/* * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_OOPS_METHODDATAOOP_HPP #define SHARE_VM_OOPS_METHODDATAOOP_HPP #include "interpreter/bytecodes.hpp" #include "memory/universe.hpp" #include "oops/methodOop.hpp" #include "oops/oop.hpp" #include "runtime/orderAccess.hpp" class BytecodeStream; // The MethodData object collects counts and other profile information // during zeroth-tier (interpretive) and first-tier execution. // The profile is used later by compilation heuristics. Some heuristics // enable use of aggressive (or "heroic") optimizations. An aggressive // optimization often has a down-side, a corner case that it handles // poorly, but which is thought to be rare. The profile provides // evidence of this rarity for a given method or even BCI. It allows // the compiler to back out of the optimization at places where it // has historically been a poor choice. Other heuristics try to use // specific information gathered about types observed at a given site. // // All data in the profile is approximate. It is expected to be accurate // on the whole, but the system expects occasional inaccuraces, due to // counter overflow, multiprocessor races during data collection, space // limitations, missing MDO blocks, etc. Bad or missing data will degrade // optimization quality but will not affect correctness. Also, each MDO // is marked with its birth-date ("creation_mileage") which can be used // to assess the quality ("maturity") of its data. // // Short (<32-bit) counters are designed to overflow to a known "saturated" // state. Also, certain recorded per-BCI events are given one-bit counters // which overflow to a saturated state which applied to all counters at // that BCI. In other words, there is a small lattice which approximates // the ideal of an infinite-precision counter for each event at each BCI, // and the lattice quickly "bottoms out" in a state where all counters // are taken to be indefinitely large. // // The reader will find many data races in profile gathering code, starting // with invocation counter incrementation. None of these races harm correct // execution of the compiled code. // forward decl class ProfileData; // DataLayout // // Overlay for generic profiling data. class DataLayout VALUE_OBJ_CLASS_SPEC { private: // Every data layout begins with a header. This header // contains a tag, which is used to indicate the size/layout // of the data, 4 bits of flags, which can be used in any way, // 4 bits of trap history (none/one reason/many reasons), // and a bci, which is used to tie this piece of data to a // specific bci in the bytecodes. union { intptr_t _bits; struct { u1 _tag; u1 _flags; u2 _bci; } _struct; } _header; // The data layout has an arbitrary number of cells, each sized // to accomodate a pointer or an integer. intptr_t _cells[1]; // Some types of data layouts need a length field. static bool needs_array_len(u1 tag); public: enum { counter_increment = 1 }; enum { cell_size = sizeof(intptr_t) }; // Tag values enum { no_tag, bit_data_tag, counter_data_tag, jump_data_tag, receiver_type_data_tag, virtual_call_data_tag, ret_data_tag, branch_data_tag, multi_branch_data_tag, arg_info_data_tag }; enum { // The _struct._flags word is formatted as [trap_state:4 | flags:4]. // The trap state breaks down further as [recompile:1 | reason:3]. // This further breakdown is defined in deoptimization.cpp. // See Deoptimization::trap_state_reason for an assert that // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT. // // The trap_state is collected only if ProfileTraps is true. trap_bits = 1+3, // 3: enough to distinguish [0..Reason_RECORDED_LIMIT]. trap_shift = BitsPerByte - trap_bits, trap_mask = right_n_bits(trap_bits), trap_mask_in_place = (trap_mask << trap_shift), flag_limit = trap_shift, flag_mask = right_n_bits(flag_limit), first_flag = 0 }; // Size computation static int header_size_in_bytes() { return cell_size; } static int header_size_in_cells() { return 1; } static int compute_size_in_bytes(int cell_count) { return header_size_in_bytes() + cell_count * cell_size; } // Initialization void initialize(u1 tag, u2 bci, int cell_count); // Accessors u1 tag() { return _header._struct._tag; } // Return a few bits of trap state. Range is [0..trap_mask]. // The state tells if traps with zero, one, or many reasons have occurred. // It also tells whether zero or many recompilations have occurred. // The associated trap histogram in the MDO itself tells whether // traps are common or not. If a BCI shows that a trap X has // occurred, and the MDO shows N occurrences of X, we make the // simplifying assumption that all N occurrences can be blamed // on that BCI. int trap_state() { return ((_header._struct._flags >> trap_shift) & trap_mask); } void set_trap_state(int new_state) { assert(ProfileTraps, "used only under +ProfileTraps"); uint old_flags = (_header._struct._flags & flag_mask); _header._struct._flags = (new_state << trap_shift) | old_flags; } u1 flags() { return _header._struct._flags; } u2 bci() { return _header._struct._bci; } void set_header(intptr_t value) { _header._bits = value; } void release_set_header(intptr_t