/* * Copyright (c) 2016, 2017, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2016 SAP SE. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "asm/macroAssembler.inline.hpp" #include "interpreter/abstractInterpreter.hpp" #include "interpreter/bytecodeHistogram.hpp" #include "interpreter/interpreter.hpp" #include "interpreter/interpreterRuntime.hpp" #include "interpreter/interp_masm.hpp" #include "interpreter/templateInterpreterGenerator.hpp" #include "interpreter/templateTable.hpp" #include "oops/arrayOop.hpp" #include "oops/oop.inline.hpp" #include "prims/jvmtiExport.hpp" #include "prims/jvmtiThreadState.hpp" #include "runtime/arguments.hpp" #include "runtime/deoptimization.hpp" #include "runtime/frame.inline.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/stubRoutines.hpp" #include "runtime/synchronizer.hpp" #include "runtime/timer.hpp" #include "runtime/vframeArray.hpp" #include "utilities/debug.hpp" // Size of interpreter code. Increase if too small. Interpreter will // fail with a guarantee ("not enough space for interpreter generation"); // if too small. // Run with +PrintInterpreter to get the VM to print out the size. // Max size with JVMTI int TemplateInterpreter::InterpreterCodeSize = 320*K; #undef __ #ifdef PRODUCT #define __ _masm-> #else #define __ _masm-> // #define __ (Verbose ? (_masm->block_comment(FILE_AND_LINE),_masm):_masm)-> #endif #define BLOCK_COMMENT(str) __ block_comment(str) #define BIND(label) __ bind(label); BLOCK_COMMENT(#label ":") #define oop_tmp_offset _z_ijava_state_neg(oop_tmp) //----------------------------------------------------------------------------- address TemplateInterpreterGenerator::generate_slow_signature_handler() { // // New slow_signature handler that respects the z/Architecture // C calling conventions. // // We get called by the native entry code with our output register // area == 8. First we call InterpreterRuntime::get_result_handler // to copy the pointer to the signature string temporarily to the // first C-argument and to return the result_handler in // Z_RET. Since native_entry will copy the jni-pointer to the // first C-argument slot later on, it's OK to occupy this slot // temporarily. Then we copy the argument list on the java // expression stack into native varargs format on the native stack // and load arguments into argument registers. Integer arguments in // the varargs vector will be sign-extended to 8 bytes. // // On entry: // Z_ARG1 - intptr_t* Address of java argument list in memory. // Z_state - cppInterpreter* Address of interpreter state for // this method // Z_method // // On exit (just before return instruction): // Z_RET contains the address of the result_handler. // Z_ARG2 is not updated for static methods and contains "this" otherwise. // Z_ARG3-Z_ARG5 contain the first 3 arguments of types other than float and double. // Z_FARG1-Z_FARG4 contain the first 4 arguments of type float or double. const int LogSizeOfCase = 3; const int max_fp_register_arguments = Argument::n_float_register_parameters; const int max_int_register_arguments = Argument::n_register_parameters - 2; // First 2 are reserved. const Register arg_java = Z_tmp_2; const Register arg_c = Z_tmp_3; const Register signature = Z_R1_scratch; // Is a string. const Register fpcnt = Z_R0_scratch; const Register argcnt = Z_tmp_4; const Register intSlot = Z_tmp_1; const Register sig_end = Z_tmp_1; // Assumed end of signature (only used in do_object). const Register target_sp = Z_tmp_1; const FloatRegister floatSlot = Z_F1; const int d_signature = _z_abi(gpr6); // Only spill space, register contents not affected. const int d_fpcnt = _z_abi(gpr7); // Only spill space, register contents not affected. unsigned int entry_offset = __ offset(); BLOCK_COMMENT("slow_signature_handler {"); // We use target_sp for storing arguments in the C frame. __ save_return_pc(); __ z_stmg(Z_R10,Z_R13,-32,Z_SP); __ push_frame_abi160(32); __ z_lgr(arg_java, Z_ARG1); Register method = Z_ARG2; // Directly load into correct argument register. __ get_method(method); __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_signature), Z_thread, method); // Move signature to callee saved register. // Don't directly write to stack. Frame is used by VM call. __ z_lgr(Z_tmp_1, Z_RET); // Reload method. Register may have been altered by VM call. __ get_method(method); // Get address of result handler. __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_result_handler), Z_thread, method); // Save signature address to stack. __ z_stg(Z_tmp_1, d_signature, Z_SP); // Don't overwrite return value (Z_RET, Z_ARG1) in rest of the method ! { Label isStatic; // Test if static. // We can test the bit directly. // Path is Z_method->_access_flags._flags. // We only support flag bits in the least significant byte (assert !). // Therefore add 3 to address that byte within "_flags". // Reload method. VM call above may have destroyed register contents __ get_method(method); __ testbit(method2_(method, access_flags), JVM_ACC_STATIC_BIT); method = noreg; // end of life __ z_btrue(isStatic); // For non-static functions, pass "this" in Z_ARG2 and copy it to 2nd C-arg slot. // Need to box the Java object here, so we use arg_java // (address of current Java stack slot) as argument and // don't dereference it as in case of ints, floats, etc.. __ z_lgr(Z_ARG2, arg_java); __ add2reg(arg_java, -BytesPerWord); __ bind(isStatic); } // argcnt == 0 corresponds to 3rd C argument. // arg #1 (result handler) and // arg #2 (this, for non-statics), unused else // are reserved and pre-filled above. // arg_java points to the corresponding Java argument here. It // has been decremented by one argument (this) in case of non-static. __ clear_reg(argcnt, true, false); // Don't set CC. __ z_lg(target_sp, 0, Z_SP); __ add2reg(arg_c, _z_abi(remaining_cargs), target_sp); // No floating-point args parsed so far. __ clear_mem(Address(Z_SP, d_fpcnt), 8); NearLabel move_intSlot_to_ARG, move_floatSlot_to_FARG; NearLabel loop_start, loop_start_restore, loop_end; NearLabel do_int, do_long, do_float, do_double; NearLabel do_dontreachhere, do_object, do_array, do_boxed; #ifdef ASSERT // Signature needs to point to '(' (== 0x28) at entry. __ z_lg(signature, d_signature, Z_SP); __ z_cli(0, signature, (int) '('); __ z_brne(do_dontreachhere); #endif __ bind(loop_start_restore); __ z_lg(signature, d_signature, Z_SP); // Restore signature ptr, destroyed by move_XX_to_ARG. BIND(loop_start); // Advance to next argument type token from the signature. __ add2reg(signature, 1); // Use CLI, works well on all CPU versions. __ z_cli(0, signature, (int) ')'); __ z_bre(loop_end); // end of signature __ z_cli(0, signature, (int) 'L'); __ z_bre(do_object); // object #9 __ z_cli(0, signature, (int) 'F'); __ z_bre(do_float); // float #7 __ z_cli(0, signature, (int) 'J'); __ z_bre(do_long); // long #6 __ z_cli(0, signature, (int) 'B'); __ z_bre(do_int); // byte #1 __ z_cli(0, signature, (int) 'Z'); __ z_bre(do_int); // boolean #2 __ z_cli(0, signature, (int) 'C'); __ z_bre(do_int); // char #3 __ z_cli(0, signature, (int) 'S'); __ z_bre(do_int); // short #4 __ z_cli(0, signature, (int) 'I'); __ z_bre(do_int); // int #5 __ z_cli(0, signature, (int) 'D'); __ z_bre(do_double); // double #8 __ z_cli(0, signature, (int) '['); __ z_bre(do_array); // array #10 __ bind(do_dontreachhere); __ unimplemented("ShouldNotReachHere in slow_signature_handler", 120); // Array argument BIND(do_array); { Label start_skip, end_skip; __ bind(start_skip); // Advance to next type tag from signature. __ add2reg(signature, 1); // Use CLI, works well on all CPU versions. __ z_cli(0, signature, (int) '['); __ z_bre(start_skip); // Skip further brackets. __ z_cli(0, signature, (int) '9'); __ z_brh(end_skip); // no optional size __ z_cli(0, signature, (int) '0'); __ z_brnl(start_skip); // Skip optional size. __ bind(end_skip); __ z_cli(0, signature, (int) 'L'); __ z_brne(do_boxed); // If not array of objects: go directly to do_boxed. } // OOP argument BIND(do_object); // Pass by an object's type name. { Label L; __ add2reg(sig_end, 4095, signature); // Assume object type name is shorter than 4k. __ load_const_optimized(Z_R0, (int) ';'); // Type name terminator (must be in Z_R0!). __ MacroAssembler::search_string(sig_end, signature); __ z_brl(L); __ z_illtrap(); // No semicolon found: internal error or object name too long. __ bind(L); __ z_lgr(signature, sig_end); // fallthru to do_boxed } // Need to box the Java object here, so we use arg_java // (address of current Java stack slot) as argument and // don't dereference it as in case of ints, floats, etc.. // UNBOX argument // Load reference and check for NULL. Label do_int_Entry4Boxed; __ bind(do_boxed); { __ load_and_test_long(intSlot, Address(arg_java)); __ z_bre(do_int_Entry4Boxed); __ z_lgr(intSlot, arg_java); __ z_bru(do_int_Entry4Boxed); } // INT argument // (also for byte, boolean, char, short) // Use lgf for load (sign-extend) and stg for store. BIND(do_int); __ z_lgf(intSlot, 0, arg_java); __ bind(do_int_Entry4Boxed); __ add2reg(arg_java, -BytesPerWord); // If argument fits into argument register, go and handle it, otherwise continue. __ compare32_and_branch(argcnt, max_int_register_arguments, Assembler::bcondLow, move_intSlot_to_ARG); __ z_stg(intSlot, 0, arg_c); __ add2reg(arg_c, BytesPerWord); __ z_bru(loop_start); // LONG argument BIND(do_long); __ add2reg(arg_java, -2*BytesPerWord); // Decrement first to have positive displacement for lg. __ z_lg(intSlot, BytesPerWord, arg_java); // If argument fits into argument register, go and handle it, otherwise continue. __ compare32_and_branch(argcnt, max_int_register_arguments, Assembler::bcondLow, move_intSlot_to_ARG); __ z_stg(intSlot, 0, arg_c); __ add2reg(arg_c, BytesPerWord); __ z_bru(loop_start); // FLOAT argumen BIND(do_float); __ z_le(floatSlot, 0, arg_java); __ add2reg(arg_java, -BytesPerWord); assert(max_fp_register_arguments <= 255, "always true"); // safety net __ z_cli(d_fpcnt+7, Z_SP, max_fp_register_arguments); __ z_brl(move_floatSlot_to_FARG); __ z_ste(floatSlot, 4, arg_c); __ add2reg(arg_c, BytesPerWord); __ z_bru(loop_start); // DOUBLE argument BIND(do_double); __ add2reg(arg_java, -2*BytesPerWord); // Decrement