/* * Copyright (c) 2012, 2015, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ #include "precompiled.hpp" #include "asm/codeBuffer.hpp" #include "code/codeCache.hpp" #include "compiler/compileBroker.hpp" #include "compiler/disassembler.hpp" #include "jvmci/jvmciRuntime.hpp" #include "jvmci/jvmciCompilerToVM.hpp" #include "jvmci/jvmciCompiler.hpp" #include "jvmci/jvmciJavaClasses.hpp" #include "jvmci/jvmciEnv.hpp" #include "memory/oopFactory.hpp" #include "oops/oop.inline.hpp" #include "oops/objArrayOop.inline.hpp" #include "prims/jvm.h" #include "runtime/biasedLocking.hpp" #include "runtime/interfaceSupport.hpp" #include "runtime/reflection.hpp" #include "runtime/sharedRuntime.hpp" #include "utilities/debug.hpp" #include "utilities/defaultStream.hpp" #if defined(_MSC_VER) #define strtoll _strtoi64 #endif jobject JVMCIRuntime::_HotSpotJVMCIRuntime_instance = NULL; bool JVMCIRuntime::_HotSpotJVMCIRuntime_initialized = false; bool JVMCIRuntime::_well_known_classes_initialized = false; const char* JVMCIRuntime::_compiler = NULL; int JVMCIRuntime::_options_count = 0; SystemProperty** JVMCIRuntime::_options = NULL; bool JVMCIRuntime::_shutdown_called = false; static const char* OPTION_PREFIX = "jvmci.option."; static const size_t OPTION_PREFIX_LEN = strlen(OPTION_PREFIX); BasicType JVMCIRuntime::kindToBasicType(jchar ch) { switch(ch) { case 'z': return T_BOOLEAN; case 'b': return T_BYTE; case 's': return T_SHORT; case 'c': return T_CHAR; case 'i': return T_INT; case 'f': return T_FLOAT; case 'j': return T_LONG; case 'd': return T_DOUBLE; case 'a': return T_OBJECT; case '-': return T_ILLEGAL; default: fatal("unexpected Kind: %c", ch); break; } return T_ILLEGAL; } // Simple helper to see if the caller of a runtime stub which // entered the VM has been deoptimized static bool caller_is_deopted() { JavaThread* thread = JavaThread::current(); RegisterMap reg_map(thread, false); frame runtime_frame = thread->last_frame(); frame caller_frame = runtime_frame.sender(®_map); assert(caller_frame.is_compiled_frame(), "must be compiled"); return caller_frame.is_deoptimized_frame(); } // Stress deoptimization static void deopt_caller() { if ( !caller_is_deopted()) { JavaThread* thread = JavaThread::current(); RegisterMap reg_map(thread, false); frame runtime_frame = thread->last_frame(); frame caller_frame = runtime_frame.sender(®_map); Deoptimization::deoptimize_frame(thread, caller_frame.id(), Deoptimization::Reason_constraint); assert(caller_is_deopted(), "Must be deoptimized"); } } JRT_BLOCK_ENTRY(void, JVMCIRuntime::new_instance(JavaThread* thread, Klass* klass)) JRT_BLOCK; assert(klass->is_klass(), "not a class"); instanceKlassHandle h(thread, klass); h->check_valid_for_instantiation(true, CHECK); // make sure klass is initialized h->initialize(CHECK); // allocate instance and return via TLS oop obj = h->allocate_instance(CHECK); thread->set_vm_result(obj); JRT_BLOCK_END; if (ReduceInitialCardMarks) { new_store_pre_barrier(thread); } JRT_END JRT_BLOCK_ENTRY(void, JVMCIRuntime::new_array(JavaThread* thread, Klass* array_klass, jint length)) JRT_BLOCK; // Note: no handle for klass needed since they are not used // anymore after new_objArray() and no GC can happen before. // (This may have to change if this code changes!) assert(array_klass->is_klass(), "not a class"); oop obj; if (array_klass->oop_is_typeArray()) { BasicType elt_type = TypeArrayKlass::cast(array_klass)->element_type(); obj = oopFactory::new_typeArray(elt_type, length, CHECK); } else { Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass(); obj = oopFactory::new_objArray(elem_klass, length, CHECK); } thread->set_vm_result(obj); // This is pretty rare but this runtime patch is stressful to deoptimization // if we deoptimize here so force a deopt to stress the path. if (DeoptimizeALot) { static int deopts = 0; // Alternate between deoptimizing and raising an error (which will also cause a deopt) if (deopts++ % 2 == 0) { ResourceMark rm(THREAD); THROW(vmSymbols::java_lang_OutOfMemoryError()); } else { deopt_caller(); } } JRT_BLOCK_END; if (ReduceInitialCardMarks) { new_store_pre_barrier(thread); } JRT_END void JVMCIRuntime::new_store_pre_barrier(JavaThread* thread) { // After any safepoint, just before going back to compiled code, // we inform the GC that we will be doing initializing writes to // this object in the future without emitting card-marks, so // GC