value) { OrderAccess::release_store_ptr(&_header._bits, value); } intptr_t header() { return _header._bits; } void set_cell_at(int index, intptr_t value) { _cells[index] = value; } void release_set_cell_at(int index, intptr_t value) { OrderAccess::release_store_ptr(&_cells[index], value); } intptr_t cell_at(int index) { return _cells[index]; } intptr_t* adr_cell_at(int index) { return &_cells[index]; } oop* adr_oop_at(int index) { return (oop*)&(_cells[index]); } void set_flag_at(int flag_number) { assert(flag_number < flag_limit, "oob"); _header._struct._flags |= (0x1 << flag_number); } bool flag_at(int flag_number) { assert(flag_number < flag_limit, "oob"); return (_header._struct._flags & (0x1 << flag_number)) != 0; } // Low-level support for code generation. static ByteSize header_offset() { return byte_offset_of(DataLayout, _header); } static ByteSize tag_offset() { return byte_offset_of(DataLayout, _header._struct._tag); } static ByteSize flags_offset() { return byte_offset_of(DataLayout, _header._struct._flags); } static ByteSize bci_offset() { return byte_offset_of(DataLayout, _header._struct._bci); } static ByteSize cell_offset(int index) { return byte_offset_of(DataLayout, _cells[index]); } // Return a value which, when or-ed as a byte into _flags, sets the flag. static int flag_number_to_byte_constant(int flag_number) { assert(0 <= flag_number && flag_number < flag_limit, "oob"); DataLayout temp; temp.set_header(0); temp.set_flag_at(flag_number); return temp._header._struct._flags; } // Return a value which, when or-ed as a word into _header, sets the flag. static intptr_t flag_mask_to_header_mask(int byte_constant) { DataLayout temp; temp.set_header(0); temp._header._struct._flags = byte_constant; return temp._header._bits; } // GC support ProfileData* data_in(); void follow_weak_refs(BoolObjectClosure* cl); }; // ProfileData class hierarchy class ProfileData; class BitData; class CounterData; class ReceiverTypeData; class VirtualCallData; class RetData; class JumpData; class BranchData; class ArrayData; class MultiBranchData; class ArgInfoData; // ProfileData // // A ProfileData object is created to refer to a section of profiling // data in a structured way. class ProfileData : public ResourceObj { private: #ifndef PRODUCT enum { tab_width_one = 16, tab_width_two = 36 }; #endif // !PRODUCT // This is a pointer to a section of profiling data. DataLayout* _data; protected: DataLayout* data() { return _data; } enum { cell_size = DataLayout::cell_size }; public: // How many cells are in this? virtual int cell_count() { ShouldNotReachHere(); return -1; } // Return the size of this data. int size_in_bytes() { return DataLayout::compute_size_in_bytes(cell_count()); } protected: // Low-level accessors for underlying data void set_intptr_at(int index, intptr_t value) { assert(0 <= index && index < cell_count(), "oob"); data()->set_cell_at(index, value); } void release_set_intptr_at(int index, intptr_t value) { assert(0 <= index && index < cell_count(), "oob"); data()->release_set_cell_at(index, value); } intptr_t intptr_at(int index) { assert(0 <= index && index < cell_count(), "oob"); return data()->cell_at(index); } void set_uint_at(int index, uint value) { set_intptr_at(index, (intptr_t) value); } void release_set_uint_at(int index, uint value) { release_set_intptr_at(index, (intptr_t) value); } uint uint_at(int index) { return (uint)intptr_at(index); } void set_int_at(int index, int value) { set_intptr_at(index, (intptr_t) value); } void release_set_int_at(int index, int value) { release_set_intptr_at(index, (intptr_t) value); } int int_at(int index) { return (int)intptr_at(index); } int int_at_unchecked(int index) { return (int)data()->cell_at(index); } void set_oop_at(int index, oop value) { set_intptr_at(index, (intptr_t) value); } oop oop_at(int index) { return (oop)intptr_at(index); } oop* adr_oop_at(int index) { assert(0 <= index && index < cell_count(), "oob"); return data()->adr_oop_at(index); } void set_flag_at(int flag_number) { data()->set_flag_at(flag_number); } bool flag_at(int flag_number) { return data()->flag_at(flag_number); } // two convenient imports for use by subclasses: static ByteSize cell_offset(int index) { return DataLayout::cell_offset(index); } static int flag_number_to_byte_constant(int flag_number) { return DataLayout::flag_number_to_byte_constant(flag_number); } ProfileData(DataLayout* data) { _data = data; } public: // Constructor for invalid ProfileData. ProfileData(); u2 bci() { return data()->bci(); } address dp() { return (address)_data; } int trap_state() { return data()->trap_state(); } void set_trap_state(int new_state) { data()->set_trap_state(new_state); } // Type checking virtual bool is_BitData() { return false; } virtual bool is_CounterData() { return false; } virtual bool is_JumpData() { return false; } virtual bool is_ReceiverTypeData(){ return false; } virtual bool is_VirtualCallData() { return false; } virtual bool is_RetData() { return false; } virtual bool is_BranchData() { return false; } virtual bool is_ArrayData() { return false; } virtual bool is_MultiBranchData() { return false; } virtual