/* * Copyright (c) 2008, 2016, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifdef COMPILE_CRYPTO // The Rijndael S-box and inverted S-box are embedded here for a faster access. // // Note about lookup tables (T1...T4 and T5..T8): // The tables (boxes) combine ahead-of-time precalculated transposition and mixing steps as // an alternative to a runtime calculation. // The tables are statically generated in com/sun/crypto/provider/AESCrypt class. // Only the first table reference is passed to AES methods below. The other 3 tables // in ecryption and decryption are calculated in runtime by rotating the T1 result accordingly. // It is a free operation on ARM with embedded register-shifted-register EOR capability. // The table reference is passed in a form of a last argument on the parametes list. // The tables lookup method proves to perform better then a runtime Galois Field caclulation, // due to a lack of HW acceleration for the later. unsigned char * SBox; unsigned char * SInvBox; void aes_init() { const static unsigned char Si[256] = { 0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB, 0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87, 0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB, 0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E, 0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25, 0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92, 0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84, 0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06, 0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02, 0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B, 0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73, 0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E, 0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89, 0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B, 0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4, 0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F, 0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, 0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF, 0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D }; static const unsigned char S[256]={ 0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76, 0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0, 0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15, 0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75, 0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84, 0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF, 0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8, 0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2, 0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73, 0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB, 0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79, 0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08, 0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A, 0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E, 0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF, 0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16 }; SBox = (unsigned char*)S; SInvBox = (unsigned char*)Si; } address generate_aescrypt_encryptBlock() { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", "aesencryptBlock"); address start = __ pc(); // Register from = R0; // source byte array // Register to = R1; // destination byte array // Register key = R2; // expanded key array // Register tbox = R3; // transposition box reference __ push (RegisterSet(R4, R12) | LR); __ fpush(FloatRegisterSet(D0, 4)); __ sub(SP, SP, 32); // preserve TBox references __ add(R3, R3, arrayOopDesc::base_offset_in_bytes(T_INT)); __ str(R3, Address(SP, 16)); // retrieve key length. The length is used to