may take any compensating steps. // NOTE: Keep this code consistent with GraphKit::store_barrier. oop new_obj = thread->vm_result(); if (new_obj == NULL) return; assert(Universe::heap()->can_elide_tlab_store_barriers(), "compiler must check this first"); // GC may decide to give back a safer copy of new_obj. new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj); thread->set_vm_result(new_obj); } JRT_ENTRY(void, JVMCIRuntime::new_multi_array(JavaThread* thread, Klass* klass, int rank, jint* dims)) assert(klass->is_klass(), "not a class"); assert(rank >= 1, "rank must be nonzero"); oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK); thread->set_vm_result(obj); JRT_END JRT_ENTRY(void, JVMCIRuntime::dynamic_new_array(JavaThread* thread, oopDesc* element_mirror, jint length)) oop obj = Reflection::reflect_new_array(element_mirror, length, CHECK); thread->set_vm_result(obj); JRT_END JRT_ENTRY(void, JVMCIRuntime::dynamic_new_instance(JavaThread* thread, oopDesc* type_mirror)) instanceKlassHandle klass(THREAD, java_lang_Class::as_Klass(type_mirror)); if (klass == NULL) { ResourceMark rm(THREAD); THROW(vmSymbols::java_lang_InstantiationException()); } // Create new instance (the receiver) klass->check_valid_for_instantiation(false, CHECK); // Make sure klass gets initialized klass->initialize(CHECK); oop obj = klass->allocate_instance(CHECK); thread->set_vm_result(obj); JRT_END extern void vm_exit(int code); // Enter this method from compiled code handler below. This is where we transition // to VM mode. This is done as a helper routine so that the method called directly // from compiled code does not have to transition to VM. This allows the entry // method to see if the nmethod that we have just looked up a handler for has // been deoptimized while we were in the vm. This simplifies the assembly code // cpu directories. // // We are entering here from exception stub (via the entry method below) // If there is a compiled exception handler in this method, we will continue there; // otherwise we will unwind the stack and continue at the caller of top frame method // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to // control the area where we can allow a safepoint. After we exit the safepoint area we can // check to see if the handler we are going to return is now in a nmethod that has // been deoptimized. If that is the case we return the deopt blob // unpack_with_exception entry instead. This makes life for the exception blob easier // because making that same check and diverting is painful from assembly language. JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm)) // Reset method handle flag. thread->set_is_method_handle_return(false); Handle exception(thread, ex); nm = CodeCache::find_nmethod(pc); assert(nm != NULL, "this is not a compiled method"); // Adjust the pc as needed/ if (nm->is_deopt_pc(pc)) { RegisterMap map(thread, false); frame exception_frame = thread->last_frame().sender(&map); // if the frame isn't deopted then pc must not correspond to the caller of last_frame assert(exception_frame.is_deoptimized_frame(), "must be deopted"); pc = exception_frame.pc(); } #ifdef ASSERT assert(exception.not_null(), "NULL exceptions should be handled by throw_exception"); assert(exception->is_oop(), "just checking"); // Check that exception is a subclass of Throwable, otherwise we have a VerifyError if (!(exception->is_a(SystemDictionary::Throwable_klass()))) { if (ExitVMOnVerifyError) vm_exit(-1); ShouldNotReachHere(); } #endif // Check the stack guard pages and reenable them if necessary and there is // enough space on the stack to do so. Use fast exceptions only if the guard // pages are enabled. bool guard_pages_enabled = thread->stack_yellow_zone_enabled(); if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack(); if (JvmtiExport::can_post_on_exceptions()) { // To ensure correct notification of exception catches and throws // we have to deoptimize here. If we attempted to notify the // catches and throws during this exception lookup it's possible // we could deoptimize on the way out of the VM and end back in // the interpreter at the throw site. This would result in double // notifications since the interpreter would also notify about // these same catches and throws as it unwound the frame. RegisterMap reg_map(thread); frame stub_frame = thread->last_frame(); frame caller_frame = stub_frame.sender(®_map); // We don't really want to deoptimize the nmethod itself since we // can actually continue in the exception handler ourselves but I // don't see an easy way to have the desired effect. Deoptimization::deoptimize_frame(thread, caller_frame.id(), Deoptimization::Reason_constraint); assert(caller_is_deopted(), "Must be deoptimized"); return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); } // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions if (guard_pages_enabled) { address fast_continuation = nm->handler_for_exception_and_pc(exception, pc); if (fast_continuation != NULL) { // Set flag if return address is a method handle call site. thread->set_is_method_handle_return(nm->is_method_handle_return(pc)); return fast_continuation; } } // If the stack guard pages are enabled, check whether there is a handler in // the current method. Otherwise (guard pages disabled), force an unwind and // skip the exception cache update (i.e., just leave continuation==NULL). address continuation = NULL; if (guard_pages_enabled) { // New exception handling mechanism can support inlined methods // with exception handlers since the mappings are from PC to PC // debugging support // tracing if (TraceExceptions) { ttyLocker ttyl; ResourceMark rm; tty->print_cr("Exception <%s> (" INTPTR_FORMAT ") thrown in compiled method <%s> at PC " INTPTR_FORMAT " for thread " INTPTR_FORMAT "", exception->print_value_string(), p2i((address)exception()), nm->method()->print_value_string(), p2i(pc), p2i(thread)); } // for AbortVMOnException flag NOT_PRODUCT(Exceptions::debug_check_abort(exception)); // Clear out the exception oop and pc since looking up an // exception handler can cause class loading, which might throw an // exception and those fields are expected to be clear during // normal bytecode execution. thread->clear_exception_oop_and_pc(); continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false); // If an exception was thrown during exception dispatch, the exception oop may have changed thread->set_exception_oop(exception()); thread->set_exception_pc(pc); // the exception cache is used only by non-implicit exceptions if (continuation != NULL && !SharedRuntime::deopt_blob()->contains(continuation)) { nm->add_handler_for_exception_and_pc(exception, pc, continuation); } } // Set flag if return address is a method handle call site. thread->set_is_method_handle_return(nm->is_method_handle_return(pc)); if (TraceExceptions) { ttyLocker ttyl; ResourceMark rm; tty->print_cr("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT " for exception thrown at PC " PTR_FORMAT, p2i(thread), p2i(continuation), p2i(pc)); } return continuation; JRT_END // Enter this method from compiled code only if there is a Java exception handler // in the method handling the exception. // We are entering here from exception stub. We don't do a normal VM transition here. // We do it in a helper. This is so we can check to see if the nmethod we have just // searched for an exception handler has been deoptimized in the meantime. address JVMCIRuntime::exception_handler_for_pc(JavaThread* thread) { oop exception = thread->exception_oop(); address pc = thread->exception_pc(); // Still in Java mode DEBUG_ONLY(ResetNoHandleMark rnhm); nmethod* nm = NULL; address continuation = NULL; { // Enter VM mode by calling the helper ResetNoHandleMark rnhm; continuation = exception_handler_for_pc_helper(thread, exception, pc, nm); } // Back in JAVA, use no oops DON'T safepoint // Now check to see if the compiled method we were called from is now deoptimized. // If so we must return to the deopt blob and deoptimize the nmethod if (nm != NULL && caller_is_deopted()) { continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); } assert(continuation != NULL, "no handler found"); return continuation; } JRT_ENTRY(void, JVMCIRuntime::create_null_exception(JavaThread* thread)) SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException()); thread->set_vm_result(PENDING_EXCEPTION); CLEAR_PENDING_EXCEPTION; JRT_END JRT_ENTRY(void, JVMCIRuntime::create_out_of_bounds_exception(JavaThread* thread, jint index)) char message[jintAsStringSize]; sprintf(message, "%d", index); SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message); thread->set_vm_result(PENDING_EXCEPTION); CLEAR_PENDING_EXCEPTION; JRT_END