bool is_ArgInfoData() { return false; } BitData* as_BitData() { assert(is_BitData(), "wrong type"); return is_BitData() ? (BitData*) this : NULL; } CounterData* as_CounterData() { assert(is_CounterData(), "wrong type"); return is_CounterData() ? (CounterData*) this : NULL; } JumpData* as_JumpData() { assert(is_JumpData(), "wrong type"); return is_JumpData() ? (JumpData*) this : NULL; } ReceiverTypeData* as_ReceiverTypeData() { assert(is_ReceiverTypeData(), "wrong type"); return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL; } VirtualCallData* as_VirtualCallData() { assert(is_VirtualCallData(), "wrong type"); return is_VirtualCallData() ? (VirtualCallData*)this : NULL; } RetData* as_RetData() { assert(is_RetData(), "wrong type"); return is_RetData() ? (RetData*) this : NULL; } BranchData* as_BranchData() { assert(is_BranchData(), "wrong type"); return is_BranchData() ? (BranchData*) this : NULL; } ArrayData* as_ArrayData() { assert(is_ArrayData(), "wrong type"); return is_ArrayData() ? (ArrayData*) this : NULL; } MultiBranchData* as_MultiBranchData() { assert(is_MultiBranchData(), "wrong type"); return is_MultiBranchData() ? (MultiBranchData*)this : NULL; } ArgInfoData* as_ArgInfoData() { assert(is_ArgInfoData(), "wrong type"); return is_ArgInfoData() ? (ArgInfoData*)this : NULL; } // Subclass specific initialization virtual void post_initialize(BytecodeStream* stream, methodDataOop mdo) {} // GC support virtual void follow_contents() {} virtual void oop_iterate(OopClosure* blk) {} virtual void oop_iterate_m(OopClosure* blk, MemRegion mr) {} virtual void adjust_pointers() {} virtual void follow_weak_refs(BoolObjectClosure* is_alive_closure) {} #ifndef SERIALGC // Parallel old support virtual void follow_contents(ParCompactionManager* cm) {} virtual void update_pointers() {} #endif // SERIALGC // CI translation: ProfileData can represent both MethodDataOop data // as well as CIMethodData data. This function is provided for translating // an oop in a ProfileData to the ci equivalent. Generally speaking, // most ProfileData don't require any translation, so we provide the null // translation here, and the required translators are in the ci subclasses. virtual void translate_from(ProfileData* data) {} virtual void print_data_on(outputStream* st) { ShouldNotReachHere(); } #ifndef PRODUCT void print_shared(outputStream* st, const char* name); void tab(outputStream* st); #endif }; // BitData // // A BitData holds a flag or two in its header. class BitData : public ProfileData { protected: enum { // null_seen: // saw a null operand (cast/aastore/instanceof) null_seen_flag = DataLayout::first_flag + 0 }; enum { bit_cell_count = 0 }; // no additional data fields needed. public: BitData(DataLayout* layout) : ProfileData(layout) { } virtual bool is_BitData() { return true; } static int static_cell_count() { return bit_cell_count; } virtual int cell_count() { return static_cell_count(); } // Accessor // The null_seen flag bit is specially known to the interpreter. // Consulting it allows the compiler to avoid setting up null_check traps. bool null_seen() { return flag_at(null_seen_flag); } void set_null_seen() { set_flag_at(null_seen_flag); } // Code generation support static int null_seen_byte_constant() { return flag_number_to_byte_constant(null_seen_flag); } static ByteSize bit_data_size() { return cell_offset(bit_cell_count); } #ifndef PRODUCT void print_data_on(outputStream* st); #endif }; // CounterData // // A CounterData corresponds to a simple counter. class CounterData : public BitData { protected: enum { count_off, counter_cell_count }; public: CounterData(DataLayout* layout) : BitData(layout) {} virtual bool is_CounterData() { return true; } static int static_cell_count() { return counter_cell_count; } virtual int cell_count() { return static_cell_count(); } // Direct accessor uint count() { return uint_at(count_off); } // Code generation support static ByteSize count_offset() { return cell_offset(count_off); } static ByteSize counter_data_size() { return cell_offset(counter_cell_count); } void set_count(uint count) { set_uint_at(count_off, count); } #ifndef PRODUCT void print_data_on(outputStream* st); #endif }; // JumpData // // A JumpData is used to access profiling information for a direct // branch. It is a counter, used for counting the number of branches, // plus a data displacement, used for realigning the data pointer to // the corresponding target bci. class JumpData : public ProfileData { protected: enum { taken_off_set, displacement_off_set, jump_cell_count }; void set_displacement(int displacement) { set_int_at(displacement_off_set, displacement); } public: JumpData(DataLayout* layout) : ProfileData(layout) { assert(layout->tag() == DataLayout::jump_data_tag || layout->tag() == DataLayout::branch_data_tag, "wrong type"); } virtual bool is_JumpData() { return true; } static int static_cell_count() { return jump_cell_count; } virtual int cell_count() { return static_cell_count(); } // Direct accessor uint taken() { return uint_at(taken_off_set); } // Saturating counter uint inc_taken() { uint cnt = taken() + 1; // Did we wrap? Will compiler