first to have positive displacement for lg. __ z_ld(floatSlot, BytesPerWord, arg_java); assert(max_fp_register_arguments <= 255, "always true"); // safety net __ z_cli(d_fpcnt+7, Z_SP, max_fp_register_arguments); __ z_brl(move_floatSlot_to_FARG); __ z_std(floatSlot, 0, arg_c); __ add2reg(arg_c, BytesPerWord); __ z_bru(loop_start); // Method exit, all arguments proocessed. __ bind(loop_end); __ pop_frame(); __ restore_return_pc(); __ z_lmg(Z_R10,Z_R13,-32,Z_SP); __ z_br(Z_R14); // Copy int arguments. Label iarg_caselist; // Distance between each case has to be a power of 2 // (= 1 << LogSizeOfCase). __ align(16); BIND(iarg_caselist); __ z_lgr(Z_ARG3, intSlot); // 4 bytes __ z_bru(loop_start_restore); // 4 bytes __ z_lgr(Z_ARG4, intSlot); __ z_bru(loop_start_restore); __ z_lgr(Z_ARG5, intSlot); __ z_bru(loop_start_restore); __ align(16); __ bind(move_intSlot_to_ARG); __ z_stg(signature, d_signature, Z_SP); // Spill since signature == Z_R1_scratch. __ z_larl(Z_R1_scratch, iarg_caselist); __ z_sllg(Z_R0_scratch, argcnt, LogSizeOfCase); __ add2reg(argcnt, 1); __ z_agr(Z_R1_scratch, Z_R0_scratch); __ z_bcr(Assembler::bcondAlways, Z_R1_scratch); // Copy float arguments. Label farg_caselist; // Distance between each case has to be a power of 2 // (= 1 << logSizeOfCase, padded with nop. __ align(16); BIND(farg_caselist); __ z_ldr(Z_FARG1, floatSlot); // 2 bytes __ z_bru(loop_start_restore); // 4 bytes __ z_nop(); // 2 bytes __ z_ldr(Z_FARG2, floatSlot); __ z_bru(loop_start_restore); __ z_nop(); __ z_ldr(Z_FARG3, floatSlot); __ z_bru(loop_start_restore); __ z_nop(); __ z_ldr(Z_FARG4, floatSlot); __ z_bru(loop_start_restore); __ z_nop(); __ align(16); __ bind(move_floatSlot_to_FARG); __ z_stg(signature, d_signature, Z_SP); // Spill since signature == Z_R1_scratch. __ z_lg(Z_R0_scratch, d_fpcnt, Z_SP); // Need old value for indexing. __ add2mem_64(Address(Z_SP, d_fpcnt), 1, Z_R1_scratch); // Increment index. __ z_larl(Z_R1_scratch, farg_caselist); __ z_sllg(Z_R0_scratch, Z_R0_scratch, LogSizeOfCase); __ z_agr(Z_R1_scratch, Z_R0_scratch); __ z_bcr(Assembler::bcondAlways, Z_R1_scratch); BLOCK_COMMENT("} slow_signature_handler"); return __ addr_at(entry_offset); } address TemplateInterpreterGenerator::generate_result_handler_for (BasicType type) { address entry = __ pc(); assert(Z_tos == Z_RET, "Result handler: must move result!"); assert(Z_ftos == Z_FRET, "Result handler: must move float result!"); switch (type) { case T_BOOLEAN: __ c2bool(Z_tos); break; case T_CHAR: __ and_imm(Z_tos, 0xffff); break; case T_BYTE: __ z_lbr(Z_tos, Z_tos); break; case T_SHORT: __ z_lhr(Z_tos, Z_tos); break; case T_INT: case T_LONG: case T_VOID: case T_FLOAT: case T_DOUBLE: break; case T_OBJECT: // Retrieve result from frame... __ mem2reg_opt(Z_tos, Address(Z_fp, oop_tmp_offset)); // and verify it. __ verify_oop(Z_tos); break; default: ShouldNotReachHere(); } __ z_br(Z_R14); // Return from result handler. return entry; } // Abstract method entry. // Attempt to execute abstract method. Throw exception. address TemplateInterpreterGenerator::generate_abstract_entry(void) { unsigned int entry_offset = __ offset(); // Caller could be the call_stub or a compiled method (x86 version is wrong!). BLOCK_COMMENT("abstract_entry {"); // Implement call of InterpreterRuntime::throw_AbstractMethodError. __ set_top_ijava_frame_at_SP_as_last_Java_frame(Z_SP, Z_R1); __ save_return_pc(); // Save Z_R14. __ push_frame_abi160(0); // Without new frame the RT call could overwrite the saved Z_R14. __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError), Z_thread); __ pop_frame(); __ restore_return_pc(); // Restore Z_R14. __ reset_last_Java_frame(); // Restore caller sp for c2i case. __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started. // branch to SharedRuntime::generate_forward_exception() which handles all possible callers, // i.e. call stub, compiled method, interpreted method. __ load_absolute_address(Z_tmp_1, StubRoutines::forward_exception_entry()); __ z_br(Z_tmp_1); BLOCK_COMMENT("} abstract_entry"); return __ addr_at(entry_offset); } address TemplateInterpreterGenerator::generate_Reference_get_entry(void) { #if INCLUDE_ALL_GCS if (UseG1GC) { // Inputs: // Z_ARG1 - receiver // // What we do: // - Load the referent field address. // - Load the value in the referent field. // - Pass that value to the pre-barrier. // // In the case of G1 this will record the value of the // referent in an SATB buffer if marking is active. // This will cause concurrent marking to mark the referent // field as live. Register scratch1 = Z_tmp_2; Register scratch2 = Z_tmp_3; Register pre_val = Z_RET; // return value // Z_esp is callers operand stack pointer, i.e. it points to the parameters. Register Rargp = Z_esp; Label slow_path; address entry = __ pc(); const int referent_offset = java_lang_ref_Reference::referent_offset; guarantee(referent_offset > 0, "referent offset not initialized"); BLOCK_COMMENT("Reference_get {"); // If the receiver is null then it is OK to jump to the slow path. __ load_and_test_long(pre_val, Address(Rargp, Interpreter::stackElementSize)); // Get receiver. __ z_bre(slow_path); // Load the value of the referent field. __ load_heap_oop(pre_val, referent_offset, pre_val); // Restore caller sp for c2i case. __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started. // Generate the G1 pre-barrier code to log the value of // the referent field in an SATB buffer. // Note: // With these parameters the write_barrier_pre does not // generate instructions to load the previous value. __ g1_write_barrier_pre(noreg, // obj noreg, // offset pre_val, // pre_val noreg, // no new val to preserve scratch1, // tmp scratch2, // tmp true); // pre_val_needed __ z_br(Z_R14); // Branch to previously generated regular method entry. __ bind(slow_path); address meth_entry = Interpreter::entry_for_kind(Interpreter::zerolocals); __ jump_to_entry(meth_entry, Z_R1); BLOCK_COMMENT("} Reference_get"); return entry; } #endif // INCLUDE_ALL_GCS return NULL; } address TemplateInterpreterGenerator::generate_StackOverflowError_handler() { address entry = __ pc(); DEBUG_ONLY(__ verify_esp(Z_esp, Z_ARG5)); // Restore bcp under the assumption that the current frame is still // interpreted. __ restore_bcp(); // Expression stack must be empty before entering the VM if an // exception happened. __ empty_expression_stack(); // Throw exception. __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError)); return entry; } // // Args: // Z_ARG3: aberrant index // address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char * name) { address entry = __ pc(); address excp = CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException); // Expression stack must be empty before entering the VM if an // exception happened. __ empty_expression_stack(); // Setup parameters. // Leave out the name and use register for array to create more detailed exceptions. __ load_absolute_address(Z_ARG2, (address) name); __ call_VM(noreg, excp, Z_ARG2, Z_ARG3); return entry; } address TemplateInterpreterGenerator::generate_ClassCastException_handler() { address entry = __ pc(); // Object is at TOS. __ pop_ptr(Z_ARG2); // Expression stack must be empty before entering the VM if an // exception happened. __ empty_expression_stack(); __ call_VM(Z_ARG1, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException), Z_ARG2); DEBUG_ONLY(__ should_not_reach_here();) return entry; } address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) { assert(!pass_oop || message == NULL, "either oop or message but not both"); address entry = __ pc(); BLOCK_COMMENT("exception_handler_common {"); // Expression stack must be empty before entering the VM if an // exception happened. __ empty_expression_stack(); if (name != NULL) { __ load_absolute_address(Z_ARG2, (address)name); } else { __ clear_reg(Z_ARG2, true, false); } if (pass_oop) { __ call_VM(Z_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), Z_ARG2, Z_tos /*object (see TT::aastore())*/); } else { if (message != NULL) { __ load_absolute_address(Z_ARG3, (address)message); } else { __ clear_reg(Z_ARG3, true, false); } __ call_VM(Z_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), Z_ARG2, Z_ARG3); } // Throw exception. __ load_absolute_address(Z_R1_scratch, Interpreter::throw_exception_entry()); __ z_br(Z_R1_scratch); BLOCK_COMMENT("} exception_handler_common"); return entry; } address TemplateInterpreterGenerator::generate_return_entry_for (TosState state, int step, size_t index_size) { address entry = __ pc(); BLOCK_COMMENT("return_entry {"); // Pop i2c extension or revert top-2-parent-resize done by interpreted callees. Register sp_before_i2c_extension = Z_bcp; __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer. __ z_lg(sp_before_i2c_extension, Address(Z_fp, _z_ijava_state_neg(top_frame_sp))); __ resize_frame_absolute(sp_before_i2c_extension, Z_locals/*tmp*/, true/*load_fp*/); // TODO(ZASM): necessary?? // // and NULL it as marker that esp is now tos until next java call // __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD); __ restore_bcp(); __ restore_locals(); __ restore_esp(); if (state == atos) { __ profile_return_type(Z_tmp_1, Z_tos, Z_tmp_2); } Register cache = Z_tmp_1; Register size = Z_tmp_1; Register offset = Z_tmp_2; const int flags_offset = in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()); __ get_cache_and_index_at_bcp(cache, offset, 1, index_size); // #args is in rightmost byte of the _flags field. __ z_llgc(size, Address(cache, offset, flags_offset+(sizeof(size_t)-1))); __ z_sllg(size, size, Interpreter::logStackElementSize); // Each argument size in bytes. __ z_agr(Z_esp, size); // Pop arguments. __ check_and_handle_popframe(Z_thread); __ check_and_handle_earlyret(Z_thread); __ dispatch_next(state, step); BLOCK_COMMENT("} return_entry"); return entry; } address TemplateInterpreterGenerator::generate_deopt_entry_for (TosState state, int step) { address entry = __ pc(); BLOCK_COMMENT("deopt_entry {"); // TODO(ZASM): necessary? NULL last_sp until next java call // __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD); __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer. __ restore_bcp(); __ restore_locals(); __ restore_esp(); // Handle exceptions. { Label L; __ load_and_test_long(Z_R0/*pending_exception*/, thread_(pending_exception)); __ z_bre(L); __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception)); __ should_not_reach_here(); __ bind(L); } __ dispatch_next(state, step); BLOCK_COMMENT("} deopt_entry"); return entry; } address TemplateInterpreterGenerator::generate_safept_entry_for (TosState state, address runtime_entry) { address entry = __ pc(); __ push(state); __ call_VM(noreg, runtime_entry); __ dispatch_via(vtos, Interpreter::_normal_table.table_for (vtos)); return entry; } // // Helpers for commoning out cases in the various type of method entries. // // Increment invocation count & check for overflow. // // Note: checking for negative value instead of overflow // so we have a 'sticky' overflow test. // // Z_ARG2: method (see generate_fixed_frame()) // void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) { Label done; Register method = Z_ARG2; // Generate_fixed_frame() copies Z_method into Z_ARG2. Register m_counters = Z_ARG4; BLOCK_COMMENT("counter_incr {"); // Note: In tiered we increment either counters in method or in MDO depending // if we are profiling or not. if (TieredCompilation) { int increment = InvocationCounter::count_increment; if (ProfileInterpreter) { NearLabel no_mdo; Register mdo = m_counters; // Are we profiling? __ load_and_test_long(mdo, method2_(method, method_data)); __ branch_optimized(Assembler::bcondZero, no_mdo); // Increment counter in the MDO. const Address mdo_invocation_counter(mdo, MethodData::invocation_counter_offset() + InvocationCounter::counter_offset()); const Address mask(mdo, MethodData::invoke_mask_offset()); __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, Z_R1_scratch, false, Assembler::bcondZero, overflow); __ z_bru(done); __ bind(no_mdo); } // Increment counter in MethodCounters. const Address invocation_counter(m_counters, MethodCounters::invocation_counter_offset() + InvocationCounter::counter_offset()); // Get address of MethodCounters object. __ get_method_counters(method, m_counters, done); const Address mask(m_counters, MethodCounters::invoke_mask_offset()); __ increment_mask_and_jump(invocation_counter, increment, mask, Z_R1_scratch, false, Assembler::bcondZero, overflow); } else { Register counter_sum = Z_ARG3; // The result of this piece of code. Register tmp = Z_R1_scratch; #ifdef ASSERT { NearLabel ok; __ get_method(tmp); __ compare64_and_branch(method, tmp, Assembler::bcondEqual, ok); __ z_illtrap(0x66); __ bind(ok); } #endif // Get address of MethodCounters object. __ get_method_counters(method, m_counters, done); // Update standard invocation counters. __ increment_invocation_counter(m_counters, counter_sum); if (ProfileInterpreter) { __ add2mem_32(Address(m_counters, MethodCounters::interpreter_invocation_counter_offset()), 1, tmp); if (profile_method != NULL) { const Address profile_limit(m_counters, MethodCounters::interpreter_profile_limit_offset()); __ z_cl(counter_sum, profile_limit); __ branch_optimized(Assembler::bcondLow, *profile_method_continue); // If no method data exists, go to profile_method. __ test_method_data_pointer(tmp, *profile_method); } } const Address invocation_limit(m_counters, MethodCounters::interpreter_invocation_limit_offset()); __ z_cl(counter_sum, invocation_limit); __ branch_optimized(Assembler::bcondNotLow, *overflow); } __ bind(done); BLOCK_COMMENT("} counter_incr"); } void TemplateInterpreterGenerator::generate_counter_overflow(Label& do_continue) { // InterpreterRuntime::frequency_counter_overflow takes two // arguments, the first (thread) is passed by call_VM, the second // indicates if the counter overflow occurs at a backwards branch // (NULL bcp). We pass zero for it. The call returns the address // of the verified entry point for the method or NULL if the // compilation did not complete (either went background or bailed // out). __ clear_reg(Z_ARG2); __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), Z_ARG2); __ z_bru(do_continue); } void TemplateInterpreterGenerator::generate_stack_overflow_check(Register frame_size, Register tmp1) { Register tmp2 = Z_R1_scratch; const int page_size = os::vm_page_size(); NearLabel after_frame_check; BLOCK_COMMENT("counter_overflow {"); assert_different_registers(frame_size, tmp1); // Stack banging is sufficient overflow check if frame_size < page_size. if (Immediate::is_uimm(page_size, 15)) { __ z_chi(frame_size, page_size); __ z_brl(after_frame_check); } else { __ load_const_optimized(tmp1, page_size); __ compareU32_and_branch(frame_size, tmp1, Assembler::bcondLow, after_frame_check); } // Get the stack base, and in debug, verify it is non-zero. __ z_lg(tmp1, thread_(stack_base)); #ifdef ASSERT address reentry = NULL; NearLabel base_not_zero; __ compareU64_and_branch(tmp1, (intptr_t)0L, Assembler::bcondNotEqual, base_not_zero); reentry = __ stop_chain_static(reentry, "stack base is zero in generate_stack_overflow_check"); __ bind(base_not_zero); #endif // Get the stack size, and in debug, verify it is non-zero. assert(sizeof(size_t) == sizeof(intptr_t), "wrong load size"); __ z_lg(tmp2, thread_(stack_size)); #ifdef ASSERT NearLabel size_not_zero; __ compareU64_and_branch(tmp2, (intptr_t)0L, Assembler::bcondNotEqual, size_not_zero); reentry = __ stop_chain_static(reentry, "stack size is zero in generate_stack_overflow_check"); __ bind(size_not_zero); #endif // Compute the beginning of the protected zone minus the requested frame size. __ z_sgr(tmp1, tmp2); __ add2reg(tmp1, JavaThread::stack_guard_zone_size()); // Add in the size of the frame (which is the same as subtracting it from the // SP, which would take another register. __ z_agr(tmp1, frame_size); // The frame is greater than one page in size, so check against // the bottom of the stack. __ compareU64_and_branch(Z_SP, tmp1, Assembler::bcondHigh, after_frame_check); // The stack will overflow, throw an exception. // Restore SP to sender's sp. This is necessary if the sender's frame is an // extended compiled frame (see gen_c2i_adapter()) and safer anyway in case of // JSR292 adaptations. __ resize_frame_absolute(Z_R10, tmp1, true/*load_fp*/); // Note also that the restored frame is not necessarily interpreted. // Use the shared runtime version of the StackOverflowError. assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated"); AddressLiteral stub(StubRoutines::throw_StackOverflowError_entry()); __ load_absolute_address(tmp1, StubRoutines::throw_StackOverflowError_entry()); __ z_br(tmp1); // If you get to here, then there is enough stack space. __ bind(after_frame_check); BLOCK_COMMENT("} counter_overflow"); } // Allocate monitor and lock method (asm interpreter). // // Args: // Z_locals: locals void TemplateInterpreterGenerator::lock_method(void) { BLOCK_COMMENT("lock_method {"); // Synchronize method. const Register method = Z_tmp_2; __ get_method(method); #ifdef ASSERT address reentry = NULL; { Label L; __ testbit(method2_(method, access_flags), JVM_ACC_SYNCHRONIZED_BIT); __ z_btrue(L); reentry = __ stop_chain_static(reentry, "method doesn't need synchronization"); __ bind(L); } #endif // ASSERT // Get synchronization object. const Register object = Z_tmp_2; { Label done; Label static_method; __ testbit(method2_(method, access_flags), JVM_ACC_STATIC_BIT); __ z_btrue(static_method); // non-static method: Load receiver obj from stack. __ mem2reg_opt(object, Address(Z_locals, Interpreter::local_offset_in_bytes(0))); __ z_bru(done); __ bind(static_method); // Lock the java mirror. __ load_mirror(object, method); #ifdef ASSERT { NearLabel L; __ compare64_and_branch(object, (intptr_t) 0, Assembler::bcondNotEqual, L); reentry = __ stop_chain_static(reentry, "synchronization object is NULL"); __ bind(L); } #endif // ASSERT __ bind(done); } __ add_monitor_to_stack(true, Z_ARG3, Z_ARG4, Z_ARG5); // Allocate monitor elem. // Store object and lock it. __ get_monitors(Z_tmp_1); __ reg2mem_opt(object, Address(Z_tmp_1, BasicObjectLock::obj_offset_in_bytes())); __ lock_object(Z_tmp_1, object); BLOCK_COMMENT("} lock_method"); } // Generate a fixed interpreter frame. This is identical setup for // interpreted methods and for native methods hence the shared code. // // Registers alive // Z_thread - JavaThread* // Z_SP - old stack pointer // Z_method - callee's method // Z_esp - parameter list (slot 'above' last param) // Z_R14 - return pc, to be stored in caller's frame // Z_R10 - sender sp, note: Z_tmp_1 is Z_R10! // // Registers updated // Z_SP - new stack pointer // Z_esp - callee's operand stack pointer // points to the slot above the value on top // Z_locals - used to access locals: locals[i] := *(Z_locals - i*BytesPerWord) // Z_bcp - the bytecode pointer // Z_fp - the frame pointer, thereby killing Z_method // Z_ARG2 - copy of Z_method // void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) { // stack layout // // F1 [TOP_IJAVA_FRAME_ABI] <-- Z_SP, Z_R10 (see note below) // [F1's operand stack (unused)] // [F1's outgoing Java arguments] <-- Z_esp // [F1's operand stack (non args)] // [monitors] (optional) // [IJAVA_STATE] // // F2 [PARENT_IJAVA_FRAME_ABI] // ... // // 0x000 // // Note: Z_R10, the sender sp, will be below Z_SP if F1 was extended by a c2i adapter. //============================================================================= // Allocate space for locals other than the parameters, the // interpreter state, monitors, and the expression stack. const Register local_count = Z_ARG5; const Register fp = Z_tmp_2; BLOCK_COMMENT("generate_fixed_frame {"); { // local registers const Register top_frame_size = Z_ARG2; const Register sp_after_resize = Z_ARG3; const Register max_stack = Z_ARG4; // local_count = method->constMethod->max_locals(); __ z_lg(Z_R1_scratch, Address(Z_method, Method::const_offset())); __ z_llgh(local_count, Address(Z_R1_scratch, ConstMethod::size_of_locals_offset())); if (native_call) { // If we're calling a native method, we replace max_stack (which is // zero) with space for the worst-case signature handler varargs // vector, which is: // max_stack = max(Argument::n_register_parameters, parameter_count+2); // // We add two slots to the parameter_count, one