JRT_ENTRY_NO_ASYNC(void, JVMCIRuntime::monitorenter(JavaThread* thread, oopDesc* obj, BasicLock* lock)) IF_TRACE_jvmci_3 { char type[O_BUFLEN]; obj->klass()->name()->as_C_string(type, O_BUFLEN); markOop mark = obj->mark(); TRACE_jvmci_3("%s: entered locking slow case with obj=" INTPTR_FORMAT ", type=%s, mark=" INTPTR_FORMAT ", lock=" INTPTR_FORMAT, thread->name(), p2i(obj), type, p2i(mark), p2i(lock)); tty->flush(); } #ifdef ASSERT if (PrintBiasedLockingStatistics) { Atomic::inc(BiasedLocking::slow_path_entry_count_addr()); } #endif Handle h_obj(thread, obj); assert(h_obj()->is_oop(), "must be NULL or an object"); if (UseBiasedLocking) { // Retry fast entry if bias is revoked to avoid unnecessary inflation ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK); } else { if (JVMCIUseFastLocking) { // When using fast locking, the compiled code has already tried the fast case ObjectSynchronizer::slow_enter(h_obj, lock, THREAD); } else { ObjectSynchronizer::fast_enter(h_obj, lock, false, THREAD); } } TRACE_jvmci_3("%s: exiting locking slow with obj=" INTPTR_FORMAT, thread->name(), p2i(obj)); JRT_END JRT_LEAF(void, JVMCIRuntime::monitorexit(JavaThread* thread, oopDesc* obj, BasicLock* lock)) assert(thread == JavaThread::current(), "threads must correspond"); assert(thread->last_Java_sp(), "last_Java_sp must be set"); // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown EXCEPTION_MARK; #ifdef DEBUG if (!obj->is_oop()) { ResetNoHandleMark rhm; nmethod* method = thread->last_frame().cb()->as_nmethod_or_null(); if (method != NULL) { tty->print_cr("ERROR in monitorexit in method %s wrong obj " INTPTR_FORMAT, method->name(), p2i(obj)); } thread->print_stack_on(tty); assert(false, "invalid lock object pointer dected"); } #endif if (JVMCIUseFastLocking) { // When using fast locking, the compiled code has already tried the fast case ObjectSynchronizer::slow_exit(obj, lock, THREAD); } else { ObjectSynchronizer::fast_exit(obj, lock, THREAD); } IF_TRACE_jvmci_3 { char type[O_BUFLEN]; obj->klass()->name()->as_C_string(type, O_BUFLEN); TRACE_jvmci_3("%s: exited locking slow case with obj=" INTPTR_FORMAT ", type=%s, mark=" INTPTR_FORMAT ", lock=" INTPTR_FORMAT, thread->name(), p2i(obj), type, p2i(obj->mark()), p2i(lock)); tty->flush(); } JRT_END JRT_LEAF(void, JVMCIRuntime::log_object(JavaThread* thread, oopDesc* obj, jint flags)) bool string = mask_bits_are_true(flags, LOG_OBJECT_STRING); bool addr = mask_bits_are_true(flags, LOG_OBJECT_ADDRESS); bool newline = mask_bits_are_true(flags, LOG_OBJECT_NEWLINE); if (!string) { if (!addr && obj->is_oop_or_null(true)) { char buf[O_BUFLEN]; tty->print("%s@" INTPTR_FORMAT, obj->klass()->name()->as_C_string(buf, O_BUFLEN), p2i(obj)); } else { tty->print(INTPTR_FORMAT, p2i(obj)); } } else { ResourceMark rm; assert(obj != NULL && java_lang_String::is_instance(obj), "must be"); char *buf = java_lang_String::as_utf8_string(obj); tty->print_raw(buf); } if (newline) { tty->cr(); } JRT_END JRT_LEAF(void, JVMCIRuntime::write_barrier_pre(JavaThread* thread, oopDesc* obj)) thread->satb_mark_queue().enqueue(obj); JRT_END JRT_LEAF(void, JVMCIRuntime::write_barrier_post(JavaThread* thread, void* card_addr)) thread->dirty_card_queue().enqueue(card_addr); JRT_END JRT_LEAF(jboolean, JVMCIRuntime::validate_object(JavaThread* thread, oopDesc* parent, oopDesc* child)) bool ret = true; if(!Universe::heap()->is_in_closed_subset(parent)) { tty->print_cr("Parent Object " INTPTR_FORMAT " not in heap", p2i(parent)); parent->print(); ret=false; } if(!Universe::heap()->is_in_closed_subset(child)) { tty->print_cr("Child Object " INTPTR_FORMAT " not in heap", p2i(child)); child->print(); ret=false; } return (jint)ret; JRT_END JRT_ENTRY(void, JVMCIRuntime::vm_error(JavaThread* thread, jlong where, jlong format, jlong value)) ResourceMark rm; const char *error_msg = where == 0L ? "" : (char*) (address) where; char *detail_msg = NULL; if (format != 0L) { const char* buf = (char*) (address) format; size_t detail_msg_length = strlen(buf) * 2; detail_msg = (char *) NEW_RESOURCE_ARRAY(u_char, detail_msg_length); jio_snprintf(detail_msg, detail_msg_length, buf, value); report_vm_error(__FILE__, __LINE__, error_msg, "%s", detail_msg); } else { report_vm_error(__FILE__, __LINE__, error_msg); } JRT_END JRT_LEAF(oopDesc*, JVMCIRuntime::load_and_clear_exception(JavaThread* thread)) oop exception = thread->exception_oop(); assert(exception != NULL, "npe"); thread->set_exception_oop(NULL); thread->set_exception_pc(0); return