screw us?? if (cnt == 0) cnt--; set_uint_at(taken_off_set, cnt); return cnt; } int displacement() { return int_at(displacement_off_set); } // Code generation support static ByteSize taken_offset() { return cell_offset(taken_off_set); } static ByteSize displacement_offset() { return cell_offset(displacement_off_set); } // Specific initialization. void post_initialize(BytecodeStream* stream, methodDataOop mdo); #ifndef PRODUCT void print_data_on(outputStream* st); #endif }; // ReceiverTypeData // // A ReceiverTypeData is used to access profiling information about a // dynamic type check. It consists of a counter which counts the total times // that the check is reached, and a series of (klassOop, count) pairs // which are used to store a type profile for the receiver of the check. class ReceiverTypeData : public CounterData { protected: enum { receiver0_offset = counter_cell_count, count0_offset, receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset }; public: ReceiverTypeData(DataLayout* layout) : CounterData(layout) { assert(layout->tag() == DataLayout::receiver_type_data_tag || layout->tag() == DataLayout::virtual_call_data_tag, "wrong type"); } virtual bool is_ReceiverTypeData() { return true; } static int static_cell_count() { return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count; } virtual int cell_count() { return static_cell_count(); } // Direct accessors static uint row_limit() { return TypeProfileWidth; } static int receiver_cell_index(uint row) { return receiver0_offset + row * receiver_type_row_cell_count; } static int receiver_count_cell_index(uint row) { return count0_offset + row * receiver_type_row_cell_count; } // Get the receiver at row. The 'unchecked' version is needed by parallel old // gc; it does not assert the receiver is a klass. During compaction of the // perm gen, the klass may already have moved, so the is_klass() predicate // would fail. The 'normal' version should be used whenever possible. klassOop receiver_unchecked(uint row) { assert(row < row_limit(), "oob"); oop recv = oop_at(receiver_cell_index(row)); return (klassOop)recv; } klassOop receiver(uint row) { klassOop recv = receiver_unchecked(row); assert(recv == NULL || ((oop)recv)->is_klass(), "wrong type"); return recv; } void set_receiver(uint row, oop p) { assert((uint)row < row_limit(), "oob"); set_oop_at(receiver_cell_index(row), p); } uint receiver_count(uint row) { assert(row < row_limit(), "oob"); return uint_at(receiver_count_cell_index(row)); } void set_receiver_count(uint row, uint count) { assert(row < row_limit(), "oob"); set_uint_at(receiver_count_cell_index(row), count); } void clear_row(uint row) { assert(row < row_limit(), "oob"); // Clear total count - indicator of polymorphic call site. // The site may look like as monomorphic after that but // it allow to have more accurate profiling information because // there was execution phase change since klasses were unloaded. // If the site is still polymorphic then MDO will be updated // to reflect it. But it could be the case that the site becomes // only bimorphic. Then keeping total count not 0 will be wrong. // Even if we use monomorphic (when it is not) for compilation // we will only have trap, deoptimization and recompile again // with updated MDO after executing method in Interpreter. // An additional receiver will be recorded in the cleaned row // during next call execution. // // Note: our profiling logic works with empty rows in any slot. // We do sorting a profiling info (ciCallProfile) for compilation. // set_count(0); set_receiver(row, NULL); set_receiver_count(row, 0); } // Code generation support static ByteSize receiver_offset(uint row) { return cell_offset(receiver_cell_index(row)); } static ByteSize receiver_count_offset(uint row) { return cell_offset(receiver_count_cell_index(row)); } static ByteSize receiver_type_data_size() { return cell_offset(static_cell_count()); } // GC support virtual void follow_contents(); virtual void oop_iterate(OopClosure* blk); virtual void oop_iterate_m(OopClosure* blk, MemRegion mr); virtual void adjust_pointers(); virtual void follow_weak_refs(BoolObjectClosure* is_alive_closure); #ifndef SERIALGC // Parallel old support virtual void follow_contents(ParCompactionManager* cm); virtual void update_pointers(); #endif // SERIALGC oop* adr_receiver(uint row) { return adr_oop_at(receiver_cell_index(row)); } #ifndef PRODUCT void print_receiver_data_on(outputStream* st); void print_data_on(outputStream* st); #endif }; // VirtualCallData // // A VirtualCallData is used to access profiling information about a // virtual call. For now, it has nothing more than a ReceiverTypeData. class VirtualCallData : public ReceiverTypeData { public: VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) { assert(layout->tag() == DataLayout::virtual_call_data_tag, "wrong type"); } virtual bool is_VirtualCallData() { return true; } static int static_cell_count() { // At this point we could add more profile state, e.g., for arguments. // But for now it's the same size as the base record type. return ReceiverTypeData::static_cell_count(); } virtual int cell_count() { return