/* * Copyright (c) 2003, 2011 Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * @test * @bug 4851625 4900189 4939441 * @summary Tests for {Math, StrictMath}.{sinh, cosh, tanh} * @author Joseph D. Darcy */ import sun.misc.DoubleConsts; public class HyperbolicTests { private HyperbolicTests(){} static final double NaNd = Double.NaN; /** * Test accuracy of {Math, StrictMath}.sinh. The specified * accuracy is 2.5 ulps. * * The defintion of sinh(x) is * * (e^x - e^(-x))/2 * * The series expansion of sinh(x) = * * x + x^3/3! + x^5/5! + x^7/7! +... * * Therefore, * * 1. For large values of x sinh(x) ~= signum(x)*exp(|x|)/2 * * 2. For small values of x, sinh(x) ~= x. * * Additionally, sinh is an odd function; sinh(-x) = -sinh(x). * */ static int testSinh() { int failures = 0; /* * Array elements below generated using a quad sinh * implementation. Rounded to a double, the quad result * *should* be correctly rounded, unless we are quite unlucky. * Assuming the quad value is a correctly rounded double, the * allowed error is 3.0 ulps instead of 2.5 since the quad * value rounded to double can have its own 1/2 ulp error. */ double [][] testCases = { // x sinh(x) {0.0625, 0.06254069805219182172183988501029229}, {0.1250, 0.12532577524111545698205754229137154}, {0.1875, 0.18860056562029018382047025055167585}, {0.2500, 0.25261231680816830791412515054205787}, {0.3125, 0.31761115611357728583959867611490292}, {0.3750, 0.38385106791361456875429567642050245}, {0.4375, 0.45159088610312053032509815226723017}, {0.5000, 0.52109530549374736162242562641149155}, {0.5625, 0.59263591611468777373870867338492247}, {0.6250, 0.66649226445661608227260655608302908}, {0.6875, 0.74295294580567543571442036910465007}, {0.7500, 0.82231673193582998070366163444691386}, {0.8125, 0.90489373856606433650504536421491368}, {0.8750, 0.99100663714429475605317427568995231}, {0.9375, 1.08099191569306394011007867453992548}, {1.0000, 1.17520119364380145688238185059560082}, {1.0625, 1.27400259579739321279181130344911907}, {1.1250, 1.37778219077984075760379987065228373}, {1.1875, 1.48694549961380717221109202361777593}, {1.2500, 1.60191908030082563790283030151221415}, {1.3125, 1.72315219460596010219069206464391528}, {1.3750, 1.85111856355791532419998548438506416}, {1.4375, 1.98631821852425112898943304217629457}, {1.5000, 2.12927945509481749683438749467763195}, {1.5625, 2.28056089740825247058075476705718764}, {1.6250, 2.44075368098794353221372986997161132}, {1.6875, 2.61048376261693140366028569794027603}, {1.7500, 2.79041436627764265509289122308816092}, {1.8125, 2.98124857471401377943765253243875520}, {1.8750, 3.18373207674259205101326780071803724}, {1.9375, 3.39865608104779099764440244167531810}, {2.0000, 3.62686040784701876766821398280126192}, {2.0625, 3.86923677050642806693938384073620450}, {2.1250, 4.12673225993027252260441410537905269}, {2.1875, 4.40035304533919660406976249684469164}, {2.2500, 4.69116830589833069188357567763552003}, {2.3125, 5.00031440855811351554075363240262157}, {2.3750, 5.32899934843284576394645856548481489}, {2.4375, 5.67850746906785056212578751630266858}, {2.5000, 6.05020448103978732145032363835040319}, {2.5625, 6.44554279850040875063706020260185553}, {2.6250, 6.86606721451642172826145238779845813}, {2.6875, 7.31342093738196587585692115636603571}, {2.7500, 7.78935201149073201875513401029935330}, {2.8125, 8.29572014785741787167717932988491961}, {2.8750, 8.83450399097893197351853322827892144}, {2.9375, 9.40780885043076394429977972921690859}, {3.0000, 10.01787492740990189897459361946582867}, {3.0625, 10.66708606836969224165124519209968368}, {3.1250, 11.35797907995166028304704128775698426}, {3.1875, 12.09325364161259019614431093344260209}, {3.2500, 12.87578285468067003959660391705481220}, {3.3125, 13.70862446906136798063935858393686525}, {3.3750, 14.59503283146163690015482636921657975}, {3.4375, 15.53847160182039311025096666980558478}, {3.5000, 16.54262728763499762495673152901249743}, {3.5625, 17.61142364906941482858466494889121694}, {3.6250, 18.74903703113232171399165788088277979}, {3.6875, 19.95991268283598684128844120984214675}, {3.7500, 21.24878212710338697364101071825171163}, {3.8125, 22.62068164929685091969259499078125023}, {3.8750, 24.08097197661255803883403419733891573}, {3.9375, 25.63535922523855307175060244757748997}, {4.0000, 27.28991719712775244890827159079382096}, {4.0625, 29.05111111351106713777825462100160185}, {4.1250, 30.92582287788986031725487699744107092}, {4.1875, 32.92137796722343190618721270937061472}, {4.2500, 35.04557405638942942322929652461901154}, {4.3125, 37.30671148776788628118833357170042385}, {4.3750, 39.71362570500944929025069048612806024}, {4.4375, 42.27572177772344954814418332587050658}, {4.5000, 45.00301115199178562180965680564371424}, {4.5625, 47.90615077031205065685078058248081891}, {4.6250, 50.99648471383193131253995134526177467}, {4.6875, 54.28608852959281437757368957713936555}, {4.7500, 