determine the number of subsequent rounds (10, 12 or 14) __ ldr(R9, Address(R2, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); __ ldr(R5, Address(R0)); __ ldr(R10, Address(R2, 4, post_indexed)); __ rev(R5, R5); __ eor(R5, R5, R10); __ ldr(R6, Address(R0, 4)); __ ldr(R10, Address(R2, 4, post_indexed)); __ rev(R6, R6); __ eor(R6, R6, R10); __ ldr(R7, Address(R0, 8)); __ ldr(R10, Address(R2, 4, post_indexed)); __ rev(R7, R7); __ eor(R7, R7, R10); __ ldr(R8, Address(R0, 12)); __ ldr(R10, Address(R2, 4, post_indexed)); __ rev(R8, R8); __ eor(R8, R8, R10); // Store the key size; However before doing that adjust the key to compensate for the Initial and Last rounds __ sub(R9, R9, 8); __ fmsr(S7, R1); // load first transporistion box (T1) __ ldr(R0, Address(SP, 16)); __ mov(LR, R2); Label round; __ bind(round); // Utilize a Transposition Box lookup along with subsequent shift and EOR with a round key. // instructions ordering is rearranged to minimize ReadAferWrite dependency. Not that important on A15 target // with register renaming but performs ~10% better on A9. __ mov(R12, AsmOperand(R5, lsr, 24)); __ ubfx(R4, R6, 16, 8); __ ldr (R1, Address(R0, R12, lsl, 2)); __ ldr(R2, Address(R0, R4, lsl, 2)); __ ubfx(R3, R7, 8, 8); __ eor(R1, R1, AsmOperand(R2, ror, 8)); __ uxtb(R4, R8); __ ldr(R3, Address(R0, R3, lsl, 2)); __ ldr(R4, Address(R0, R4, lsl, 2)); __ ldr(R12, Address(LR, 4, post_indexed)); __ eor(R1, R1, AsmOperand(R3, ror, 16)); __ eor(R12, R12, AsmOperand(R4, ror, 24)); __ eor(R10, R1, R12); __ mov(R12, AsmOperand(R6, lsr, 24)); __ ubfx(R4, R7, 16, 8); __ ldr (R1, Address(R0, R12, lsl, 2)); __ ldr(R2, Address(R0, R4, lsl, 2)); __ ubfx(R3, R8, 8, 8); __ eor(R1, R1, AsmOperand(R2, ror, 8)); __ uxtb(R4, R5); __ ldr(R3, Address(R0, R3, lsl, 2)); __ ldr(R4, Address(R0, R4, lsl, 2)); __ ldr(R12, Address(LR, 4, post_indexed)); __ eor(R1, R1, AsmOperand(R3, ror, 16)); __ eor(R12, R12, AsmOperand(R4, ror, 24)); __ eor(R11, R1, R12); __ mov(R12, AsmOperand(R7, lsr, 24)); __ ubfx(R4, R8, 16, 8); __ ldr (R1, Address(R0, R12, lsl, 2)); __ ldr(R2, Address(R0, R4, lsl, 2)); __ ubfx(R3, R5, 8, 8); __ eor(R1, R1, AsmOperand(R2, ror, 8)); __ uxtb(R4, R6); __ ldr(R3, Address(R0, R3, lsl, 2)); __ ldr(R4, Address(R0, R4, lsl, 2)); __ ldr(R12, Address(LR, 4, post_indexed)); __ eor(R1, R1, AsmOperand(R3, ror, 16)); __ eor(R12, R12, AsmOperand(R4, ror, 24)); __ eor(R3, R1, R12); __ str(R3, Address(SP, 0)); __ mov(R12, AsmOperand(R8, lsr, 24)); __ ubfx(R4, R5, 16, 8); __ ldr (R1, Address(R0, R12, lsl, 2)); __ ldr(R2, Address(R0, R4, lsl, 2)); __ ubfx(R3, R6, 8, 8); __ eor(R1, R1, AsmOperand(R2, ror, 8)); __ uxtb(R4, R7); __ ldr(R3, Address(R0, R3, lsl, 2)); __ ldr(R4, Address(R0, R4, lsl, 2)); __ ldr(R12, Address(LR, 4, post_indexed)); __ eor(R1, R1, AsmOperand(R3, ror, 16)); __ eor(R12, R12, AsmOperand(R4, ror, 24)); __ eor(R8, R1, R12); // update round count __ subs(R9, R9, 4); __ mov(R5, R10); __ mov(R6, R11); __ ldr(R7, Address(SP, 0)); __ b(round, gt); // last round - a special case, no MixColumn __ mov_slow(R10, (int)SBox); // output buffer pointer __ fmrs(R9, S7); __ ldr(R11, Address(LR, 4, post_indexed)); __ ldrb(R0, Address(R10, R5, lsr, 24)); __ ubfx(R12, R6, 16, 8); __ ldrb(R1, Address(R10, R12)); __ orr(R0, R1, AsmOperand(R0, lsl, 8)); __ ubfx(R12, R7, 8, 8); __ ldrb(R2, Address(R10, R12)); __ orr(R0, R2, AsmOperand(R0, lsl, 8)); __ uxtb (R12, R8); __ ldrb(R3, Address(R10, R12)); __ orr(R0, R3, AsmOperand(R0, lsl, 8)); __ eor(R0, R0, R11); __ rev(R0, R0); __ str(R0, Address(R9, 4, post_indexed)); __ ldr(R11, Address(LR, 4, post_indexed)); __ ldrb(R0, Address(R10, R6, lsr, 24)); __ ubfx(R12, R7, 16, 8); __ ldrb(R1, Address(R10, R12)); __ orr(R0, R1, AsmOperand(R0, lsl, 8)); __ ubfx(R12, R8, 8, 8); __ ldrb(R2, Address(R10, R12)); __ orr(R0, R2, AsmOperand(R0, lsl, 8)); __ uxtb (R12, R5); __ ldrb(R3, Address(R10, R12)); __ orr(R0, R3, AsmOperand(R0, lsl, 8)); __ eor(R0, R0, R11); __ rev(R0, R0); __ str(R0, Address(R9, 4, post_indexed)); __ ldr(R11, Address(LR, 4, post_indexed)); __ ldrb(R0, Address(R10, R7, lsr, 24)); __ ubfx(R12, R8, 16, 8); __ ldrb(R1, Address(R10, R12)); __ orr(R0, R1, AsmOperand(R0, lsl, 8)); __ ubfx(R12, R5, 8, 8); __ ldrb(R2, Address(R10, R12)); __ orr(R0, R2, AsmOperand(R0, lsl, 8)); __ uxtb (R12, R6); __ ldrb(R3, Address(R10, R12)); __ orr(R0, R3, AsmOperand(R0, lsl, 8)); __ eor(R0, R0, R11); __ rev(R0, R0); __ str(R0, Address(R9, 4, post_indexed)); __ ldr(R11, Address(LR)); __ ldrb(R0, Address(R10, R8, lsr, 24)); __ ubfx(R12, R5, 16, 8); __ ldrb(R1, Address(R10, R12)); __ orr(R0, R1, AsmOperand(R0, lsl, 8)); __ ubfx(R12, R6, 8, 8); __ ldrb(R2, Address(R10, R12)); __ orr(R0, R2, AsmOperand(R0, lsl, 8)); __ uxtb (R12, R7); __ ldrb(R3, Address(R10, R12)); __ orr(R0, R3, AsmOperand(R0, lsl, 8)); __ eor(R0, R0, R11); __ rev(R0, R0); __ str(R0, Address(R9)); __ add(SP, SP, 32); __ fpop(FloatRegisterSet(D0, 4)); __ pop(RegisterSet(R4, R12) | PC); return start; } address generate_aescrypt_decryptBlock() { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", "aesdecryptBlock"); address start = __ pc(); // Register from = R0; // source byte array // Register to = R1; // destination byte array // Register key = R2; // expanded key array // Register tbox = R3; // transposition box reference __ push (RegisterSet(R4, R12) | LR); __ fpush(FloatRegisterSet(D0, 4)); __ sub(SP, SP, 32); // retrieve key length __ ldr(R9, Address(R2, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); // preserve TBox references __ add(R3, R3, arrayOopDesc::base_offset_in_bytes(T_INT)); __ str(R3, Address(SP, 16)); // Preserve the expanded key pointer __ fmsr(S8, R2); // The first key round is applied to the last round __ add(LR, R2, 16); __ ldr(R5, Address(R0)); __ ldr(R10, Address(LR, 4, post_indexed)); __ rev(R5, R5); __ eor(R5, R5, R10); __ ldr(R6, Address(R0, 4)); __ ldr(R10, Address(LR, 4, post_indexed)); __ rev(R6, R6); __ eor(R6, R6, R10); __ ldr(R7, Address(R0, 8)); __ ldr(R10, Address(LR, 4, post_indexed)); __ rev(R7, R7); __ eor(R7, R7, R10); __ ldr(R8, Address(R0, 12)); __ ldr(R10, Address(LR, 4, post_indexed)); __ rev(R8, R8); __ eor(R8, R8, R10); // Store the key size; However before doing that adjust the key to compensate for the Initial and Last rounds __ sub(R9, R9, 8); __ fmsr(S7, R1); // load transporistion box (T5) __ ldr(R0, Address(SP, 16)); Label round; __ bind(round); // each sub-block is treated similary: // combine SubBytes|ShiftRows|MixColumn through a precalculated set of tables // Utilize a Transposition Box lookup along with subsequent shift and EOR with a round key. // instructions ordering is rearranged to minimize ReadAferWrite dependency. Not that important on A15 target // with register renaming but performs ~10% better on A9. __ mov(R12, AsmOperand(R5, lsr, 24)); __ ubfx(R4, R8, 16, 8); __ ldr (R1, Address(R0, R12, lsl, 2)); __ ldr(R2, Address(R0, R4, lsl, 2)); __ ubfx(R3, R7, 8, 8); __ eor(R1, R1, AsmOperand(R2, ror, 8)); __ uxtb(R4, R6); __ ldr(R3, Address(R0, R3, lsl, 2)); __ ldr(R4, Address(R0, R4, lsl, 2)); __ ldr(R12, Address(LR, 4, post_indexed)); __ eor(R1, R1, AsmOperand(R3, ror, 16)); __ eor(R12, R12, AsmOperand(R4, ror, 24)); __ eor(R10, R1, R12); __ mov(R12, AsmOperand(R6, lsr, 24)); __ ubfx(R4, R5, 16, 8); __ ldr (R1, Address(R0, R12, lsl, 2)); __ ldr(R2, Address(R0, R4, lsl, 2)); __ ubfx(R3, R8, 8, 8); __ eor(R1, R1, AsmOperand(R2, ror, 8)); __ uxtb(R4, R7); __ ldr(R3, Address(R0, R3, lsl, 2)); __ ldr(R4, Address(R0, R4, lsl, 2)); __ ldr(R12, Address(LR, 4, post_indexed)); __ eor(R1, R1, AsmOperand(R3, ror, 16)); __ eor(R12, R12, AsmOperand(R4, ror, 24)); __ eor(R11, R1, R12); __ mov(R12, AsmOperand(R7, lsr, 24)); __ ubfx(R4, R6, 16, 8); __ ldr (R1, Address(R0, R12, lsl, 2)); __ ldr(R2, Address(R0, R4, lsl, 2)); __ ubfx(R3, R5, 8, 8); __ eor(R1, R1, AsmOperand(R2, ror, 8)); __ uxtb(R4, R8); __ ldr(R3, Address(R0, R3, lsl, 2)); __ ldr(R4, Address(R0, R4, lsl, 2)); __ ldr(R12, Address(LR, 4, post_indexed)); __ eor(R1, R1, AsmOperand(R3, ror, 16)); __ eor(R12, R12, AsmOperand(R4, ror, 24)); __ eor(R3, R1, R12); __ str(R3, Address(SP, 0)); __ mov(R12, AsmOperand(R8, lsr, 24)); __ ubfx(R4, R7, 16, 8); __ ldr (R1, Address(R0, R12, lsl, 2)); __ ldr(R2, Address(R0, R4, lsl, 2)); __ ubfx(R3, R6, 8, 8); __ eor(R1, R1, AsmOperand(R2, ror, 8)); __ uxtb(R4, R5); __ ldr(R3, Address(R0, R3, lsl, 2)); __ ldr(R4, Address(R0, R4, lsl, 2)); __ ldr(R12, Address(LR, 4, post_indexed)); __ eor(R1, R1, AsmOperand(R3, ror, 16)); __ eor(R12, R12, AsmOperand(R4, ror, 24)); __ eor(R8, R1, R12); // update round count __ subs(R9, R9, 4); __ mov(R5, R10); __ mov(R6, R11); __ ldr(R7, Address(SP, 0)); __ b(round, gt); // last round - a special case, no MixColumn: // Retrieve expanded key pointer __ fmrs(LR, S8); __ mov_slow(R10, (int)SInvBox); // output buffer pointer __ fmrs(R9, S7); // process each sub-block in a similar manner: // 1. load a corresponding round key __ ldr(R11, Address(LR, 4, post_indexed)); // 2. combine SubBytes and ShiftRows stages __ ldrb(R0, Address(R10, R5, lsr, 24)); __ ubfx(R12, R8, 16, 8); __ ldrb(R1, Address(R10, R12)); __ orr(R0, R1, AsmOperand(R0, lsl, 8)); __ ubfx(R12, R7, 8, 8); __ ldrb(R2, Address(R10, R12)); __ orr(R0, R2, AsmOperand(R0, lsl, 8)); __ uxtb (R12, R6); __ ldrb(R3, Address(R10, R12)); __ orr(R3, R3, AsmOperand(R0, lsl, 8)); // 3. AddRoundKey stage __ eor(R0, R3, R11); // 4. convert the result to LE representation __ rev(R0, R0); // 5. store in the output buffer __ str(R0, Address(R9, 4, post_indexed)); __ ldr(R11, Address(LR, 4, post_indexed)); __ ldrb(R0, Address(R10, R6, lsr, 24)); __ ubfx(R12, R5, 16, 8); __ ldrb(R1, Address(R10, R12)); __ orr(R0, R1, AsmOperand(R0, lsl, 8)); __ ubfx(R12, R8, 8, 8); __ ldrb(R2, Address(R10, R12)); __ orr(R0, R2, AsmOperand(R0, lsl, 8)); __ uxtb (R12, R7); __ ldrb(R3, Address(R10, R12)); __ orr(R0, R3, AsmOperand(R0, lsl, 8)); __ eor(R0, R0, R11); __ rev(R0, R0); __ str(R0, Address(R9, 4, post_indexed)); __ ldr(R11, Address(LR, 4, post_indexed)); __ ldrb(R0, Address(R10, R7, lsr, 24)); __ ubfx(R12, R6, 16, 8); __ ldrb(R1, Address(R10, R12)); __ orr(R0, R1, AsmOperand(R0, lsl, 8)); __ ubfx(R12, R5, 8, 8); __ ldrb(R2, Address(R10, R12)); __ orr(R0, R2, AsmOperand(R0, lsl, 8)); __ uxtb (R12, R8); __ ldrb(R3, Address(R10, R12)); __ orr(R0, R3, AsmOperand(R0, lsl, 8)); __ eor(R0, R0, R11); __ rev(R0, R0); __ str(R0, Address(R9, 4, post_indexed)); __ ldr(R11, Address(LR)); __ ldrb(R0, Address(R10, R8, lsr, 24)); __ ubfx(R12, R7, 16, 8); __ ldrb(R1, Address(R10, R12)); __ orr(R0, R1, AsmOperand(R0, lsl, 8)); __ ubfx(R12, R6, 8, 8); __ ldrb(R2, Address(R10, R12)); __ orr(R0, R2, AsmOperand(R0, lsl, 8)); __ uxtb (R12, R5); __ ldrb(R3, Address(R10, R12)); __ orr(R0, R3, AsmOperand(R0, lsl, 8)); __ eor(R0, R0, R11); __ rev(R0, R0); __ str(R0, Address(R9)); __ add(SP, SP, 32); __ fpop(FloatRegisterSet(D0, 4)); __ pop(RegisterSet(R4, R12) | PC); return start; } address generate_cipherBlockChaining_encryptAESCrypt() { // R0 - plain // R1 - cipher // R2 - expanded key // R3 - Initialization Vector (IV) // [sp+0] - cipher len // [sp+4] Transposition Box reference __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_encryptAESCrypt"); address start = __ pc(); __ push(RegisterSet(R4, R12) | LR); // load