static_cell_count(); } // Direct accessors static ByteSize virtual_call_data_size() { return cell_offset(static_cell_count()); } #ifndef PRODUCT void print_data_on(outputStream* st); #endif }; // RetData // // A RetData is used to access profiling information for a ret bytecode. // It is composed of a count of the number of times that the ret has // been executed, followed by a series of triples of the form // (bci, count, di) which count the number of times that some bci was the // target of the ret and cache a corresponding data displacement. class RetData : public CounterData { protected: enum { bci0_offset = counter_cell_count, count0_offset, displacement0_offset, ret_row_cell_count = (displacement0_offset + 1) - bci0_offset }; void set_bci(uint row, int bci) { assert((uint)row < row_limit(), "oob"); set_int_at(bci0_offset + row * ret_row_cell_count, bci); } void release_set_bci(uint row, int bci) { assert((uint)row < row_limit(), "oob"); // 'release' when setting the bci acts as a valid flag for other // threads wrt bci_count and bci_displacement. release_set_int_at(bci0_offset + row * ret_row_cell_count, bci); } void set_bci_count(uint row, uint count) { assert((uint)row < row_limit(), "oob"); set_uint_at(count0_offset + row * ret_row_cell_count, count); } void set_bci_displacement(uint row, int disp) { set_int_at(displacement0_offset + row * ret_row_cell_count, disp); } public: RetData(DataLayout* layout) : CounterData(layout) { assert(layout->tag() == DataLayout::ret_data_tag, "wrong type"); } virtual bool is_RetData() { return true; } enum { no_bci = -1 // value of bci when bci1/2 are not in use. }; static int static_cell_count() { return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count; } virtual int cell_count() { return static_cell_count(); } static uint row_limit() { return BciProfileWidth; } static int bci_cell_index(uint row) { return bci0_offset + row * ret_row_cell_count; } static int bci_count_cell_index(uint row) { return count0_offset + row * ret_row_cell_count; } static int bci_displacement_cell_index(uint row) { return displacement0_offset + row * ret_row_cell_count; } // Direct accessors int bci(uint row) { return int_at(bci_cell_index(row)); } uint bci_count(uint row) { return uint_at(bci_count_cell_index(row)); } int bci_displacement(uint row) { return int_at(bci_displacement_cell_index(row)); } // Interpreter Runtime support address fixup_ret(int return_bci, methodDataHandle mdo); // Code generation support static ByteSize bci_offset(uint row) { return cell_offset(bci_cell_index(row)); } static ByteSize bci_count_offset(uint row) { return cell_offset(bci_count_cell_index(row)); } static ByteSize bci_displacement_offset(uint row) { return cell_offset(bci_displacement_cell_index(row)); } // Specific initialization. void post_initialize(BytecodeStream* stream, methodDataOop mdo); #ifndef PRODUCT void print_data_on(outputStream* st); #endif }; // BranchData // // A BranchData is used to access profiling data for a two-way branch. // It consists of taken and not_taken counts as well as a data displacement // for the taken case. class BranchData : public JumpData { protected: enum { not_taken_off_set = jump_cell_count, branch_cell_count }; void set_displacement(int displacement) { set_int_at(displacement_off_set, displacement); } public: BranchData(DataLayout* layout) : JumpData(layout) { assert(layout->tag() == DataLayout::branch_data_tag, "wrong type"); } virtual bool is_BranchData() { return true; } static int static_cell_count() { return branch_cell_count; } virtual int cell_count() { return static_cell_count(); } // Direct accessor uint not_taken() { return uint_at(not_taken_off_set); } uint inc_not_taken() { uint cnt = not_taken() + 1; // Did we wrap? Will compiler screw us?? if (cnt == 0) cnt--; set_uint_at(not_taken_off_set, cnt); return cnt; } // Code generation support static ByteSize not_taken_offset() { return cell_offset(not_taken_off_set); } static ByteSize branch_data_size() { return cell_offset(branch_cell_count); } // Specific initialization. void post_initialize(BytecodeStream* stream, methodDataOop mdo); #ifndef PRODUCT void print_data_on(outputStream* st); #endif }; // ArrayData // // A ArrayData is a base class for accessing profiling data which does // not have a statically known size. It consists of an array length // and an array start. class ArrayData : public ProfileData { protected: friend class DataLayout; enum { array_len_off_set, array_start_off_set }; uint array_uint_at(int index) { int aindex = index + array_start_off_set; return uint_at(aindex); } int array_int_at(int index) { int aindex = index + array_start_off_set; return int_at(aindex); } oop array_oop_at(int index) { int aindex = index + array_start_off_set; return oop_at(aindex); } void array_set_int_at(int index, int value) { int aindex = index + array_start_off_set; set_int_at(aindex, value); } // Code generation support for subclasses. static ByteSize array_element_offset(int index) { return cell_offset(array_start_off_set + index); } public: ArrayData(DataLayout* layout) : ProfileData(layout) {} virtual bool is_ArrayData() { return