/* * Copyright (c) 2005, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc_implementation/parallelScavenge/parMarkBitMap.hpp" #include "gc_implementation/parallelScavenge/psParallelCompact.hpp" #include "oops/oop.inline.hpp" #include "runtime/atomic.inline.hpp" #include "runtime/os.hpp" #include "utilities/bitMap.inline.hpp" #include "services/memTracker.hpp" #ifdef TARGET_OS_FAMILY_linux # include "os_linux.inline.hpp" #endif #ifdef TARGET_OS_FAMILY_solaris # include "os_solaris.inline.hpp" #endif #ifdef TARGET_OS_FAMILY_windows # include "os_windows.inline.hpp" #endif #ifdef TARGET_OS_FAMILY_aix # include "os_aix.inline.hpp" #endif #ifdef TARGET_OS_FAMILY_bsd # include "os_bsd.inline.hpp" #endif bool ParMarkBitMap::initialize(MemRegion covered_region) { const idx_t bits = bits_required(covered_region); // The bits will be divided evenly between two bitmaps; each of them should be // an integral number of words. assert(bits % (BitsPerWord * 2) == 0, "region size unaligned"); const size_t words = bits / BitsPerWord; const size_t raw_bytes = words * sizeof(idx_t); const size_t page_sz = os::page_size_for_region(raw_bytes, 10); const size_t granularity = os::vm_allocation_granularity(); _reserved_byte_size = align_size_up(raw_bytes, MAX2(page_sz, granularity)); const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 : MAX2(page_sz, granularity); ReservedSpace rs(_reserved_byte_size, rs_align, rs_align > 0); os::trace_page_sizes("par bitmap", raw_bytes, raw_bytes, page_sz, rs.base(), rs.size()); MemTracker::record_virtual_memory_type((address)rs.base(), mtGC); _virtual_space = new PSVirtualSpace(rs, page_sz); if (_virtual_space != NULL && _virtual_space->expand_by(_reserved_byte_size)) { _region_start = covered_region.start(); _region_size = covered_region.word_size(); BitMap::bm_word_t* map = (BitMap::bm_word_t*)_virtual_space->reserved_low_addr(); _beg_bits.set_map(map); _beg_bits.set_size(bits / 2); _end_bits.set_map(map + words / 2); _end_bits.set_size(bits / 2); return true; } _region_start = 0; _region_size = 0; if (_virtual_space != NULL) { delete _virtual_space; _virtual_space = NULL; // Release memory reserved in the space. rs.release(); } return false; } #ifdef ASSERT extern size_t mark_bitmap_count; extern size_t mark_bitmap_size; #endif // #ifdef ASSERT bool ParMarkBitMap::mark_obj(HeapWord* addr, size_t size) { const idx_t beg_bit = addr_to_bit(addr); if (_beg_bits.par_set_bit(beg_bit)) { const idx_t end_bit = addr_to_bit(addr + size - 1); bool end_bit_ok = _end_bits.par_set_bit(end_bit); assert(end_bit_ok, "concurrency problem"); DEBUG_ONLY(Atomic::inc_ptr(&mark_bitmap_count)); DEBUG_ONLY(Atomic::add_ptr(size, &mark_bitmap_size)); return true; } return false; } size_t ParMarkBitMap::live_words_in_range(HeapWord* beg_addr, oop end_obj) const { assert(beg_addr <= (HeapWord*)end_obj, "bad range"); assert(is_marked(end_obj), "end_obj must be live"); idx_t live_bits = 0; // The bitmap routines require the right boundary to be word-aligned. const idx_t end_bit = addr_to_bit((HeapWord*)end_obj); const idx_t range_end = BitMap::word_align_up(end_bit); idx_t beg_bit = find_obj_beg(addr_to_bit(beg_addr), range_end); while (beg_bit < end_bit) { idx_t tmp_end = find_obj_end(beg_bit, range_end); assert(tmp_end < end_bit, "missing end bit"); live_bits += tmp_end - beg_bit + 1; beg_bit = find_obj_beg(tmp_end + 1, range_end); } return