cipher length (which is first element on the original calling stack) __ ldr(R4, Address(SP, 40)); __ sub(SP, SP, 32); // preserve some arguments __ mov(R5, R1); __ mov(R6, R2); // load IV __ ldmia(R3, RegisterSet(R9, R12), writeback); // preserve original source buffer on stack __ str(R0, Address(SP, 16)); Label loop; __ bind(loop); __ ldmia(R0, RegisterSet(R0, R1) | RegisterSet(R7, R8)); __ eor(R0, R0, R9); __ eor(R1, R1, R10); __ eor(R7, R7, R11); __ eor(R8, R8, R12); __ stmia(SP, RegisterSet(R0, R1) | RegisterSet(R7, R8)); __ mov(R0, SP); __ mov(R1, R5); __ mov(R2, R6); __ ldr(R3, Address(SP, 40+32+4)); // near call is sufficient since the target is also in the stubs __ bl(StubRoutines::_aescrypt_encryptBlock); __ subs(R4, R4, 16); __ ldr(R0, Address(SP, 16), gt); __ ldmia(R5, RegisterSet(R9, R12), writeback); __ add(R0, R0, 16, gt); __ str(R0, Address(SP, 16), gt); __ b(loop, gt); __ add(SP, SP, 32); __ pop(RegisterSet(R4, R12) | LR); // return cipher len (copied from the original argument) __ ldr(R0, Address(SP)); __ bx(LR); return start; } // The CBC decryption could benefit from parallel processing as the blocks could be // decrypted separatly from each other. // NEON is utilized (if available) to perform parallel execution on 8 blocks at a time. // Since Transposition Box (tbox) is used the parallel execution will only apply to an // Initial Round and the last round. It's not practical to use NEON for a table lookup // larger than 128 bytes. It also appears to be faster performing tbox lookup // sequentially then execute Galois Field calculation in parallel. address generate_cipherBlockChaining_decryptAESCrypt() { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_decryptAESCrypt"); address start = __ pc(); Label single_block_done, single_block, cbc_done; // R0 - cipher // R1 - plain // R2 - expanded key // R3 - Initialization Vector (iv) // [sp+0] - cipher len // [sp+4] - Transpotition Box reference __ push(RegisterSet(R4, R12) | LR); // load cipher len: must be modulo 16 __ ldr(R4, Address(SP, 40)); if (VM_Version::has_simd()) { __ andrs(R4, R4, 0x7f); } // preserve registers based arguments __ mov(R7, R2); __ mov(R8, R3); if (VM_Version::has_simd()) { __ b(single_block_done, eq); } __ bind(single_block); // preserve args __ mov(R5, R0); __ mov(R6, R1); // reload arguments __ mov(R2, R7); __ ldr(R3, Address(SP, 40+4)); // near call is sufficient as the method is part of the StubGenerator __ bl((address)StubRoutines::_aescrypt_decryptBlock); // check remainig cipher size (for individual block processing) __ subs(R4, R4, 16); if (VM_Version::has_simd()) { __ tst(R4, 0x7f); } // load IV (changes based on a CBC schedule) __ ldmia(R8, RegisterSet(R9, R12)); // load plaintext from the previous block processing __ ldmia(R6, RegisterSet(R0, R3)); // perform IV addition and save the plaintext for good now __ eor(R0, R0, R9); __ eor(R1, R1, R10); __ eor(R2, R2, R11); __ eor(R3, R3, R12); __ stmia(R6, RegisterSet(R0, R3)); // adjust pointers for next block processing __ mov(R8, R5); __ add(R0, R5, 16); __ add(R1, R6, 16); __ b(single_block, ne); __ bind(single_block_done); if (!VM_Version::has_simd()) { __ b(cbc_done); } else { // done with single blocks. // check if any 8 block chunks are available for parallel processing __ ldr(R4, Address(SP, 40)); __ bics(R4, R4, 0x7f); __ b(cbc_done, eq); Label decrypt_8_blocks; int quad = 1; // Process 8 blocks in parallel __ fpush(FloatRegisterSet(D8, 8)); __ sub(SP, SP, 40); // record output buffer end address (used as a block counter) Address output_buffer_end(SP, 16); __ add(R5, R1, R4); __ str(R5, output_buffer_end); // preserve key pointer Address rounds_key(SP, 28); __ str(R7, rounds_key); // in decryption the first 16 bytes