true; } static int static_cell_count() { return -1; } int array_len() { return int_at_unchecked(array_len_off_set); } virtual int cell_count() { return array_len() + 1; } // Code generation support static ByteSize array_len_offset() { return cell_offset(array_len_off_set); } static ByteSize array_start_offset() { return cell_offset(array_start_off_set); } }; // MultiBranchData // // A MultiBranchData is used to access profiling information for // a multi-way branch (*switch bytecodes). It consists of a series // of (count, displacement) pairs, which count the number of times each // case was taken and specify the data displacment for each branch target. class MultiBranchData : public ArrayData { protected: enum { default_count_off_set, default_disaplacement_off_set, case_array_start }; enum { relative_count_off_set, relative_displacement_off_set, per_case_cell_count }; void set_default_displacement(int displacement) { array_set_int_at(default_disaplacement_off_set, displacement); } void set_displacement_at(int index, int displacement) { array_set_int_at(case_array_start + index * per_case_cell_count + relative_displacement_off_set, displacement); } public: MultiBranchData(DataLayout* layout) : ArrayData(layout) { assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type"); } virtual bool is_MultiBranchData() { return true; } static int compute_cell_count(BytecodeStream* stream); int number_of_cases() { int alen = array_len() - 2; // get rid of default case here. assert(alen % per_case_cell_count == 0, "must be even"); return (alen / per_case_cell_count); } uint default_count() { return array_uint_at(default_count_off_set); } int default_displacement() { return array_int_at(default_disaplacement_off_set); } uint count_at(int index) { return array_uint_at(case_array_start + index * per_case_cell_count + relative_count_off_set); } int displacement_at(int index) { return array_int_at(case_array_start + index * per_case_cell_count + relative_displacement_off_set); } // Code generation support static ByteSize default_count_offset() { return array_element_offset(default_count_off_set); } static ByteSize default_displacement_offset() { return array_element_offset(default_disaplacement_off_set); } static ByteSize case_count_offset(int index) { return case_array_offset() + (per_case_size() * index) + relative_count_offset(); } static ByteSize case_array_offset() { return array_element_offset(case_array_start); } static ByteSize per_case_size() { return in_ByteSize(per_case_cell_count) * cell_size; } static ByteSize relative_count_offset() { return in_ByteSize(relative_count_off_set) * cell_size; } static ByteSize relative_displacement_offset() { return in_ByteSize(relative_displacement_off_set) * cell_size; } // Specific initialization. void post_initialize(BytecodeStream* stream, methodDataOop mdo); #ifndef PRODUCT void print_data_on(outputStream* st); #endif }; class ArgInfoData : public ArrayData { public: ArgInfoData(DataLayout* layout) : ArrayData(layout) { assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type"); } virtual bool is_ArgInfoData() { return true; } int number_of_args() { return array_len(); } uint arg_modified(int arg) { return array_uint_at(arg); } void set_arg_modified(int arg, uint val) { array_set_int_at(arg, val); } #ifndef PRODUCT void print_data_on(outputStream* st); #endif }; // methodDataOop // // A methodDataOop holds information which has been collected about // a method. Its layout looks like this: // // ----------------------------- // | header | // | klass | // ----------------------------- // | method | // | size of the methodDataOop | // ----------------------------- // | Data entries... | // | (variable size) | // | | // . . // . . // . . // | | // ----------------------------- // // The data entry area is a heterogeneous array of DataLayouts. Each // DataLayout in the array corresponds to a specific bytecode in the // method. The entries in the array are sorted by the corresponding // bytecode. Access to the data is via resource-allocated ProfileData, // which point to the underlying blocks of DataLayout structures. // // During interpretation, if profiling in enabled, the interpreter // maintains a method data pointer (mdp), which points at the entry // in the array corresponding to the current bci. In the course of // intepretation, when a bytecode is encountered that has profile data // associated with it, the entry pointed to by mdp is updated, then the // mdp is adjusted to point to the next appropriate DataLayout. If mdp // is NULL to begin with, the interpreter assumes that the current method // is not (yet) being profiled. // // In methodDataOop parlance, "dp" is a "data pointer", the actual address // of a DataLayout element. A "di" is a "data index", the offset in bytes // from the base of the data entry array. A "displacement" is the byte offset // in certain ProfileData objects that indicate the amount the mdp must be // adjusted in the event of a change in control flow. // class methodDataOopDesc : public oopDesc { friend class VMStructs; private: friend class ProfileData; // Back pointer to the methodOop