for the jni // environment and one for a possible native mirror. We allocate // space for at least the number of ABI registers, even though // InterpreterRuntime::slow_signature_handler won't write more than // parameter_count+2 words when it creates the varargs vector at the // top of the stack. The generated slow signature handler will just // load trash into registers beyond the necessary number. We're // still going to cut the stack back by the ABI register parameter // count so as to get SP+16 pointing at the ABI outgoing parameter // area, so we need to allocate at least that much even though we're // going to throw it away. // __ z_lg(Z_R1_scratch, Address(Z_method, Method::const_offset())); __ z_llgh(max_stack, Address(Z_R1_scratch, ConstMethod::size_of_parameters_offset())); __ add2reg(max_stack, 2); NearLabel passing_args_on_stack; // max_stack in bytes __ z_sllg(max_stack, max_stack, LogBytesPerWord); int argument_registers_in_bytes = Argument::n_register_parameters << LogBytesPerWord; __ compare64_and_branch(max_stack, argument_registers_in_bytes, Assembler::bcondNotLow, passing_args_on_stack); __ load_const_optimized(max_stack, argument_registers_in_bytes); __ bind(passing_args_on_stack); } else { // !native_call __ z_lg(max_stack, method_(const)); // Calculate number of non-parameter locals (in slots): __ z_lg(Z_R1_scratch, Address(Z_method, Method::const_offset())); __ z_sh(local_count, Address(Z_R1_scratch, ConstMethod::size_of_parameters_offset())); // max_stack = method->max_stack(); __ z_llgh(max_stack, Address(max_stack, ConstMethod::max_stack_offset())); // max_stack in bytes __ z_sllg(max_stack, max_stack, LogBytesPerWord); } // Resize (i.e. normally shrink) the top frame F1 ... // F1 [TOP_IJAVA_FRAME_ABI] <-- Z_SP, Z_R10 // F1's operand stack (free) // ... // F1's operand stack (free) <-- Z_esp // F1's outgoing Java arg m // ... // F1's outgoing Java arg 0 // ... // // ... into a parent frame (Z_R10 holds F1's SP before any modification, see also above) // // +......................+ // : : <-- Z_R10, saved below as F0's z_ijava_state.sender_sp // : : // F1 [PARENT_IJAVA_FRAME_ABI] <-- Z_SP \ // F0's non arg local | = delta // ... | // F0's non arg local <-- Z_esp / // F1's outgoing Java arg m // ... // F1's outgoing Java arg 0 // ... // // then push the new top frame F0. // // F0 [TOP_IJAVA_FRAME_ABI] = frame::z_top_ijava_frame_abi_size \ // [operand stack] = max_stack | = top_frame_size // [IJAVA_STATE] = frame::z_ijava_state_size / // sp_after_resize = Z_esp - delta // // delta = PARENT_IJAVA_FRAME_ABI + (locals_count - params_count) __ add2reg(sp_after_resize, (Interpreter::stackElementSize) - (frame::z_parent_ijava_frame_abi_size), Z_esp); __ z_sllg(Z_R0_scratch, local_count, LogBytesPerWord); // Params have already been subtracted from local_count. __ z_slgr(sp_after_resize, Z_R0_scratch); // top_frame_size = TOP_IJAVA_FRAME_ABI + max_stack + size of interpreter state __ add2reg(top_frame_size, frame::z_top_ijava_frame_abi_size + frame::z_ijava_state_size + frame::interpreter_frame_monitor_size() * wordSize, max_stack); if (!native_call) { // Stack overflow check. // Native calls don't need the stack size check since they have no // expression stack and the arguments are already on the stack and // we only add a handful of words to the stack. Register frame_size = max_stack; // Reuse the regiser for max_stack. __ z_lgr(frame_size, Z_SP); __ z_sgr(frame_size, sp_after_resize); __ z_agr(frame_size, top_frame_size); generate_stack_overflow_check(frame_size, fp/*tmp1*/); } DEBUG_ONLY(__ z_cg(Z_R14, _z_abi16(return_pc), Z_SP)); __ asm_assert_eq("killed Z_R14", 0); __ resize_frame_absolute(sp_after_resize, fp, true); __ save_return_pc(Z_R14); // ... and push the new frame F0. __ push_frame(top_frame_size, fp, true /*copy_sp*/, false); } //============================================================================= // Initialize the new frame F0: initialize interpreter state. { // locals const Register local_addr = Z_ARG4; BLOCK_COMMENT("generate_fixed_frame: initialize interpreter state {"); #ifdef ASSERT // Set the magic number (using local_addr as tmp register). __ load_const_optimized(local_addr, frame::z_istate_magic_number); __ z_stg(local_addr, _z_ijava_state_neg(magic), fp); #endif // Save sender SP from F1 (i.e. before it was potentially modified by an // adapter) into F0's interpreter state. We us it as well to revert // resizing the frame above. __ z_stg(Z_R10, _z_ijava_state_neg(sender_sp), fp); // Load cp cache and save it at the and of this block. __ z_lg(Z_R1_scratch, Address(Z_method, Method::const_offset())); __ z_lg(Z_R1_scratch, Address(Z_R1_scratch, ConstMethod::constants_offset())); __ z_lg(Z_R1_scratch, Address(Z_R1_scratch, ConstantPool::cache_offset_in_bytes())); // z_ijava_state->method = method; __ z_stg(Z_method, _z_ijava_state_neg(method), fp); // Point locals at the first argument. Method's locals are the // parameters on top of caller's expression stack. // Tos points past last Java argument. __ z_lg(Z_locals, Address(Z_method, Method::const_offset())); __ z_llgh(Z_locals /*parameter_count words*/, Address(Z_locals, ConstMethod::size_of_parameters_offset())); __ z_sllg(Z_locals /*parameter_count bytes*/, Z_locals /*parameter_count*/, LogBytesPerWord); __ z_agr(Z_locals, Z_esp); // z_ijava_state->locals - i*BytesPerWord points to i-th Java local (i starts at 0) // z_ijava_state->locals = Z_esp + parameter_count bytes __ z_stg(Z_locals, _z_ijava_state_neg(locals), fp); // z_ijava_state->oop_temp = NULL; __ store_const(Address(fp, oop_tmp_offset), 0); // Initialize z_ijava_state->mdx. Register Rmdp = Z_bcp; // native_call: assert that mdo == NULL const bool check_for_mdo = !native_call DEBUG_ONLY(|| native_call); if (ProfileInterpreter && check_for_mdo) { #ifdef FAST_DISPATCH // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since // they both use I2. assert(0, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive"); #endif // FAST_DISPATCH Label get_continue; __ load_and_test_long(Rmdp, method_(method_data)); __ z_brz(get_continue); DEBUG_ONLY(if (native_call) __ stop("native methods don't have a mdo")); __ add2reg(Rmdp, in_bytes(MethodData::data_offset())); __ bind(get_continue); } __ z_stg(Rmdp, _z_ijava_state_neg(mdx), fp); // Initialize z_ijava_state->bcp and Z_bcp. if (native_call) { __ clear_reg(Z_bcp); // Must initialize. Will get written into frame where GC reads it. } else { __ z_lg(Z_bcp, method_(const)); __ add2reg(Z_bcp, in_bytes(ConstMethod::codes_offset())); } __ z_stg(Z_bcp, _z_ijava_state_neg(bcp), fp); // no monitors and empty operand stack // => z_ijava_state->monitors points to the top slot in IJAVA_STATE. // => Z_ijava_state->esp points one slot above into the operand stack. // z_ijava_state->monitors = fp - frame::z_ijava_state_size - Interpreter::stackElementSize; // z_ijava_state->esp = Z_esp = z_ijava_state->monitors; __ add2reg(Z_esp, -frame::z_ijava_state_size, fp); __ z_stg(Z_esp, _z_ijava_state_neg(monitors), fp); __ add2reg(Z_esp, -Interpreter::stackElementSize); __ z_stg(Z_esp, _z_ijava_state_neg(esp), fp); // z_ijava_state->cpoolCache = Z_R1_scratch (see load above); __ z_stg(Z_R1_scratch, _z_ijava_state_neg(cpoolCache), fp); // Get mirror and store it in the frame as GC root for this Method*. __ load_mirror(Z_R1_scratch, Z_method); __ z_stg(Z_R1_scratch, _z_ijava_state_neg(mirror), fp); BLOCK_COMMENT("} generate_fixed_frame: initialize interpreter state"); //============================================================================= if (!native_call) { // Fill locals with 0x0s. NearLabel locals_zeroed; NearLabel doXC; // Local_count is already num_locals_slots - num_param_slots. __ compare64_and_branch(local_count, (intptr_t)0L, Assembler::bcondNotHigh, locals_zeroed); // Advance local_addr to point behind locals (creates positive incr. in loop). __ z_lg(Z_R1_scratch, Address(Z_method, Method::const_offset())); __ z_llgh(Z_R0_scratch, Address(Z_R1_scratch, ConstMethod::size_of_locals_offset())); if (Z_R0_scratch == Z_R0) { __ z_aghi(Z_R0_scratch, -1); } else { __ add2reg(Z_R0_scratch, -1); } __ z_lgr(local_addr/*locals*/, Z_locals); __ z_sllg(Z_R0_scratch, Z_R0_scratch, LogBytesPerWord); __ z_sllg(local_count, local_count, LogBytesPerWord); // Local_count are non param locals. __ z_sgr(local_addr, Z_R0_scratch); if (VM_Version::has_Prefetch()) { __ z_pfd(0x02, 0, Z_R0, local_addr); __ z_pfd(0x02, 256, Z_R0, local_addr); } // Can't optimise for Z10 using "compare and branch" (immediate value is too big). __ z_cghi(local_count, 256); __ z_brnh(doXC); // MVCLE: Initialize if quite a lot locals. // __ bind(doMVCLE); __ z_lgr(Z_R0_scratch, local_addr); __ z_lgr(Z_R1_scratch, local_count); __ clear_reg(Z_ARG2); // Src len of MVCLE is zero. __ MacroAssembler::move_long_ext(Z_R0_scratch, Z_ARG1, 0); __ z_bru(locals_zeroed); Label XC_template; __ bind(XC_template); __ z_xc(0, 0, local_addr, 0, local_addr); __ bind(doXC); __ z_bctgr(local_count, Z_R0); // Get #bytes-1 for EXECUTE. if (VM_Version::has_ExecuteExtensions()) { __ z_exrl(local_count, XC_template); // Execute XC with variable length. } else { __ z_larl(Z_R1_scratch, XC_template); __ z_ex(local_count, 0, Z_R0, Z_R1_scratch); // Execute XC with variable length. } __ bind(locals_zeroed); } } // Finally set the frame pointer, destroying Z_method. assert(Z_fp == Z_method, "maybe set Z_fp earlier if other register than Z_method"); // Oprofile analysis suggests to keep a copy in a register to be used by // generate_counter_incr(). __ z_lgr(Z_ARG2, Z_method); __ z_lgr(Z_fp, fp); BLOCK_COMMENT("} generate_fixed_frame"); } // Various method entries // Math function, frame manager must set up an interpreter state, etc. address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) { // Decide what to do: Use same platform specific instructions and runtime calls as compilers. bool use_instruction = false; address runtime_entry = NULL; int num_args = 1; bool double_precision = true; // s390 specific: switch (kind) { case Interpreter::java_lang_math_sqrt: case Interpreter::java_lang_math_abs: use_instruction = true; break; case Interpreter::java_lang_math_fmaF: case Interpreter::java_lang_math_fmaD: use_instruction = UseFMA; break; default: break; // Fall back to runtime call. } switch (kind) { case Interpreter::java_lang_math_sin : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin); break; case Interpreter::java_lang_math_cos : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos); break; case Interpreter::java_lang_math_tan : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan); break; case Interpreter::java_lang_math_abs : /* run interpreted */ break; case Interpreter::java_lang_math_sqrt : /* runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsqrt); not available */ break; case Interpreter::java_lang_math_log : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog); break; case Interpreter::java_lang_math_log10: runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10); break; case Interpreter::java_lang_math_pow : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dpow); num_args = 2; break; case Interpreter::java_lang_math_exp : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dexp); break; case Interpreter::java_lang_math_fmaF : /* run interpreted */ num_args = 3; double_precision = false; break; case Interpreter::java_lang_math_fmaD : /* run interpreted */ num_args = 3; break; default: ShouldNotReachHere(); } // Use normal entry if neither instruction nor runtime call is used. if (!use_instruction && runtime_entry == NULL) return NULL; address entry = __ pc(); if (use_instruction) { switch (kind) { case Interpreter::java_lang_math_sqrt: // Can use memory operand directly. __ z_sqdb(Z_FRET, Interpreter::stackElementSize, Z_esp); break; case Interpreter::java_lang_math_abs: // Load operand from stack. __ mem2freg_opt(Z_FRET, Address(Z_esp, Interpreter::stackElementSize)); __ z_lpdbr(Z_FRET); break; case Interpreter::java_lang_math_fmaF: __ mem2freg_opt(Z_FRET, Address(Z_esp, Interpreter::stackElementSize)); // result reg = arg3 __ mem2freg_opt(Z_FARG2, Address(Z_esp, 3 * Interpreter::stackElementSize)); // arg1 __ z_maeb(Z_FRET, Z_FARG2, Address(Z_esp, 2 * Interpreter::stackElementSize)); break; case Interpreter::java_lang_math_fmaD: __ mem2freg_opt(Z_FRET, Address(Z_esp, Interpreter::stackElementSize)); // result reg = arg3 __ mem2freg_opt(Z_FARG2, Address(Z_esp, 5 * Interpreter::stackElementSize)); // arg1 __ z_madb(Z_FRET, Z_FARG2, Address(Z_esp, 3 * Interpreter::stackElementSize)); break; default: ShouldNotReachHere(); } } else { // Load arguments assert(num_args <= 4, "passed in registers"); if (double_precision) { int offset = (2 * num_args - 1) * Interpreter::stackElementSize; for (int i = 0; i < num_args; ++i) { __ mem2freg_opt(as_FloatRegister(Z_FARG1->encoding() + 2 * i), Address(Z_esp, offset)); offset -= 2 * Interpreter::stackElementSize; } } else { int offset = num_args * Interpreter::stackElementSize; for (int i = 0; i < num_args; ++i) { __ mem2freg_opt(as_FloatRegister(Z_FARG1->encoding() + 2 * i), Address(Z_esp, offset)); offset -= Interpreter::stackElementSize; } } // Call runtime __ save_return_pc(); // Save Z_R14. __ push_frame_abi160(0); // Without new frame the RT call could overwrite the saved Z_R14. __ call_VM_leaf(runtime_entry); __ pop_frame(); __ restore_return_pc(); // Restore Z_R14. } // Pop c2i arguments (if any) off when we return. __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started. __ z_br(Z_R14); return entry; } // Interpreter stub for calling a native method. (asm interpreter). // This sets up a somewhat different looking stack for calling the // native method than the typical interpreter frame setup. address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) { // Determine code generation flags. bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods; // Interpreter entry for ordinary Java methods. // // Registers alive // Z_SP - stack pointer // Z_thread - JavaThread* // Z_method - callee's method (method to be invoked) // Z_esp - operand (or expression) stack pointer of caller. one slot above last arg. // Z_R10 - sender sp (before modifications, e.g. by c2i adapter // and as well by generate_fixed_frame below) // Z_R14 - return address to caller (call_stub or c2i_adapter) // // Registers updated // Z_SP - stack pointer // Z_fp - callee's framepointer // Z_esp - callee's operand stack pointer // points to the slot above the value on top // Z_locals - used to access locals: locals[i] := *(Z_locals - i*BytesPerWord) // Z_tos - integer result, if any // z_ftos - floating point result, if any // // Stack layout at this point: // // F1 [TOP_IJAVA_FRAME_ABI] <-- Z_SP, Z_R10 (Z_R10 will be below Z_SP if // frame was extended by c2i adapter) // [outgoing Java arguments] <-- Z_esp // ... // PARENT [PARENT_IJAVA_FRAME_ABI] // ... // address entry_point = __ pc(); // Make sure registers are different! assert_different_registers(Z_thread, Z_method, Z_esp); BLOCK_COMMENT("native_entry {"); // Make sure method is native and not abstract. #ifdef ASSERT address reentry = NULL; { Label L; __ testbit(method_(access_flags), JVM_ACC_NATIVE_BIT); __ z_btrue(L); reentry = __ stop_chain_static(reentry, "tried to execute non-native method as native"); __ bind(L); } { Label L; __ testbit(method_(access_flags), JVM_ACC_ABSTRACT_BIT); __ z_bfalse(L); reentry = __ stop_chain_static(reentry, "tried to execute abstract method as non-abstract"); __ bind(L); } #endif // ASSERT #ifdef ASSERT // Save the return PC into the callers frame for assertion in generate_fixed_frame. __ save_return_pc(Z_R14); #endif // Generate the code to allocate the interpreter stack frame. generate_fixed_frame(true); const Address do_not_unlock_if_synchronized(Z_thread, JavaThread::do_not_unlock_if_synchronized_offset()); // Since at this point in the method invocation the exception handler // would try to exit the monitor of synchronized methods which hasn't // been entered yet, we set the thread local variable // _do_not_unlock_if_synchronized to true. If any exception was thrown by // runtime, exception handling i.e. unlock_if_synchronized_method will // check this thread local flag. __ z_mvi(do_not_unlock_if_synchronized, true); // Increment invocation count and check for overflow. NearLabel invocation_counter_overflow; if (inc_counter) { generate_counter_incr(&invocation_counter_overflow, NULL, NULL); } Label continue_after_compile; __ bind(continue_after_compile); bang_stack_shadow_pages(true); // Reset the _do_not_unlock_if_synchronized flag. __ z_mvi(do_not_unlock_if_synchronized, false); // Check for synchronized methods. // This mst happen AFTER invocation_counter check and stack overflow check, // so method is not locked if overflows. if (synchronized) { lock_method(); } else { // No synchronization necessary. #ifdef ASSERT { Label L; __ get_method(Z_R1_scratch); __ testbit(method2_(Z_R1_scratch, access_flags), JVM_ACC_SYNCHRONIZED_BIT); __ z_bfalse(L); reentry = __ stop_chain_static(reentry, "method needs synchronization"); __ bind(L); } #endif // ASSERT } // start execution // jvmti support __ notify_method_entry(); //============================================================================= // Get and call the signature handler. const Register Rmethod = Z_tmp_2; const Register signature_handler_entry = Z_tmp_1; const Register Rresult_handler = Z_tmp_3; Label call_signature_handler; assert_different_registers(Z_fp, Rmethod, signature_handler_entry, Rresult_handler); assert(Rresult_handler->is_nonvolatile(), "Rresult_handler must be in a non-volatile register"); // Reload method. __ get_method(Rmethod); // Check for signature handler. __ load_and_test_long(signature_handler_entry, method2_(Rmethod, signature_handler)); __ z_brne(call_signature_handler); // Method has never been called. Either generate a specialized // handler or point to the slow one. __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), Rmethod); // Reload method. __ get_method(Rmethod); // Reload signature handler, it must have been created/assigned in the meantime. __ z_lg(signature_handler_entry, method2_(Rmethod, signature_handler)); __ bind(call_signature_handler); // We have a TOP_IJAVA_FRAME here, which belongs to us. __ set_top_ijava_frame_at_SP_as_last_Java_frame(Z_SP, Z_R1/*tmp*/); // Call signature handler and pass locals address in Z_ARG1. __ z_lgr(Z_ARG1, Z_locals); __ call_stub(signature_handler_entry); // Save result handler returned by signature handler. __ z_lgr(Rresult_handler, Z_RET); // Reload method (the slow signature handler may block for GC). __ get_method(Rmethod); // Pass mirror handle if static call. { Label method_is_not_static; __ testbit(method2_(Rmethod, access_flags), JVM_ACC_STATIC_BIT); __ z_bfalse(method_is_not_static); // Get mirror. __ load_mirror(Z_R1, Rmethod); // z_ijava_state.oop_temp = pool_holder->klass_part()->java_mirror(); __ z_stg(Z_R1, oop_tmp_offset, Z_fp); // Pass handle to mirror as 2nd argument to JNI method. __ add2reg(Z_ARG2, oop_tmp_offset, Z_fp); __ bind(method_is_not_static); } // Pass JNIEnv address as first parameter. __ add2reg(Z_ARG1, in_bytes(JavaThread::jni_environment_offset()), Z_thread); // Note: last java frame has been set above already. The pc from there // is precise enough. // Get native function entry point before we change the thread state. __ z_lg(Z_R1/*native_method_entry*/, method2_(Rmethod, native_function)); //============================================================================= // Transition from _thread_in_Java to _thread_in_native. As soon as // we make this change the safepoint code needs to be certain that // the last Java frame we established is good. The pc in that frame // just need to be near here not an actual return address. #ifdef ASSERT { NearLabel L; __ mem2reg_opt(Z_R14, Address(Z_thread, JavaThread::thread_state_offset()), false /*32 bits*/); __ compareU32_and_branch(Z_R14, _thread_in_Java, Assembler::bcondEqual, L); reentry = __ stop_chain_static(reentry, "Wrong thread state in native stub"); __ bind(L); } #endif // Memory ordering: Z does not reorder store/load with subsequent load. That's strong enough. __ set_thread_state(_thread_in_native); //============================================================================= // Call the native method. Argument registers must not have been // overwritten since "__ call_stub(signature_handler);" (except for // ARG1 and ARG2 for static methods). __ call_c(Z_R1/*native_method_entry*/); // NOTE: frame::interpreter_frame_result() depends on these stores. __ z_stg(Z_RET, _z_ijava_state_neg(lresult), Z_fp); __ freg2mem_opt(Z_FRET, Address(Z_fp, _z_ijava_state_neg(fresult))); const Register Rlresult = signature_handler_entry; assert(Rlresult->is_nonvolatile(), "Rlresult must be in a non-volatile register"); __ z_lgr(Rlresult, Z_RET); // Z_method may no longer be valid, because of GC. // Block, if necessary, before resuming in _thread_in_Java state. // In order for GC to work, don't clear the last_Java_sp until after // blocking. //============================================================================= // Switch thread to "native transition" state before reading the // synchronization state. This additional state is necessary // because reading and testing the synchronization state is not // atomic w.r.t. GC, as this scenario demonstrates: Java thread A, // in _thread_in_native state, loads _not_synchronized and is // preempted. VM thread changes sync state to synchronizing and // suspends threads for GC. Thread A is resumed to finish this // native method, but doesn't block here since it didn't see any // synchronization is progress, and escapes. __ set_thread_state(_thread_in_native_trans); if (UseMembar) { __ z_fence(); } else { // Write serialization page so VM thread can do a pseudo remote // membar. We use the current thread pointer to calculate a thread // specific offset to write to within the page. This minimizes bus // traffic due to cache line collision. __ serialize_memory(Z_thread, Z_R1, Z_R0); } // Now before we return to java we must look for a current safepoint // (a new safepoint can not start since we entered native_trans). // We must check here because a current safepoint could be modifying // the callers registers right this moment. // Check for safepoint operation in progress and/or pending suspend requests. { Label Continue, do_safepoint; __ generate_safepoint_check(do_safepoint, Z_R1, true); // Check for suspend. __ load_and_test_int(Z_R0/*suspend_flags*/, thread_(suspend_flags)); __ z_bre(Continue); // 0 -> no flag set -> not suspended __ bind(do_safepoint); __ z_lgr(Z_ARG1, Z_thread); __ call_c(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)); __ bind(Continue); } //============================================================================= // Back in Interpreter Frame. // We are in thread_in_native_trans here and back in the normal // interpreter frame. We don't have to do anything special about // safepoints and we can switch to Java mode anytime we are ready. // Note: frame::interpreter_frame_result has a dependency on how the // method result is saved across the call to post_method_exit. For // native methods it assumes that the non-FPU/non-void result is // saved in z_ijava_state.lresult and a FPU result in z_ijava_state.fresult. If // this changes then the interpreter_frame_result implementation // will need to be updated too. //============================================================================= // Back in Java. // Memory ordering: Z does not reorder store/load with subsequent // load. That's strong enough. __ set_thread_state(_thread_in_Java); __ reset_last_Java_frame(); // We reset the JNI handle block only after unboxing the result; see below. // The method register is junk from after the thread_in_native transition // until here. Also can't call_VM until the bcp has been // restored. Need bcp for throwing exception below so get it now. __ get_method(Rmethod); // Restore Z_bcp to have legal interpreter frame, // i.e., bci == 0 <=> Z_bcp == code_base(). __ z_lg(Z_bcp, Address(Rmethod, Method::const_offset())); // get constMethod __ add2reg(Z_bcp, in_bytes(ConstMethod::codes_offset())); // get codebase if (CheckJNICalls) { // clear_pending_jni_exception_check __ clear_mem(Address(Z_thread, JavaThread::pending_jni_exception_check_fn_offset()), sizeof(oop)); } // Check if the native method returns an oop, and if so, move it // from the jni handle to z_ijava_state.oop_temp. This is // necessary, because we reset the jni handle block below. // NOTE: frame::interpreter_frame_result() depends on this, too. { NearLabel no_oop_result, store_oop_result; __ load_absolute_address(Z_R1, AbstractInterpreter::result_handler(T_OBJECT)); __ compareU64_and_branch(Z_R1, Rresult_handler, Assembler::bcondNotEqual, no_oop_result); __ compareU64_and_branch(Rlresult, (intptr_t)0L, Assembler::bcondEqual, store_oop_result); __ z_lg(Rlresult, 0, Rlresult); // unbox __ bind(store_oop_result); __ z_stg(Rlresult, oop_tmp_offset, Z_fp); __ verify_oop(Rlresult); __ bind(no_oop_result); } // Reset handle block. __ z_lg(Z_R1/*active_handles*/, thread_(active_handles)); __ clear_mem(Address(Z_R1, JNIHandleBlock::top_offset_in_bytes()), 4); // Bandle exceptions (exception handling will handle unlocking!). { Label L; __ load_and_test_long(Z_R0/*pending_exception*/, thread_(pending_exception)); __ z_bre(L); __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception)); __ should_not_reach_here(); __ bind(L); } if (synchronized) { Register Rfirst_monitor = Z_ARG2; __ add2reg(Rfirst_monitor, -(frame::z_ijava_state_size + (int)sizeof(BasicObjectLock)), Z_fp); #ifdef ASSERT NearLabel ok; __ z_lg(Z_R1, _z_ijava_state_neg(monitors), Z_fp); __ compareU64_and_branch(Rfirst_monitor, Z_R1, Assembler::bcondEqual, ok); reentry = __ stop_chain_static(reentry, "native_entry:unlock: inconsistent z_ijava_state.monitors"); __ bind(ok); #endif __ unlock_object(Rfirst_monitor); } // JVMTI support. Result has already been saved above to the frame. __ notify_method_exit(true/*native_method*/, ilgl, InterpreterMacroAssembler::NotifyJVMTI); // Move native method result back into proper registers and return. // C++ interpreter does not use result handler. So do we need to here? TODO(ZASM): check if correct. { NearLabel no_oop_or_null; __ mem2freg_opt(Z_FRET, Address(Z_fp, _z_ijava_state_neg(fresult))); __ load_and_test_long(Z_RET, Address(Z_fp, _z_ijava_state_neg(lresult))); __ z_bre(no_oop_or_null); // No unboxing if the result is NULL. __ load_absolute_address(Z_R1, AbstractInterpreter::result_handler(T_OBJECT)); __ compareU64_and_branch(Z_R1, Rresult_handler, Assembler::bcondNotEqual, no_oop_or_null); __ z_lg(Z_RET, oop_tmp_offset, Z_fp); __ verify_oop(Z_RET); __ bind(no_oop_or_null); } // Pop the native method's interpreter frame. __ pop_interpreter_frame(Z_R14 /*return_pc*/, Z_ARG2/*tmp1*/, Z_ARG3/*tmp2*/); // Return to caller. __ z_br(Z_R14); if (inc_counter) { // Handle overflow of counter and compile method. __ bind(invocation_counter_overflow); generate_counter_overflow(continue_after_compile); } BLOCK_COMMENT("} native_entry"); return entry_point; } // // Generic interpreted method entry to template interpreter. // address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) { address entry_point = __ pc(); bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods; // Interpreter entry for ordinary Java methods. // // Registers alive // Z_SP - stack pointer // Z_thread - JavaThread* // Z_method - callee's method (method to be invoked) // Z_esp - operand (or expression) stack pointer of caller. one slot above last arg. // Z_R10 - sender sp (before modifications, e.g. by c2i adapter // and as well by generate_fixed_frame below) // Z_R14 - return address to caller (call_stub or c2i_adapter) // // Registers updated // Z_SP - stack pointer // Z_fp - callee's framepointer // Z_esp - callee's operand stack pointer // points to the slot above the value on top // Z_locals - used to access locals: locals[i] := *(Z_locals - i*BytesPerWord) // Z_tos - integer result, if any // z_ftos - floating point result, if any // // // stack layout at this point: // // F1 [TOP_IJAVA_FRAME_ABI] <-- Z_SP, Z_R10 (Z_R10 will be below Z_SP if // frame was extended by c2i adapter) // [outgoing Java arguments] <-- Z_esp // ... // PARENT [PARENT_IJAVA_FRAME_ABI] // ... // // stack layout before dispatching the first bytecode: // // F0 [TOP_IJAVA_FRAME_ABI] <-- Z_SP // [operand stack] <-- Z_esp // monitor (optional, can grow) // [IJAVA_STATE] // F1 [PARENT_IJAVA_FRAME_ABI] <-- Z_fp (== *Z_SP) // [F0's locals] <-- Z_locals // [F1's operand stack] // [F1's monitors] (optional) // [IJAVA_STATE] // Make sure registers are different! assert_different_registers(Z_thread, Z_method, Z_esp); BLOCK_COMMENT("normal_entry {"); // Make sure method is not native and not abstract. // Rethink these assertions - they can be simplified and shared. #ifdef ASSERT address reentry = NULL; { Label L; __ testbit(method_(access_flags), JVM_ACC_NATIVE_BIT); __ z_bfalse(L); reentry = __ stop_chain_static(reentry, "tried to execute native method as non-native"); __ bind(L); } { Label L; __ testbit(method_(access_flags), JVM_ACC_ABSTRACT_BIT); __ z_bfalse(L); reentry = __ stop_chain_static(reentry, "tried to execute abstract method as non-abstract"); __ bind(L); } #endif // ASSERT #ifdef ASSERT // Save the return PC into the callers frame for assertion in generate_fixed_frame. __ save_return_pc(Z_R14); #endif // Generate the code to allocate the interpreter stack frame. generate_fixed_frame(false); const Address do_not_unlock_if_synchronized(Z_thread, JavaThread::do_not_unlock_if_synchronized_offset()); // Since at this point in the method invocation the exception handler // would try to exit the monitor of synchronized methods which hasn't // been entered yet, we set the thread local variable // _do_not_unlock_if_synchronized to true. If any exception was thrown by // runtime, exception handling i.e. unlock_if_synchronized_method will // check this thread local flag. __ z_mvi(do_not_unlock_if_synchronized, true); __ profile_parameters_type(Z_tmp_2, Z_ARG3, Z_ARG4); // Increment invocation counter and check for overflow. // // Note: checking for negative value instead of overflow so we have a 'sticky' // overflow test (may be of importance as soon as we have true MT/MP). NearLabel invocation_counter_overflow; NearLabel profile_method; NearLabel profile_method_continue; NearLabel Lcontinue; if (inc_counter) { generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue); if (ProfileInterpreter) { __ bind(profile_method_continue); } } __ bind(Lcontinue); bang_stack_shadow_pages(false); // Reset the _do_not_unlock_if_synchronized flag. __ z_mvi(do_not_unlock_if_synchronized, false); // Check for synchronized methods. // Must happen AFTER invocation_counter check and stack overflow check, // so method is not locked if overflows. if (synchronized) { // Allocate monitor and lock method. lock_method(); } else { #ifdef ASSERT { Label L; __ get_method(Z_R1_scratch); __ testbit(method2_(Z_R1_scratch, access_flags), JVM_ACC_SYNCHRONIZED_BIT); __ z_bfalse(L); reentry = __ stop_chain_static(reentry, "method needs synchronization"); __ bind(L); } #endif // ASSERT } // start execution #ifdef ASSERT __ verify_esp(Z_esp, Z_R1_scratch); __ verify_thread(); #endif // jvmti support __ notify_method_entry(); // Start executing instructions. __ dispatch_next(vtos); // Dispatch_next does not return. DEBUG_ONLY(__ should_not_reach_here()); // Invocation counter overflow. if (inc_counter) { if (ProfileInterpreter) { // We have decided to profile this method in the interpreter. __ bind(profile_method); __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method)); __ set_method_data_pointer_for_bcp(); __ z_bru(profile_method_continue); } // Handle invocation counter overflow. __ bind(invocation_counter_overflow); generate_counter_overflow(Lcontinue); } BLOCK_COMMENT("} normal_entry"); return entry_point; } // Method entry for static native methods: // int java.util.zip.CRC32.update(int crc, int b) address TemplateInterpreterGenerator::generate_CRC32_update_entry() { if (UseCRC32Intrinsics) { uint64_t entry_off = __ offset(); Label slow_path; // If we need a safepoint check, generate full interpreter entry. __ generate_safepoint_check(slow_path, Z_R1, false); BLOCK_COMMENT("CRC32_update {"); // We don't generate local frame and don't align stack because // we not even call stub code (we generate the code inline) // and there is no safepoint on this path. // Load java parameters. // Z_esp is callers operand stack pointer, i.e. it points to the parameters. const Register argP = Z_esp; const Register crc = Z_ARG1; // crc value const Register data = Z_ARG2; // address of java byte value (kernel_crc32 needs address) const Register dataLen = Z_ARG3; // source data len (1 byte). Not used because calling the single-byte emitter. const Register table = Z_ARG4; // address of crc32 table // Arguments are reversed on java expression stack. __ z_la(data, 3+1*wordSize, argP); // byte value (stack address). // Being passed as an int, the single byte is at offset +3. __ z_llgf(crc, 2 * wordSize, argP); // Current crc state, zero extend to 64 bit to have a clean register. StubRoutines::zarch::generate_load_crc_table_addr(_masm, table); __ kernel_crc32_singleByte(crc, data, dataLen, table, Z_R1); // Restore caller sp for c2i case. __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started. __ z_br(Z_R14); BLOCK_COMMENT("} CRC32_update"); // Use a previously generated vanilla native entry as the slow path. BIND(slow_path); __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), Z_R1); return __ addr_at(entry_off); } return NULL; } // Method entry for static native methods: // int java.util.zip.CRC32.updateBytes(int crc, byte[] b, int off, int len) // int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) { if (UseCRC32Intrinsics) { uint64_t entry_off = __ offset(); Label slow_path; // If we need a safepoint check, generate full interpreter entry. __ generate_safepoint_check(slow_path, Z_R1, false); // We don't generate local frame and don't align stack because // we call stub code and there is no safepoint on this path. // Load parameters. // Z_esp is callers operand stack pointer, i.e. it points to the parameters. const Register argP = Z_esp; const Register crc = Z_ARG1; // crc value const Register data = Z_ARG2; // address of java byte array const Register dataLen = Z_ARG3; // source data len const Register table = Z_ARG4; // address of crc32 table const Register t0 = Z_R10; // work reg for kernel* emitters const Register t1 = Z_R11; // work reg for kernel* emitters const Register t2 = Z_R12; // work reg for kernel* emitters const Register t3 = Z_R13; // work reg for kernel* emitters // Arguments are reversed on java expression stack. // Calculate address of start element. if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) { // Used for "updateByteBuffer direct". // crc @ (SP + 5W) (32bit) // buf @ (SP + 3W) (64bit ptr to long array) // off @ (SP + 2W) (32bit) // dataLen @ (SP + 1W) (32bit) // data = buf + off BLOCK_COMMENT("CRC32_updateByteBuffer {"); __ z_llgf(crc, 5*wordSize, argP); // current crc state __ z_lg(data, 3*wordSize, argP); // start of byte buffer __ z_agf(data, 2*wordSize, argP); // Add byte buffer offset. __ z_lgf(dataLen, 1*wordSize, argP); // #bytes to process } else { // Used for "updateBytes update". // crc @ (SP + 4W) (32bit) // buf @ (SP + 3W) (64bit ptr to byte array) // off @ (SP + 2W) (32bit) // dataLen @ (SP + 1W) (32bit) // data = buf + off + base_offset BLOCK_COMMENT("CRC32_updateBytes {"); __ z_llgf(crc, 4*wordSize, argP); // current crc state __ z_lg(data, 3*wordSize, argP); // start of byte buffer __ z_agf(data, 2*wordSize, argP); // Add byte buffer offset. __ z_lgf(dataLen, 1*wordSize, argP); // #bytes to process __ z_aghi(data, arrayOopDesc::base_offset_in_bytes(T_BYTE)); } StubRoutines::zarch::generate_load_crc_table_addr(_masm, table); __ resize_frame(-(6*8), Z_R0, true); // Resize frame to provide add'l space to spill 5 registers. __ z_stmg(t0, t3, 1*8, Z_SP); // Spill regs 10..13 to make them available as work registers. __ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3); __ z_lmg(t0, t3, 1*8, Z_SP); // Spill regs 10..13 back from stack. // Restore caller sp for c2i case. __ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started. __ z_br(Z_R14); BLOCK_COMMENT("} CRC32_update{Bytes|ByteBuffer}"); // Use a previously generated vanilla native entry as the slow path. BIND(slow_path); __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), Z_R1); return __ addr_at(entry_off); } return NULL; } // Not supported address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) { return NULL; } void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) { // Quick & dirty stack overflow checking: bang the stack & handle trap. // Note that we do the banging after the frame is setup, since the exception // handling code expects to find a valid interpreter frame on the stack. // Doing the banging earlier fails if the caller frame is not an interpreter // frame. // (Also, the exception throwing code expects to unlock any synchronized // method receiver, so do the banging after locking the receiver.) // Bang each page in the shadow zone. We can't assume it's been done for // an interpreter frame with greater than a page of locals, so each page // needs to be checked. Only true for non-native. For native, we only bang the last page. if (UseStackBanging) { const int page_size = os::vm_page_size(); const int n_shadow_pages = (int)(JavaThread::stack_shadow_zone_size()/page_size); const int start_page_num = native_call ? n_shadow_pages : 1; for (int pages = start_page_num; pages <= n_shadow_pages; pages++) { __ bang_stack_with_offset(pages*page_size); } } } //----------------------------------------------------------------------------- // Exceptions void TemplateInterpreterGenerator::generate_throw_exception() { BLOCK_COMMENT("throw_exception {"); // Entry point in previous activation (i.e., if the caller was interpreted). Interpreter::_rethrow_exception_entry = __ pc(); __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Frame accessors use Z_fp. // Z_ARG1 (==Z_tos): exception // Z_ARG2 : Return address/pc that threw exception. __ restore_bcp(); // R13 points to call/send. __ restore_locals(); // Fallthrough, no need to restore Z_esp. // Entry point for exceptions thrown within interpreter code. Interpreter::_throw_exception_entry = __ pc(); // Expression stack is undefined here. // Z_ARG1 (==Z_tos): exception // Z_bcp: exception bcp __ verify_oop(Z_ARG1); __ z_lgr(Z_ARG2, Z_ARG1); // Expression stack must be empty before entering the VM in case of // an exception. __ empty_expression_stack(); // Find exception handler address and preserve exception oop. const Register Rpreserved_exc_oop = Z_tmp_1; __ call_VM(Rpreserved_exc_oop, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Z_ARG2); // Z_RET: exception handler entry point // Z_bcp: bcp for exception handler __ push_ptr(Rpreserved_exc_oop); // Push exception which is now the only value on the stack. __ z_br(Z_RET); // Jump to exception handler (may be _remove_activation_entry!). // If the exception is not handled in the current frame the frame is // removed and the exception is rethrown (i.e. exception // continuation is _rethrow_exception). // // Note: At this point the bci is still the bci for the instruction // which caused the exception and the expression stack is // empty. Thus, for any VM calls at this point, GC will find a legal // oop map (with empty expression stack). // // JVMTI PopFrame support // Interpreter::_remove_activation_preserving_args_entry = __ pc(); __ z_lg(Z_fp, _z_parent_ijava_frame_abi(callers_sp), Z_SP); __ empty_expression_stack(); // Set the popframe_processing bit in pending_popframe_condition // indicating that we are currently handling popframe, so that // call_VMs that may happen later do not trigger new popframe // handling cycles. __ load_sized_value(Z_tmp_1, Address(Z_thread, JavaThread::popframe_condition_offset()), 4, false /*signed*/); __ z_oill(Z_tmp_1, JavaThread::popframe_processing_bit); __ z_sty(Z_tmp_1, thread_(popframe_condition)); { // Check to see whether we are returning to a deoptimized frame. // (The PopFrame call ensures that the caller of the popped frame is // either interpreted or compiled and deoptimizes it if compiled.) // In this case, we can't call dispatch_next() after the frame is // popped, but instead must save the incoming arguments and restore // them after deoptimization has occurred. // // Note that we don't