bits_to_words(live_bits); } ParMarkBitMap::IterationStatus ParMarkBitMap::iterate(ParMarkBitMapClosure* live_closure, idx_t range_beg, idx_t range_end) const { DEBUG_ONLY(verify_bit(range_beg);) DEBUG_ONLY(verify_bit(range_end);) assert(range_beg <= range_end, "live range invalid"); // The bitmap routines require the right boundary to be word-aligned. const idx_t search_end = BitMap::word_align_up(range_end); idx_t cur_beg = find_obj_beg(range_beg, search_end); while (cur_beg < range_end) { const idx_t cur_end = find_obj_end(cur_beg, search_end); if (cur_end >= range_end) { // The obj ends outside the range. live_closure->set_source(bit_to_addr(cur_beg)); return incomplete; } const size_t size = obj_size(cur_beg, cur_end); IterationStatus status = live_closure->do_addr(bit_to_addr(cur_beg), size); if (status != incomplete) { assert(status == would_overflow || status == full, "sanity"); return status; } // Successfully processed the object; look for the next object. cur_beg = find_obj_beg(cur_end + 1, search_end); } live_closure->set_source(bit_to_addr(range_end)); return complete; } ParMarkBitMap::IterationStatus ParMarkBitMap::iterate(ParMarkBitMapClosure* live_closure, ParMarkBitMapClosure* dead_closure, idx_t range_beg, idx_t range_end, idx_t dead_range_end) const { DEBUG_ONLY(verify_bit(range_beg);) DEBUG_ONLY(verify_bit(range_end);) DEBUG_ONLY(verify_bit(dead_range_end);) assert(range_beg <= range_end, "live range invalid"); assert(range_end <= dead_range_end, "dead range invalid"); // The bitmap routines require the right boundary to be word-aligned. const idx_t live_search_end = BitMap::word_align_up(range_end); const idx_t dead_search_end = BitMap::word_align_up(dead_range_end); idx_t cur_beg = range_beg; if (range_beg < range_end && is_unmarked(range_beg)) { // The range starts with dead space. Look for the next object, then fill. cur_beg = find_obj_beg(range_beg + 1, dead_search_end); const idx_t dead_space_end = MIN2(cur_beg - 1, dead_range_end - 1); const size_t size = obj_size(range_beg, dead_space_end); dead_closure->do_addr(bit_to_addr(range_beg), size); } while (cur_beg < range_end) { const idx_t cur_end = find_obj_end(cur_beg, live_search_end); if (cur_end >= range_end) { // The obj ends outside the range. live_closure->set_source(bit_to_addr(cur_beg)); return incomplete; } const size_t size = obj_size(cur_beg, cur_end); IterationStatus status = live_closure->do_addr(bit_to_addr(cur_beg), size); if (status != incomplete) { assert(status == would_overflow || status == full, "sanity"); return status; } // Look for the start of the next object. const idx_t dead_space_beg = cur_end + 1; cur_beg = find_obj_beg(dead_space_beg, dead_search_end); if (cur_beg > dead_space_beg) { // Found dead space; compute the size and invoke the dead closure. const idx_t dead_space_end = MIN2(cur_beg - 1, dead_range_end - 1); const size_t size = obj_size(dead_space_beg, dead_space_end); dead_closure->do_addr(bit_to_addr(dead_space_beg), size); } } live_closure->set_source(bit_to_addr(range_end)); return complete; } #ifdef ASSERT void ParMarkBitMap::verify_clear() const { const idx_t* const beg = (const idx_t*)_virtual_space->committed_low_addr(); const idx_t* const end = (const idx_t*)_virtual_space->committed_high_addr(); for (const idx_t* p = beg; p < end; ++p) { assert(*p == 0, "bitmap not clear"); } } #endif // #ifdef ASSERT