methodOop _method; // Size of this oop in bytes int _size; // Cached hint for bci_to_dp and bci_to_data int _hint_di; // Whole-method sticky bits and flags public: enum { _trap_hist_limit = 16, // decoupled from Deoptimization::Reason_LIMIT _trap_hist_mask = max_jubyte, _extra_data_count = 4 // extra DataLayout headers, for trap history }; // Public flag values private: uint _nof_decompiles; // count of all nmethod removals uint _nof_overflow_recompiles; // recompile count, excluding recomp. bits uint _nof_overflow_traps; // trap count, excluding _trap_hist union { intptr_t _align; u1 _array[_trap_hist_limit]; } _trap_hist; // Support for interprocedural escape analysis, from Thomas Kotzmann. intx _eflags; // flags on escape information intx _arg_local; // bit set of non-escaping arguments intx _arg_stack; // bit set of stack-allocatable arguments intx _arg_returned; // bit set of returned arguments int _creation_mileage; // method mileage at MDO creation // How many invocations has this MDO seen? // These counters are used to determine the exact age of MDO. // We need those because in tiered a method can be concurrently // executed at different levels. InvocationCounter _invocation_counter; // Same for backedges. InvocationCounter _backedge_counter; // Counter values at the time profiling started. int _invocation_counter_start; int _backedge_counter_start; // Number of loops and blocks is computed when compiling the first // time with C1. It is used to determine if method is trivial. short _num_loops; short _num_blocks; // Highest compile level this method has ever seen. u1 _highest_comp_level; // Same for OSR level u1 _highest_osr_comp_level; // Does this method contain anything worth profiling? bool _would_profile; // Size of _data array in bytes. (Excludes header and extra_data fields.) int _data_size; // Beginning of the data entries intptr_t _data[1]; // Helper for size computation static int compute_data_size(BytecodeStream* stream); static int bytecode_cell_count(Bytecodes::Code code); enum { no_profile_data = -1, variable_cell_count = -2 }; // Helper for initialization DataLayout* data_layout_at(int data_index) { assert(data_index % sizeof(intptr_t) == 0, "unaligned"); return (DataLayout*) (((address)_data) + data_index); } // Initialize an individual data segment. Returns the size of // the segment in bytes. int initialize_data(BytecodeStream* stream, int data_index); // Helper for data_at DataLayout* limit_data_position() { return (DataLayout*)((address)data_base() + _data_size); } bool out_of_bounds(int data_index) { return data_index >= data_size(); } // Give each of the data entries a chance to perform specific // data initialization. void post_initialize(BytecodeStream* stream); // hint accessors int hint_di() const { return _hint_di; } void set_hint_di(int di) { assert(!out_of_bounds(di), "hint_di out of bounds"); _hint_di = di; } ProfileData* data_before(int bci) { // avoid SEGV on this edge case if (data_size() == 0) return NULL; int hint = hint_di(); if (data_layout_at(hint)->bci() <= bci) return data_at(hint); return first_data(); } // What is the index of the first data entry? int first_di() { return 0; } // Find or create an extra ProfileData: ProfileData* bci_to_extra_data(int bci, bool create_if_missing); // return the argument info cell ArgInfoData *arg_info(); public: static int header_size() { return sizeof(methodDataOopDesc)/wordSize; } // Compute the size of a methodDataOop before it is created. static int compute_allocation_size_in_bytes(methodHandle method); static int compute_allocation_size_in_words(methodHandle method); static int compute_extra_data_count(int data_size, int empty_bc_count); // Determine if a given bytecode can have profile information. static bool bytecode_has_profile(Bytecodes::Code code) { return bytecode_cell_count(code) != no_profile_data; } // Perform initialization of a new methodDataOop void initialize(methodHandle method); // My size int object_size_in_bytes() { return _size; } int object_size() { return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord); } int creation_mileage() const { return _creation_mileage; } void set_creation_mileage(int x) { _creation_mileage = x; } int invocation_count() { if (invocation_counter()->carry()) { return InvocationCounter::count_limit; } return invocation_counter()->count(); } int backedge_count() { if (backedge_counter()->carry()) { return InvocationCounter::count_limit; } return backedge_counter()->count(); } int invocation_count_start() { if (invocation_counter()->carry()) { return 0; } return _invocation_counter_start; } int backedge_count_start() { if (backedge_counter()->carry()) { return 0; } return _backedge_counter_start; } int invocation_count_delta() { return invocation_count() - invocation_count_start(); } int backedge_count_delta() { return backedge_count() - backedge_count_start(); } void reset_start_counters() { _invocation_counter_start = invocation_count(); _backedge_counter_start = backedge_count(); } InvocationCounter* invocation_counter() { return &_invocation_counter; } InvocationCounter* backedge_counter() { return &_backedge_counter; } void set_would_profile(bool p) { _would_profile = p; } bool would_profile() const { return _would_profile; } int highest_comp_level() { return _highest_comp_level; } void set_highest_comp_level(int level) { _highest_comp_level = level; } int highest_osr_comp_level() { return _highest_osr_comp_level; } void set_highest_osr_comp_level(int level) { _highest_osr_comp_level = level; } int num_loops() const { return _num_loops; } void set_num_loops(int n) { _num_loops = n; } int num_blocks() const { return _num_blocks; } void set_num_blocks(int n) { _num_blocks = n; } bool is_mature() const; // consult mileage and ProfileMaturityPercentage static int mileage_of(methodOop m); // Support for interprocedural escape analysis, from Thomas Kotzmann. enum EscapeFlag { estimated = 1 << 0, return_local = 1 << 1, return_allocated = 1 << 2, allocated_escapes = 1 << 3, unknown_modified = 1 << 4 }; intx eflags() { return _eflags; } intx arg_local() { return _arg_local; } intx arg_stack() { return _arg_stack; } intx arg_returned() { return _arg_returned; } uint arg_modified(int a) { ArgInfoData *aid = arg_info(); assert(a >= 0 && a < aid->number_of_args(), "valid argument number"); return aid->arg_modified(a); } void set_eflags(intx v) { _eflags = v; } void set_arg_local(intx v) { _arg_local = v; } void set_arg_stack(intx v) { _arg_stack = v; } void set_arg_returned(intx v) { _arg_returned = v; } void set_arg_modified(int a, uint v) { ArgInfoData *aid = arg_info(); assert(a >= 0 && a < aid->number_of_args(), "valid argument number"); aid->set_arg_modified(a, v); } void clear_escape_info() { _eflags = _arg_local = _arg_stack = _arg_returned = 0; } // Location and size of data area address data_base() const { return (address) _data; } int data_size() { return _data_size; } // Accessors methodOop method() { return _method; } // Get the data at an arbitrary (sort of) data index. ProfileData* data_at(int data_index); // Walk through the data in order. ProfileData* first_data() { return data_at(first_di()); } ProfileData* next_data(ProfileData* current); bool is_valid(ProfileData* current) { return current != NULL; } // Convert a dp (data pointer) to a di (data index). int dp_to_di(address dp) { return dp - ((address)_data); } address di_to_dp(int di) { return (address)data_layout_at(di); } // bci to di/dp conversion. address bci_to_dp(int bci); int bci_to_di(int bci) { return dp_to_di(bci_to_dp(bci)); } // Get the data at an arbitrary bci, or NULL if there is none. ProfileData* bci_to_data(int bci); // Same, but try to create an extra_data record if one is needed: ProfileData* allocate_bci_to_data(int bci) { ProfileData* data = bci_to_data(bci); return (data != NULL) ? data : bci_to_extra_data(bci, true); } // Add a handful of extra data records, for trap tracking. DataLayout* extra_data_base() { return limit_data_position(); } DataLayout* extra_data_limit() { return (DataLayout*)((address)this + object_size_in_bytes()); } int extra_data_size() { return (address)extra_data_limit() - (address)extra_data_base(); } static DataLayout* next_extra(DataLayout* dp) { return (DataLayout*)((address)dp + in_bytes(DataLayout::cell_offset(0))); } // Return (uint)-1 for overflow. uint trap_count(int reason) const { assert((uint)reason < _trap_hist_limit, "oob"); return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1; } // For loops: static uint trap_reason_limit() { return _trap_hist_limit; } static uint trap_count_limit() { return _trap_hist_mask; } uint inc_trap_count(int reason) { // Count another trap, anywhere in this method. assert(reason >= 0, "must be single trap"); if ((uint)reason < _trap_hist_limit) { uint cnt1 = 1 + _trap_hist._array[reason]; if ((cnt1 & _trap_hist_mask) != 0) { // if no counter overflow... _trap_hist._array[reason] = cnt1; return cnt1; } else { return _trap_hist_mask + (++_nof_overflow_traps); } } else { // Could not represent the count in the histogram. return (++_nof_overflow_traps); } } uint overflow_trap_count() const { return _nof_overflow_traps; } uint overflow_recompile_count() const { return _nof_overflow_recompiles; } void inc_overflow_recompile_count() { _nof_overflow_recompiles += 1; } uint decompile_count() const { return _nof_decompiles; } void inc_decompile_count() { _nof_decompiles += 1; if (decompile_count() > (uint)PerMethodRecompilationCutoff) { method()->set_not_compilable(CompLevel_full_optimization); } } // Support for code generation static ByteSize data_offset() { return byte_offset_of(methodDataOopDesc, _data[0]); } static ByteSize invocation_counter_offset() { return byte_offset_of(methodDataOopDesc, _invocation_counter); } static ByteSize backedge_counter_offset() { return byte_offset_of(methodDataOopDesc, _backedge_counter); } // GC support oop* adr_method() const { return (oop*)&_method; } bool object_is_parsable() const { return _size != 0; } void set_object_is_parsable(int object_size_in_bytes) { _size = object_size_in_bytes; } #ifndef PRODUCT // printing support for method data void print_data_on(outputStream* st); #endif // verification void verify_data_on(outputStream* st); }; #endif // SHARE_VM_OOPS_METHODDATAOOP_HPP