public void run() { runLatch.countDown(); }}; final Runnable neverRuns = new Runnable() { public void run() { fail(); }}; final Runnable keepPoolBusy = new Runnable() { public void run() { try { busyLatch.countDown(); proceedLatch.await(); } catch (Throwable t) { unexpected(t); } }}; pool.schedule(keepPoolBusy, 0, TimeUnit.SECONDS); busyLatch.await(); scheduleNow(pool, notifier, nowHow); waitForNanoTimeTick(); scheduleAtTheEndOfTime(pool, neverRuns, thenHow); proceedLatch.countDown(); check(runLatch.await(10L, TimeUnit.SECONDS)); equal(runLatch.getCount(), 0L); pool.setExecuteExistingDelayedTasksAfterShutdownPolicy(false); pool.shutdown(); } final int nowHowCopy = nowHow; final ScheduledThreadPoolExecutor pool = new ScheduledThreadPoolExecutor(1); final CountDownLatch runLatch = new CountDownLatch(1); final Runnable notifier = new Runnable() { public void run() { runLatch.countDown(); }}; final Runnable scheduleNowScheduler = new Runnable() { public void run() { try { scheduleNow(pool, notifier, nowHowCopy); waitForNanoTimeTick(); } catch (Throwable t) { unexpected(t); } }}; pool.scheduleWithFixedDelay(scheduleNowScheduler, 0, Long.MAX_VALUE, TimeUnit.NANOSECONDS); check(runLatch.await(10L, TimeUnit.SECONDS)); equal(runLatch.getCount(), 0L); pool.setExecuteExistingDelayedTasksAfterShutdownPolicy(false); pool.shutdown(); } } //--------------------- Infrastructure --------------------------- volatile int passed = 0, failed = 0; void pass() {passed++;} void fail() {failed++; Thread.dumpStack();} void fail(String msg) {System.err.println(msg); fail();} void unexpected(Throwable t) {failed++; t.printStackTrace();} void check(boolean cond) {if (cond) pass(); else fail();} void equal(Object x, Object y) { if (x == null ? y == null : x.equals(y)) pass(); else fail(x + " not equal to " + y);} public static void main(String[] args) throws Throwable { new DelayOverflow().instanceMain(args);} void instanceMain(String[] args) throws Throwable { try {test(args);} catch (Throwable t) {unexpected(t);} System.out.printf("%nPassed = %d, failed = %d%n%n", passed, failed); if (failed > 0) throw new AssertionError("Some tests failed");} }