compare the return PC against the // deoptimization blob's unpack entry because of the presence of // adapter frames in C2. NearLabel caller_not_deoptimized; __ z_lg(Z_ARG1, _z_parent_ijava_frame_abi(return_pc), Z_fp); __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), Z_ARG1); __ compareU64_and_branch(Z_RET, (intptr_t)0, Assembler::bcondNotEqual, caller_not_deoptimized); // Compute size of arguments for saving when returning to // deoptimized caller. __ get_method(Z_ARG2); __ z_lg(Z_ARG2, Address(Z_ARG2, Method::const_offset())); __ z_llgh(Z_ARG2, Address(Z_ARG2, ConstMethod::size_of_parameters_offset())); __ z_sllg(Z_ARG2, Z_ARG2, Interpreter::logStackElementSize); // slots 2 bytes __ restore_locals(); // Compute address of args to be saved. __ z_lgr(Z_ARG3, Z_locals); __ z_slgr(Z_ARG3, Z_ARG2); __ add2reg(Z_ARG3, wordSize); // Save these arguments. __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), Z_thread, Z_ARG2, Z_ARG3); __ remove_activation(vtos, Z_R14, /* throw_monitor_exception */ false, /* install_monitor_exception */ false, /* notify_jvmdi */ false); // Inform deoptimization that it is responsible for restoring // these arguments. __ store_const(thread_(popframe_condition), JavaThread::popframe_force_deopt_reexecution_bit, Z_tmp_1, false); // Continue in deoptimization handler. __ z_br(Z_R14); __ bind(caller_not_deoptimized); } // Clear the popframe condition flag. __ clear_mem(thread_(popframe_condition), sizeof(int)); __ remove_activation(vtos, noreg, // Retaddr is not used. false, // throw_monitor_exception false, // install_monitor_exception false); // notify_jvmdi __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer. __ restore_bcp(); __ restore_locals(); __ restore_esp(); // The method data pointer was incremented already during // call profiling. We have to restore the mdp for the current bcp. if (ProfileInterpreter) { __ set_method_data_pointer_for_bcp(); } #if INCLUDE_JVMTI { Label L_done; __ z_cli(0, Z_bcp, Bytecodes::_invokestatic); __ z_brc(Assembler::bcondNotEqual, L_done); // The member name argument must be restored if _invokestatic is // re-executed after a PopFrame call. Detect such a case in the // InterpreterRuntime function and return the member name // argument, or NULL. __ z_lg(Z_ARG2, Address(Z_locals)); __ get_method(Z_ARG3); __ call_VM(Z_tmp_1, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), Z_ARG2, Z_ARG3, Z_bcp); __ z_ltgr(Z_tmp_1, Z_tmp_1); __ z_brc(Assembler::bcondEqual, L_done); __ z_stg(Z_tmp_1, Address(Z_esp, wordSize)); __ bind(L_done); } #endif // INCLUDE_JVMTI __ dispatch_next(vtos); // End of PopFrame support. Interpreter::_remove_activation_entry = __ pc(); // In between activations - previous activation type unknown yet // compute continuation point - the continuation point expects the // following registers set up: // // Z_ARG1 (==Z_tos): exception // Z_ARG2 : return address/pc that threw exception Register return_pc = Z_tmp_1; Register handler = Z_tmp_2; assert(return_pc->is_nonvolatile(), "use non-volatile reg. to preserve exception pc"); assert(handler->is_nonvolatile(), "use non-volatile reg. to handler pc"); __ asm_assert_ijava_state_magic(return_pc/*tmp*/); // The top frame should be an interpreter frame. __ z_lg(return_pc, _z_parent_ijava_frame_abi(return_pc), Z_fp); // Moved removing the activation after VM call, because the new top // frame does not necessarily have the z_abi_160 required for a VM // call (e.g. if it is compiled). __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), Z_thread, return_pc); __ z_lgr(handler, Z_RET); // Save exception handler. // Preserve exception over this code sequence. __ pop_ptr(Z_ARG1); __ set_vm_result(Z_ARG1); // Remove the activation (without doing throws on illegalMonitorExceptions). __ remove_activation(vtos, noreg/*ret.pc already loaded*/, false/*throw exc*/, true/*install exc*/, false/*notify jvmti*/); __ z_lg(Z_fp, _z_abi(callers_sp), Z_SP); // Restore frame pointer. __ get_vm_result(Z_ARG1); // Restore exception. __ verify_oop(Z_ARG1); __ z_lgr(Z_ARG2, return_pc); // Restore return address. #ifdef ASSERT // The return_pc in the new top frame is dead... at least that's my // current understanding. To assert this I overwrite it. // Note: for compiled frames the handler is the deopt blob // which writes Z_ARG2 into the return_pc slot. __ load_const_optimized(return_pc, 0xb00b1); __ z_stg(return_pc, _z_parent_ijava_frame_abi(return_pc), Z_SP); #endif // Z_ARG1 (==Z_tos): exception // Z_ARG2 : return address/pc that threw exception // Note that an "issuing PC" is actually the next PC after the call. __ z_br(handler); // Jump to exception handler of caller. BLOCK_COMMENT("} throw_exception"); } // // JVMTI ForceEarlyReturn support // address TemplateInterpreterGenerator::generate_earlyret_entry_for (TosState state) { address entry = __ pc(); BLOCK_COMMENT("earlyret_entry {"); __ z_lg(Z_fp, _z_parent_ijava_frame_abi(callers_sp), Z_SP); __ restore_bcp(); __ restore_locals(); __ restore_esp(); __ empty_expression_stack(); __ load_earlyret_value(state); Register RjvmtiState = Z_tmp_1; __ z_lg(RjvmtiState, thread_(jvmti_thread_state)); __ store_const(Address(RjvmtiState, JvmtiThreadState::earlyret_state_offset()), JvmtiThreadState::earlyret_inactive, 4, 4, Z_R0_scratch); __ remove_activation(state, Z_tmp_1, // retaddr false, // throw_monitor_exception false, // install_monitor_exception true); // notify_jvmdi __ z_br(Z_tmp_1); BLOCK_COMMENT("} earlyret_entry"); return entry; } //----------------------------------------------------------------------------- // Helper for vtos entry point generation. void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) { assert(t->is_valid() && t->tos_in() == vtos, "illegal template"); Label L; aep = __ pc(); __ push_ptr(); __ z_bru(L); fep = __ pc(); __ push_f(); __ z_bru(L); dep = __ pc(); __ push_d(); __ z_bru(L); lep = __ pc(); __ push_l(); __ z_bru(L); bep = cep = sep = iep = __ pc(); __ push_i(); vep = __ pc(); __ bind(L); generate_and_dispatch(t); } //----------------------------------------------------------------------------- #ifndef PRODUCT address TemplateInterpreterGenerator::generate_trace_code(TosState state) { address entry = __ pc(); NearLabel counter_below_trace_threshold; if (TraceBytecodesAt > 0) { // Skip runtime call, if the trace threshold is not yet reached. __ load_absolute_address(Z_tmp_1, (address)&BytecodeCounter::_counter_value); __ load_absolute_address(Z_tmp_2, (address)&TraceBytecodesAt); __ load_sized_value(Z_tmp_1, Address(Z_tmp_1), 4, false /*signed*/); __ load_sized_value(Z_tmp_2, Address(Z_tmp_2), 8, false /*signed*/); __ compareU64_and_branch(Z_tmp_1, Z_tmp_2, Assembler::bcondLow, counter_below_trace_threshold); } int offset2 = state == ltos || state == dtos ? 2 : 1; __ push(state); // Preserved return pointer is in Z_R14. // InterpreterRuntime::trace_bytecode() preserved and returns the value passed as second argument. __ z_lgr(Z_ARG2, Z_R14); __ z_lg(Z_ARG3, Address(Z_esp, Interpreter::expr_offset_in_bytes(0))); if (WizardMode) { __ z_lgr(Z_ARG4, Z_esp); // Trace Z_esp in WizardMode. } else { __ z_lg(Z_ARG4, Address(Z_esp, Interpreter::expr_offset_in_bytes(offset2))); } __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), Z_ARG2, Z_ARG3, Z_ARG4); __ z_lgr(Z_R14, Z_RET); // Estore return address (see above). __ pop(state); __ bind(counter_below_trace_threshold); __ z_br(Z_R14); // return return entry; } // Make feasible for old CPUs. void TemplateInterpreterGenerator::count_bytecode() { __ load_absolute_address(Z_R1_scratch, (address) &BytecodeCounter::_counter_value); __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch); } void TemplateInterpreterGenerator::histogram_bytecode(Template * t) { __ load_absolute_address(Z_R1_scratch, (address)&BytecodeHistogram::_counters[ t->bytecode() ]); __ add2mem_32(Address(Z_R1_scratch), 1, Z_tmp_1); } void TemplateInterpreterGenerator::histogram_bytecode_pair(Template * t) { Address index_addr(Z_tmp_1, (intptr_t) 0); Register index = Z_tmp_2; // Load previous index. __ load_absolute_address(Z_tmp_1, (address) &BytecodePairHistogram::_index); __ mem2reg_opt(index, index_addr, false); // Mask with current bytecode and store as new previous index. __ z_srl(index, BytecodePairHistogram::log2_number_of_codes); __ load_const_optimized(Z_R0_scratch, (int)t->bytecode() << BytecodePairHistogram::log2_number_of_codes); __ z_or(index, Z_R0_scratch); __ reg2mem_opt(index, index_addr, false); // Load counter array's address. __ z_lgfr(index, index); // Sign extend for addressing. __ z_sllg(index, index, LogBytesPerInt); // index2bytes __ load_absolute_address(Z_R1_scratch, (address) &BytecodePairHistogram::_counters); // Add index and increment counter. __ z_agr(Z_R1_scratch, index); __ add2mem_32(Address(Z_R1_scratch), 1, Z_tmp_1); } void TemplateInterpreterGenerator::trace_bytecode(Template* t) { // Call a little run-time stub to avoid blow-up for each bytecode. // The run-time runtime saves the right registers, depending on // the tosca in-state for the given template. address entry = Interpreter::trace_code(t->tos_in()); guarantee(entry != NULL, "entry must have been generated"); __ call_stub(entry); } void TemplateInterpreterGenerator::stop_interpreter_at() { NearLabel L; __ load_absolute_address(Z_tmp_1, (address)&BytecodeCounter::_counter_value); __ load_absolute_address(Z_tmp_2, (address)&StopInterpreterAt); __ load_sized_value(Z_tmp_1, Address(Z_tmp_1), 4, false /*signed*/); __ load_sized_value(Z_tmp_2, Address(Z_tmp_2), 8, false /*signed*/); __ compareU64_and_branch(Z_tmp_1, Z_tmp_2, Assembler::bcondLow, L); assert(Z_tmp_1->is_nonvolatile(), "must be nonvolatile to preserve Z_tos"); assert(Z_F8->is_nonvolatile(), "must be nonvolatile to preserve Z_ftos"); __ z_lgr(Z_tmp_1, Z_tos); // Save tos. __ z_lgr(Z_tmp_2, Z_bytecode); // Save Z_bytecode. __ z_ldr(Z_F8, Z_ftos); // Save ftos. // Use -XX:StopInterpreterAt= to set the limit // and break at breakpoint(). __ call_VM(noreg, CAST_FROM_FN_PTR(address, breakpoint), false); __ z_lgr(Z_tos, Z_tmp_1); // Restore tos. __ z_lgr(Z_bytecode, Z_tmp_2); // Save Z_bytecode. __ z_ldr(Z_ftos, Z_F8); // Restore ftos. __ bind(L); } #endif // !PRODUCT