exception; JRT_END PRAGMA_DIAG_PUSH PRAGMA_FORMAT_NONLITERAL_IGNORED JRT_LEAF(void, JVMCIRuntime::log_printf(JavaThread* thread, oopDesc* format, jlong v1, jlong v2, jlong v3)) ResourceMark rm; assert(format != NULL && java_lang_String::is_instance(format), "must be"); char *buf = java_lang_String::as_utf8_string(format); tty->print((const char*)buf, v1, v2, v3); JRT_END PRAGMA_DIAG_POP static void decipher(jlong v, bool ignoreZero) { if (v != 0 || !ignoreZero) { void* p = (void *)(address) v; CodeBlob* cb = CodeCache::find_blob(p); if (cb) { if (cb->is_nmethod()) { char buf[O_BUFLEN]; tty->print("%s [" INTPTR_FORMAT "+" JLONG_FORMAT "]", cb->as_nmethod_or_null()->method()->name_and_sig_as_C_string(buf, O_BUFLEN), p2i(cb->code_begin()), (jlong)((address)v - cb->code_begin())); return; } cb->print_value_on(tty); return; } if (Universe::heap()->is_in(p)) { oop obj = oop(p); obj->print_value_on(tty); return; } tty->print(INTPTR_FORMAT " [long: " JLONG_FORMAT ", double %lf, char %c]",p2i((void *)v), (jlong)v, (jdouble)v, (char)v); } } PRAGMA_DIAG_PUSH PRAGMA_FORMAT_NONLITERAL_IGNORED JRT_LEAF(void, JVMCIRuntime::vm_message(jboolean vmError, jlong format, jlong v1, jlong v2, jlong v3)) ResourceMark rm; const char *buf = (const char*) (address) format; if (vmError) { if (buf != NULL) { fatal(buf, v1, v2, v3); } else { fatal(""); } } else if (buf != NULL) { tty->print(buf, v1, v2, v3); } else { assert(v2 == 0, "v2 != 0"); assert(v3 == 0, "v3 != 0"); decipher(v1, false); } JRT_END PRAGMA_DIAG_POP JRT_LEAF(void, JVMCIRuntime::log_primitive(JavaThread* thread, jchar typeChar, jlong value, jboolean newline)) union { jlong l; jdouble d; jfloat f; } uu; uu.l = value; switch (typeChar) { case 'z': tty->print(value == 0 ? "false" : "true"); break; case 'b': tty->print("%d", (jbyte) value); break; case 'c': tty->print("%c", (jchar) value); break; case 's': tty->print("%d", (jshort) value); break; case 'i': tty->print("%d", (jint) value); break; case 'f': tty->print("%f", uu.f); break; case 'j': tty->print(JLONG_FORMAT, value); break; case 'd': tty->print("%lf", uu.d); break; default: assert(false, "unknown typeChar"); break; } if (newline) { tty->cr(); } JRT_END JRT_ENTRY(jint, JVMCIRuntime::identity_hash_code(JavaThread* thread, oopDesc* obj)) return (jint) obj->identity_hash(); JRT_END JRT_ENTRY(jboolean, JVMCIRuntime::thread_is_interrupted(JavaThread* thread, oopDesc* receiver, jboolean clear_interrupted)) // Ensure that the C++ Thread and OSThread structures aren't freed before we operate. // This locking requires thread_in_vm which is why this method cannot be JRT_LEAF. Handle receiverHandle(thread, receiver); MutexLockerEx ml(thread->threadObj() == (void*)receiver ? NULL : Threads_lock); JavaThread* receiverThread = java_lang_Thread::thread(receiverHandle()); if (receiverThread == NULL) { // The other thread may exit during this process, which is ok so return false. return JNI_FALSE; } else { return (jint) Thread::is_interrupted(receiverThread, clear_interrupted != 0); } JRT_END JRT_ENTRY(jint, JVMCIRuntime::test_deoptimize_call_int(JavaThread* thread, int value)) deopt_caller(); return value; JRT_END // private static JVMCIRuntime JVMCI.initializeRuntime() JVM_ENTRY(jobject, JVM_GetJVMCIRuntime(JNIEnv *env, jclass c)) if (!EnableJVMCI) { THROW_MSG_NULL(vmSymbols::java_lang_InternalError(), "JVMCI is not enabled") } JVMCIRuntime::initialize_HotSpotJVMCIRuntime(CHECK_NULL); jobject ret = JVMCIRuntime::get_HotSpotJVMCIRuntime_jobject(CHECK_NULL); return ret; JVM_END Handle JVMCIRuntime::callStatic(const char* className, const char* methodName, const char* signature, JavaCallArguments* args, TRAPS) { guarantee(!_HotSpotJVMCIRuntime_initialized, "cannot reinitialize HotSpotJVMCIRuntime"); TempNewSymbol name = SymbolTable::new_symbol(className, CHECK_(Handle())); KlassHandle klass = SystemDictionary::resolve_or_fail(name, true, CHECK_(Handle())); TempNewSymbol runtime = SymbolTable::new_symbol(methodName, CHECK_(Handle())); TempNewSymbol sig = SymbolTable::new_symbol(signature, CHECK_(Handle())); JavaValue result(T_OBJECT); if (args == NULL) { JavaCalls::call_static(&result, klass, runtime, sig, CHECK_(Handle())); } else { JavaCalls::call_static(&result, klass, runtime, sig, args, CHECK_(Handle())); } return Handle((oop)result.get_jobject()); } static bool jvmci_options_file_exists() { const