of expanded key are used in the last round __ add(LR, R7, 16); // Record the end of the key which is used to indicate a last round __ ldr(R3, Address(R7, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); __ add(R9, R7, AsmOperand(R3, lsl, 2)); // preserve IV Address iv(SP, 36); __ str(R8, iv); __ bind(decrypt_8_blocks); __ mov(R5, R1); // preserve original source pointer Address original_src(SP, 32); __ str(R0, original_src); // Apply ShiftRow for 8 block at once: // use output buffer for a temp storage to preload it into cache __ vld1(D18, LR, MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS); __ vld1(D0, Address(R0, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS); __ vrev(D0, D0, quad, 32, MacroAssembler::VELEM_SIZE_8); __ veor(D20, D0, D18, quad); __ vst1(D20, Address(R5, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS); __ vld1(D2, Address(R0, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS); __ vrev(D2, D2, quad, 32, MacroAssembler::VELEM_SIZE_8); __ veor(D20, D2, D18, quad); __ vst1(D20, Address(R5, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS); __ vld1(D4, Address(R0, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS); __ vrev(D4, D4, quad, 32, MacroAssembler::VELEM_SIZE_8); __ veor(D20, D4, D18, quad); __ vst1(D20, Address(R5, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS); __ vld1(D6, Address(R0, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS); __ vrev(D6, D6, quad, 32, MacroAssembler::VELEM_SIZE_8); __ veor(D20, D6, D18, quad); __ vst1(D20, Address(R5, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS); __ vld1(D8, Address(R0, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS); __ vrev(D8, D8, quad, 32, MacroAssembler::VELEM_SIZE_8); __ veor(D20, D8, D18, quad); __ vst1(D20, Address(R5, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS); __ vld1(D10, Address(R0, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS); __ vrev(D10, D10, quad, 32, MacroAssembler::VELEM_SIZE_8); __ veor(D20, D10, D18, quad); __ vst1(D20, Address(R5, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS); __ vld1(D12, Address(R0, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS); __ vrev(D12, D12, quad, 32, MacroAssembler::VELEM_SIZE_8); __ veor(D20, D12, D18, quad); __ vst1(D20, Address(R5, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS); __ vld1(D14, Address(R0, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS); __ vrev(D14, D14, quad, 32, MacroAssembler::VELEM_SIZE_8); __ veor(D20, D14, D18, quad); __ vst1(D20, Address(R5, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS); // Local frame map: // sp+20 - ouput buffer pointer // sp+28 - key pointer // sp+32 - original source // sp+36 - block counter // preserve output buffer pointer Address block_current_output_buffer(SP, 20); __ str(R1, block_current_output_buffer); // individual rounds in block processing are executed sequentially . Label block_start; // record end of the output buffer __ add(R0, R1, 128); __ str(R0, Address(SP, 12)); __ bind(block_start); // load transporistion box reference (T5) // location of the reference (6th incoming argument, second slot on the stack): // 10 scalar registers on stack // 8 double-precision FP registers // 40 bytes frame size for local storage // 4 bytes offset to the original arguments list __ ldr(R0, Address(SP, 40+64+40+4)); __ add(R0, R0, arrayOopDesc::base_offset_in_bytes(T_INT)); // load rounds key and compensate for the first and last rounds __ ldr(LR, rounds_key); __ add(LR, LR, 32); // load block data out buffer __ ldr(R2, block_current_output_buffer); __ ldmia(R2, RegisterSet(R5, R8)); Label round; __ bind(round); // Utilize a Transposition Box lookup along with subsequent shift and EOR with a round