char* home = Arguments::get_java_home(); size_t path_len = strlen(home) + strlen("/lib/jvmci/options") + 1; char path[JVM_MAXPATHLEN]; char sep = os::file_separator()[0]; jio_snprintf(path, JVM_MAXPATHLEN, "%s%clib%cjvmci%coptions", home, sep, sep, sep); struct stat st; return os::stat(path, &st) == 0; } void JVMCIRuntime::initialize_HotSpotJVMCIRuntime(TRAPS) { if (JNIHandles::resolve(_HotSpotJVMCIRuntime_instance) == NULL) { #ifdef ASSERT // This should only be called in the context of the JVMCI class being initialized TempNewSymbol name = SymbolTable::new_symbol("jdk/vm/ci/runtime/JVMCI", CHECK); Klass* k = SystemDictionary::resolve_or_null(name, CHECK); instanceKlassHandle klass = InstanceKlass::cast(k); assert(klass->is_being_initialized() && klass->is_reentrant_initialization(THREAD), "HotSpotJVMCIRuntime initialization should only be triggered through JVMCI initialization"); #endif bool parseOptionsFile = jvmci_options_file_exists(); if (_options != NULL || parseOptionsFile) { JavaCallArguments args; objArrayOop options; if (_options != NULL) { options = oopFactory::new_objArray(SystemDictionary::String_klass(), _options_count * 2, CHECK); for (int i = 0; i < _options_count; i++) { SystemProperty* prop = _options[i]; oop name = java_lang_String::create_oop_from_str(prop->key() + OPTION_PREFIX_LEN, CHECK); oop value = java_lang_String::create_oop_from_str(prop->value(), CHECK); options->obj_at_put(i * 2, name); options->obj_at_put((i * 2) + 1, value); } } else { options = NULL; } args.push_oop(options); args.push_int(parseOptionsFile); callStatic("jdk/vm/ci/options/OptionsParser", "parseOptionsFromVM", "([Ljava/lang/String;Z)Ljava/lang/Boolean;", &args, CHECK); } if (_compiler != NULL) { JavaCallArguments args; oop compiler = java_lang_String::create_oop_from_str(_compiler, CHECK); args.push_oop(compiler); callStatic("jdk/vm/ci/hotspot/HotSpotJVMCICompilerConfig", "selectCompiler", "(Ljava/lang/String;)Ljava/lang/Boolean;", &args, CHECK); } Handle result = callStatic("jdk/vm/ci/hotspot/HotSpotJVMCIRuntime", "runtime", "()Ljdk/vm/ci/hotspot/HotSpotJVMCIRuntime;", NULL, CHECK); _HotSpotJVMCIRuntime_initialized = true; _HotSpotJVMCIRuntime_instance = JNIHandles::make_global(result()); } } void JVMCIRuntime::initialize_JVMCI(TRAPS) { if (JNIHandles::resolve(_HotSpotJVMCIRuntime_instance) == NULL) { callStatic("jdk/vm/ci/runtime/JVMCI", "getRuntime", "()Ljdk/vm/ci/runtime/JVMCIRuntime;", NULL, CHECK); } assert(_HotSpotJVMCIRuntime_initialized == true, "what?"); } void JVMCIRuntime::initialize_well_known_classes(TRAPS) { if (JVMCIRuntime::_well_known_classes_initialized == false) { SystemDictionary::WKID scan = SystemDictionary::FIRST_JVMCI_WKID; SystemDictionary::initialize_wk_klasses_through(SystemDictionary::LAST_JVMCI_WKID, scan, CHECK); JVMCIJavaClasses::compute_offsets(); JVMCIRuntime::_well_known_classes_initialized = true; } } void JVMCIRuntime::metadata_do(void f(Metadata*)) { // For simplicity, the existence of HotSpotJVMCIMetaAccessContext in // the SystemDictionary well known classes should ensure the other // classes have already been loaded, so make sure their order in the // table enforces that. assert(SystemDictionary::WK_KLASS_ENUM_NAME(jdk_vm_ci_hotspot_HotSpotResolvedJavaMethodImpl) < SystemDictionary::WK_KLASS_ENUM_NAME(jdk_vm_ci_hotspot_HotSpotJVMCIMetaAccessContext), "must be loaded earlier"); assert(SystemDictionary::WK_KLASS_ENUM_NAME(jdk_vm_ci_hotspot_HotSpotConstantPool) < SystemDictionary::WK_KLASS_ENUM_NAME(jdk_vm_ci_hotspot_HotSpotJVMCIMetaAccessContext), "must be loaded earlier"); assert(SystemDictionary::WK_KLASS_ENUM_NAME(jdk_vm_ci_hotspot_HotSpotResolvedObjectTypeImpl) < SystemDictionary::WK_KLASS_ENUM_NAME(jdk_vm_ci_hotspot_HotSpotJVMCIMetaAccessContext), "must be loaded earlier"); if (HotSpotJVMCIMetaAccessContext::klass() == NULL || !HotSpotJVMCIMetaAccessContext::klass()->is_linked()) { // Nothing could be registered yet return; } // WeakReference[] objArrayOop allContexts = HotSpotJVMCIMetaAccessContext::allContexts(); if (allContexts == NULL) { return; } // These must be loaded at this point but the linking state doesn't matter. assert(SystemDictionary::HotSpotResolvedJavaMethodImpl_klass() != NULL, "must be loaded"); assert(SystemDictionary::HotSpotConstantPool_klass() != NULL, "must be loaded"); assert(SystemDictionary::HotSpotResolvedObjectTypeImpl_klass() != NULL, "must be