key. // instructions ordering is rearranged to minimize ReadAferWrite dependency. Not that important on A15 target // with register renaming but performs ~10% better on A9. __ mov(R12, AsmOperand(R5, lsr, 24)); __ ubfx(R4, R8, 16, 8); __ ldr (R1, Address(R0, R12, lsl, 2)); __ ldr(R2, Address(R0, R4, lsl, 2)); __ ubfx(R3, R7, 8, 8); __ eor(R1, R1, AsmOperand(R2, ror, 8)); __ uxtb(R4, R6); __ ldr(R3, Address(R0, R3, lsl, 2)); __ ldr(R4, Address(R0, R4, lsl, 2)); __ ldr(R12, Address(LR, 4, post_indexed)); __ eor(R1, R1, AsmOperand(R3, ror, 16)); __ eor(R12, R12, AsmOperand(R4, ror, 24)); __ eor(R10, R1, R12); __ mov(R12, AsmOperand(R6, lsr, 24)); __ ubfx(R4, R5, 16, 8); __ ldr (R1, Address(R0, R12, lsl, 2)); __ ldr(R2, Address(R0, R4, lsl, 2)); __ ubfx(R3, R8, 8, 8); __ eor(R1, R1, AsmOperand(R2, ror, 8)); __ uxtb(R4, R7); __ ldr(R3, Address(R0, R3, lsl, 2)); __ ldr(R4, Address(R0, R4, lsl, 2)); __ ldr(R12, Address(LR, 4, post_indexed)); __ eor(R1, R1, AsmOperand(R3, ror, 16)); __ eor(R12, R12, AsmOperand(R4, ror, 24)); __ eor(R11, R1, R12); __ mov(R12, AsmOperand(R7, lsr, 24)); __ ubfx(R4, R6, 16, 8); __ ldr (R1, Address(R0, R12, lsl, 2)); __ ldr(R2, Address(R0, R4, lsl, 2)); __ ubfx(R3, R5, 8, 8); __ eor(R1, R1, AsmOperand(R2, ror, 8)); __ uxtb(R4, R8); __ ldr(R3, Address(R0, R3, lsl, 2)); __ ldr(R4, Address(R0, R4, lsl, 2)); __ ldr(R12, Address(LR, 4, post_indexed)); __ eor(R1, R1, AsmOperand(R3, ror, 16)); __ eor(R12, R12, AsmOperand(R4, ror, 24)); __ eor(R3, R1, R12); __ str(R3, Address(SP, 0)); __ mov(R12, AsmOperand(R8, lsr, 24)); __ ubfx(R4, R7, 16, 8); __ ldr (R1, Address(R0, R12, lsl, 2)); __ ldr(R2, Address(R0, R4, lsl, 2)); __ ubfx(R3, R6, 8, 8); __ eor(R1, R1, AsmOperand(R2, ror, 8)); __ uxtb(R4, R5); __ ldr(R3, Address(R0, R3, lsl, 2)); __ ldr(R4, Address(R0, R4, lsl, 2)); __ ldr(R12, Address(LR, 4, post_indexed)); __ eor(R1, R1, AsmOperand(R3, ror, 16)); __ eor(R12, R12, AsmOperand(R4, ror, 24)); __ eor(R8, R1, R12); // see if we reached the key array end __ cmp(R9, LR); // load processed data __ mov(R5, R10); __ mov(R6, R11); __ ldr(R7, Address(SP, 0)); __ b(round, gt); // last round is special // this round could be implemented through vtbl instruction in NEON. However vtbl is limited to a 32-byte wide table (4 vectors), // thus it requires 8 lookup rounds to cover 256-byte wide Si table. On the other hand scalar lookup is independent of the // lookup table size and thus proves to be faster. __ ldr(LR, block_current_output_buffer); // cipher counter __ ldr(R11, Address(SP, 12)); __ mov_slow(R10, (int)SInvBox); __ ldrb(R0, Address(R10, R5, lsr, 24)); __ ubfx(R12, R8, 16, 8); __ ldrb (R1, Address(R10, R12)); __ orr(R0, R1, AsmOperand(R0, lsl, 8)); __ ubfx(R12, R7, 8, 8); __ ldrb(R2, Address(R10, R12)); __ orr(R0, R2, AsmOperand(R0, lsl, 8)); __ uxtb(R12, R6); __ ldrb(R3, Address(R10, R12)); __ orr(R0, R3, AsmOperand(R0, lsl, 8)); __ str(R0, Address(LR, 4, post_indexed)); __ ldrb(R0, Address(R10, R6, lsr, 24)); __ ubfx(R12, R5, 16, 8); __ ldrb (R1, Address(R10, R12)); __ orr(R0, R1, AsmOperand(R0, lsl, 8)); __ ubfx(R12, R8, 8, 8); __ ldrb(R2, Address(R10, R12)); __ orr(R0, R2, AsmOperand(R0, lsl, 8)); __ uxtb(R12, R7); __ ldrb(R3, Address(R10, R12)); __ orr(R0, R3, AsmOperand(R0, lsl, 8)); __ str(R0, Address(LR, 4, post_indexed)); __ ldrb(R0, Address(R10, R7, lsr, 24)); __ ubfx(R12, R6, 16, 8); __ ldrb (R1, Address(R10, R12)); __ orr(R0, R1, AsmOperand(R0, lsl, 8)); __ ubfx(R12, R5, 8, 8); __ ldrb(R2, Address(R10, R12)); __ orr(R0, R2, AsmOperand(R0, lsl, 8)); __ uxtb(R12, R8); __ ldrb(R3, Address(R10, R12)); __ orr(R0, R3, AsmOperand(R0, lsl, 8)); __ str(R0, Address(LR, 4, post_indexed)); __ ldrb(R0, Address(R10, R8, lsr, 24)); __ ubfx(R12, R7, 16, 8); __ ldrb (R1, Address(R10, R12)); __ orr(R0, R1, AsmOperand(R0, lsl, 8)); __ ubfx(R12, R6, 8, 8); __ ldrb(R2, Address(R10, R12)); __ orr(R0, R2, AsmOperand(R0, lsl, 8)); __ uxtb(R12, R5); __ ldrb(R3, Address(R10, R12)); __ orr(R0, R3, AsmOperand(R0, lsl, 8)); __ str(R0, Address(LR, 4, post_indexed)); // preserve current scratch buffer pointer __ cmp(R11, LR); __ str(LR, block_current_output_buffer); // go to the next block processing __ b(block_start, ne); // Perform last round AddRoundKey state on all 8 blocks // load key pointer (remember that [sp+24] points to a byte #32 at the key array) // last round is processed with the key[0 ..3] __ ldr(LR, rounds_key); // retireve original output buffer pointer __ ldr(R1, block_current_output_buffer); __ sub(R1, R1, 128); __ mov(R5, R1); // retrieve original cipher (source) pointer __ ldr(R0, original_src); // retrieve IV (second argument on stack) __ ldr(R6, iv); __ vld1(D20, R6, MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS); __ vrev(D20, D20, quad, 32, MacroAssembler::VELEM_SIZE_8); // perform last AddRoundKey and IV addition __ vld1(D18, Address(LR, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS); __ vld1(D22, Address(R1, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS); __ veor(D22, D22, D18, quad); __ veor(D22, D22, D20, quad); __ vrev(D22, D22, quad, 32, MacroAssembler::VELEM_SIZE_8); __ vst1(D22, Address(R5, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS); __ vld1(D22, Address(R1, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS); __ veor(D22, D22, D18, quad); __ veor(D22, D22, D0, quad); __ vrev(D22, D22, quad, 32, MacroAssembler::VELEM_SIZE_8); __ vst1(D22, Address(R5, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS); __ vld1(D22, Address(R1, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS); __ veor(D22, D22, D18, quad); __ veor(D22, D22, D2, quad); __ vrev(D22, D22, quad, 32, MacroAssembler::VELEM_SIZE_8); __ vst1(D22, Address(R5, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS); __ vld1(D22, Address(R1, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS); __ veor(D22, D22, D18, quad); __ veor(D22, D22, D4, quad); __ vrev(D22, D22, quad, 32, MacroAssembler::VELEM_SIZE_8); __ vst1(D22, Address(R5, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS); __ vld1(D22, Address(R1, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS); __ veor(D22, D22, D18, quad); __ veor(D22, D22, D6, quad); __ vrev(D22, D22, quad, 32, MacroAssembler::VELEM_SIZE_8); __ vst1(D22, Address(R5, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS); __ vld1(D22, Address(R1, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS); __ veor(D22, D22, D18, quad); __ veor(D22, D22, D8, quad); __ vrev(D22, D22, quad, 32, MacroAssembler::VELEM_SIZE_8); __ vst1(D22, Address(R5, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS); __ vld1(D22, Address(R1, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS); __ veor(D22, D22, D18, quad); __ veor(D22, D22, D10, quad); __ vrev(D22, D22, quad, 32, MacroAssembler::VELEM_SIZE_8); __ vst1(D22, Address(R5, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS); __ vld1(D22, Address(R1, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS); __ veor(D22, D22, D18, quad); __ veor(D22, D22, D12, quad); __ vrev(D22, D22, quad, 32, MacroAssembler::VELEM_SIZE_8); __ vst1(D22, Address(R5, 0, post_indexed), MacroAssembler::VELEM_SIZE_8, MacroAssembler::VLD1_TYPE_2_REGS); // check if we're done __ ldr(R4, output_buffer_end); __ cmp(R4, R1); __ add(R0, R0, 128-16); __ str(R0, iv); __ add(R0, R0, 16); __ b(decrypt_8_blocks, ne); __ add(SP, SP, 40); __ fpop(FloatRegisterSet(D8, 8)); } __ bind(cbc_done); __ pop(RegisterSet(R4, R12) | LR); __ ldr(R0, Address(SP)); __ bx(LR); return start; } #endif // USE_CRYPTO