loaded"); for (int i = 0; i < allContexts->length(); i++) { oop ref = allContexts->obj_at(i); if (ref != NULL) { oop referent = java_lang_ref_Reference::referent(ref); if (referent != NULL) { // Chunked Object[] with last element pointing to next chunk objArrayOop metadataRoots = HotSpotJVMCIMetaAccessContext::metadataRoots(referent); while (metadataRoots != NULL) { for (int typeIndex = 0; typeIndex < metadataRoots->length() - 1; typeIndex++) { oop reference = metadataRoots->obj_at(typeIndex); if (reference == NULL) { continue; } oop metadataRoot = java_lang_ref_Reference::referent(reference); if (metadataRoot == NULL) { continue; } if (metadataRoot->is_a(SystemDictionary::HotSpotResolvedJavaMethodImpl_klass())) { Method* method = CompilerToVM::asMethod(metadataRoot); f(method); } else if (metadataRoot->is_a(SystemDictionary::HotSpotConstantPool_klass())) { ConstantPool* constantPool = CompilerToVM::asConstantPool(metadataRoot); f(constantPool); } else if (metadataRoot->is_a(SystemDictionary::HotSpotResolvedObjectTypeImpl_klass())) { Klass* klass = CompilerToVM::asKlass(metadataRoot); f(klass); } else { metadataRoot->print(); ShouldNotReachHere(); } } metadataRoots = (objArrayOop)metadataRoots->obj_at(metadataRoots->length() - 1); assert(metadataRoots == NULL || metadataRoots->is_objArray(), "wrong type"); } } } } } // private static void CompilerToVM.registerNatives() JVM_ENTRY(void, JVM_RegisterJVMCINatives(JNIEnv *env, jclass c2vmClass)) if (!EnableJVMCI) { THROW_MSG(vmSymbols::java_lang_InternalError(), "JVMCI is not enabled"); } #ifdef _LP64 #ifndef TARGET_ARCH_sparc uintptr_t heap_end = (uintptr_t) Universe::heap()->reserved_region().end(); uintptr_t allocation_end = heap_end + ((uintptr_t)16) * 1024 * 1024 * 1024; guarantee(heap_end < allocation_end, "heap end too close to end of address space (might lead to erroneous TLAB allocations)"); #endif // TARGET_ARCH_sparc #else fatal("check TLAB allocation code for address space conflicts"); #endif JVMCIRuntime::initialize_well_known_classes(CHECK); { ThreadToNativeFromVM trans(thread); // Ensure _non_oop_bits is initialized Universe::non_oop_word(); env->RegisterNatives(c2vmClass, CompilerToVM::methods, CompilerToVM::methods_count()); } JVM_END /** * Closure for parsing a line from a *.properties file in jre/lib/jvmci/properties. * The line must match the regular expression "[^=]+=.*". That is one or more * characters other than '=' followed by '=' followed by zero or more characters. * Everything before the '=' is the property name and everything after '=' is the value. * Lines that start with '#' are treated as comments and ignored. * No special processing of whitespace or any escape characters is performed. * The last definition of a property "wins" (i.e., it overrides all earlier * definitions of the property). */ class JVMCIPropertiesFileClosure : public ParseClosure { SystemProperty** _plist; public: JVMCIPropertiesFileClosure(SystemProperty** plist) : _plist(plist) {} void do_line(char* line) { if (line[0] == '#') { // skip comment return; } size_t len = strlen(line); char* sep = strchr(line, '='); if (sep == NULL) { warn_and_abort("invalid format: could not find '=' character"); return; } if (sep == line) { warn_and_abort("invalid format: name cannot be empty"); return; } *sep = '\0'; const char* name = line; char* value = sep + 1; Arguments::PropertyList_unique_add(_plist, name, value); } }; void JVMCIRuntime::init_system_properties(SystemProperty** plist) { char jvmciDir[JVM_MAXPATHLEN]; const char* fileSep = os::file_separator(); jio_snprintf(jvmciDir, sizeof(jvmciDir), "%s%slib%sjvmci", Arguments::get_java_home(), fileSep, fileSep, fileSep); DIR* dir = os::opendir(jvmciDir); if (dir != NULL) { struct dirent *entry; char *dbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(jvmciDir), mtInternal); JVMCIPropertiesFileClosure closure(plist); const unsigned suffix_len = (unsigned)strlen(".properties"); while ((entry = os::readdir(dir, (dirent *) dbuf)) != NULL && !closure.is_aborted()) { const char* name = entry->d_name; if (strlen(name) > suffix_len && strcmp(name + strlen(name) - suffix_len, ".properties") == 0) { char propertiesFilePath[JVM_MAXPATHLEN]; jio_snprintf(propertiesFilePath, sizeof(propertiesFilePath), "%s%s%s",jvmciDir, fileSep, name); JVMCIRuntime::parse_lines(propertiesFilePath, &closure, false); } } FREE_C_HEAP_ARRAY(char, dbuf); os::closedir(dir); } } #define CHECK_WARN_ABORT_(message) THREAD); \ if (HAS_PENDING_EXCEPTION) { \ warning(message); \ char buf[512]; \ jio_snprintf(buf, 512, "Uncaught exception at %s:%d", __FILE__, __LINE__); \ JVMCIRuntime::abort_on_pending_exception(PENDING_EXCEPTION, buf); \ return; \ } \ (void)(0 void JVMCIRuntime::save_compiler(const char* compiler) { assert(compiler != NULL, "npe"); assert(_compiler == NULL, "cannot reassign JVMCI compiler"); _compiler = compiler; } jint JVMCIRuntime::save_options(SystemProperty* props) { int count = 0; SystemProperty* first = NULL; for (SystemProperty* p = props; p != NULL; p = p->next()) { if (strncmp(p->key(), OPTION_PREFIX, OPTION_PREFIX_LEN) == 0) { if (p->value() == NULL || strlen(p->value()) == 0) { jio_fprintf(defaultStream::output_stream(), "JVMCI option %s must have non-zero length value\n", p->key()); return JNI_ERR; } if (first == NULL) { first = p; } count++; } } if (count != 0) { _options_count = count; _options = NEW_C_HEAP_ARRAY(SystemProperty*, count, mtCompiler); _options[0] = first; SystemProperty** insert_pos = _options + 1; for (SystemProperty* p = first->next(); p != NULL; p = p->next()) { if (strncmp(p->key(), OPTION_PREFIX, OPTION_PREFIX_LEN) == 0) { *insert_pos = p; insert_pos++; } } assert (insert_pos - _options == count, "must be"); } return JNI_OK; } void JVMCIRuntime::shutdown() { if (_HotSpotJVMCIRuntime_instance != NULL) { _shutdown_called = true; JavaThread* THREAD = JavaThread::current(); HandleMark hm(THREAD); Handle receiver = get_HotSpotJVMCIRuntime(CHECK_ABORT); JavaValue result(T_VOID); JavaCallArguments args; args.push_oop(receiver); JavaCalls::call_special(&result, receiver->klass(), vmSymbols::shutdown_method_name(), vmSymbols::void_method_signature(), &args, CHECK_ABORT); } } void JVMCIRuntime::call_printStackTrace(Handle exception, Thread* thread) { assert(exception->is_a(SystemDictionary::Throwable_klass()), "Throwable instance expected"); JavaValue result(T_VOID); JavaCalls::call_virtual(&result, exception, KlassHandle(thread, SystemDictionary::Throwable_klass()), vmSymbols::printStackTrace_name(), vmSymbols::void_method_signature(), thread); } void JVMCIRuntime::abort_on_pending_exception(Handle exception, const char* message, bool dump_core) { Thread* THREAD = Thread::current(); CLEAR_PENDING_EXCEPTION; tty->print_raw_cr(message); call_printStackTrace(exception, THREAD); // Give other aborting threads to also print their stack traces. // This can be very useful when debugging class initialization // failures. os::sleep(THREAD, 200, false); vm_abort(dump_core); } void JVMCIRuntime::parse_lines(char* path, ParseClosure* closure, bool warnStatFailure) { struct stat st; if (os::stat(path, &st) == 0 && (st.st_mode & S_IFREG) == S_IFREG) { // exists & is regular file int file_handle = os::open(path, 0, 0); if (file_handle != -1) { char* buffer = NEW_C_HEAP_ARRAY(char, st.st_size + 1, mtInternal); int num_read; num_read = (int) os::read(file_handle, (char*) buffer, st.st_size); if (num_read == -1) { warning("Error reading file %s due to %s", path, strerror(errno)); } else if (num_read != st.st_size) { warning("Only read %d of " SIZE_FORMAT " bytes from %s", num_read, (size_t) st.st_size, path); } os::close(file_handle); closure->set_filename(path); if (num_read == st.st_size) { buffer[num_read] = '\0'; char* line = buffer; while (line - buffer < num_read && !closure->is_aborted()) { // find line end (\r, \n or \r\n) char* nextline = NULL; char* cr = strchr(line, '\r'); char* lf = strchr(line, '\n'); if (cr != NULL && lf != NULL) { char* min = MIN2(cr, lf); *min = '\0'; if (lf == cr + 1) { nextline = lf + 1; } else { nextline = min + 1; } } else if (cr != NULL) { *cr = '\0'; nextline = cr + 1; } else if (lf != NULL) { *lf = '\0'; nextline = lf + 1; } // trim left while (*line == ' ' || *line == '\t') line++; char* end = line + strlen(line); // trim right while (end > line && (*(end -1) == ' ' || *(end -1) == '\t')) end--; *end = '\0'; // skip comments and empty lines if (*line != '#' && strlen(line) > 0) { closure->parse_line(line); } if (nextline != NULL) { line = nextline; } else { // File without newline at the end break; } } } FREE_C_HEAP_ARRAY(char, buffer); } else { warning("Error opening file %s due to %s", path, strerror(errno)); } } else if (warnStatFailure) { warning("Could not stat file %s due to %s", path, strerror(errno)); } }