57.78781641599226874961859781628591635}, {4.8125, 61.51535145084362283008545918273109379}, {4.8750, 65.48325905829987165560146562921543361}, {4.9375, 69.70704392356508084094318094283346381}, {5.0000, 74.20321057778875897700947199606456364}, {5.0625, 78.98932788987998983462810080907521151}, {5.1250, 84.08409771724448958901392613147384951}, {5.1875, 89.50742798369883598816307922895346849}, {5.2500, 95.28051047011540739630959111303975956}, {5.3125, 101.42590362176666730633859252034238987}, {5.3750, 107.96762069594029162704530843962700133}, {5.4375, 114.93122359426386042048760580590182604}, {5.5000, 122.34392274639096192409774240457730721}, {5.5625, 130.23468343534638291488502321709913206}, {5.6250, 138.63433897999898233879574111119546728}, {5.6875, 147.57571121692522056519568264304815790}, {5.7500, 157.09373875244884423880085377625986165}, {5.8125, 167.22561348600435888568183143777868662}, {5.8750, 178.01092593829229887752609866133883987}, {5.9375, 189.49181995209921964640216682906501778}, {6.0000, 201.71315737027922812498206768797872263}, {6.0625, 214.72269333437984291483666459592578915}, {6.1250, 228.57126288889537420461281285729970085}, {6.1875, 243.31297962030799867970551767086092471}, {6.2500, 259.00544710710289911522315435345489966}, {6.3125, 275.70998400700299790136562219920451185}, {6.3750, 293.49186366095654566861661249898332253}, {6.4375, 312.42056915013535342987623229485223434}, {6.5000, 332.57006480258443156075705566965111346}, {6.5625, 354.01908521044116928437570109827956007}, {6.6250, 376.85144288706511933454985188849781703}, {6.6875, 401.15635576625530823119100750634165252}, {6.7500, 427.02879582326538080306830640235938517}, {6.8125, 454.56986017986077163530945733572724452}, {6.8750, 483.88716614351897894746751705315210621}, {6.9375, 515.09527172439720070161654727225752288}, {7.0000, 548.31612327324652237375611757601851598}, {7.0625, 583.67953198942753384680988096024373270}, {7.1250, 621.32368116099280160364794462812762880}, {7.1875, 661.39566611888784148449430491465857519}, {7.2500, 704.05206901515336623551137120663358760}, {7.3125, 749.45957067108712382864538206200700256}, {7.3750, 797.79560188617531521347351754559776282}, {7.4375, 849.24903675279739482863565789325699416}, {7.5000, 904.02093068584652953510919038935849651}, {7.5625, 962.32530605113249628368993221570636328}, {7.6250, 1024.38998846242707559349318193113614698}, {7.6875, 1090.45749701500081956792547346904792325}, {7.7500, 1160.78599193425808533255719118417856088}, {7.8125, 1235.65028334242796895820912936318532502}, {7.8750, 1315.34290508508890654067255740428824014}, {7.9375, 1400.17525781352742299995139486063802583}, {8.0000, 1490.47882578955018611587663903188144796}, {8.0625, 1586.60647216744061169450001100145859236}, {8.1250, 1688.93381781440241350635231605477507900}, {8.1875, 1797.86070905726094477721128358866360644}, {8.2500, 1913.81278009067446281883262689250118009}, {8.3125, 2037.24311615199935553277163192983440062}, {8.3750, 2168.63402396170125867037749369723761636}, {8.4375, 2308.49891634734644432370720900969004306}, {8.5000, 2457.38431841538268239359965370719928775}, {8.5625, 2615.87200310986940554256648824234335262}, {8.6250, 2784.58126450289932429469130598902487336}, {8.6875, 2964.17133769964321637973459949999057146}, {8.7500, 3155.34397481384944060352507473513108710}, {8.8125, 3358.84618707947841898217318996045550438}, {8.8750, 3575.47316381333288862617411467285480067}, {8.9375, 3806.07137963459383403903729660349293583}, {9.0000, 4051.54190208278996051522359589803425598}, {9.0625, 4312.84391255878980330955246931164633615}, {9.1250, 4590.99845434696991399363282718106006883}, {9.1875, 4887.09242236403719571363798584676797558}, {9.2500, 5202.28281022453561319352901552085348309}, {9.3125, 5537.80123121853803935727335892054791265}, {9.3750, 5894.95873086734181634245918412592155656}, {9.4375, 6275.15090986233399457103055108344546942}, {9.5000, 6679.86337740502119410058225086262108741}, {9.5625, 7110.67755625726876329967852256934334025}, {9.6250, 7569.27686218510919585241049433331592115}, {9.6875, 8057.45328194243077504648484392156371121}, {9.7500, 8577.11437549816065709098061006273039092}, {9.8125, 9130.29072986829727910801024120918114778}, {9.8750, 9719.14389367880274015504995181862860062}, {9.9375, 10345.97482346383208590278839409938269134}, {10.0000, 11013.23287470339337723652455484636420303}, }; for(int i = 0; i < testCases.length; i++) { double [] testCase = testCases[i]; failures += testSinhCaseWithUlpDiff(testCase[0], testCase[1], 3.0); } double [][] specialTestCases = { {0.0, 0.0}, {NaNd, NaNd}, {Double.longBitsToDouble(0x7FF0000000000001L), NaNd}, {Double.longBitsToDouble(0xFFF0000000000001L), NaNd}, {Double.longBitsToDouble(0x7FF8555555555555L), NaNd}, {Double.longBitsToDouble(0xFFF8555555555555L), NaNd}, {Double.longBitsToDouble(0x7FFFFFFFFFFFFFFFL), NaNd}, {Double.longBitsToDouble(0xFFFFFFFFFFFFFFFFL), NaNd}, {Double.longBitsToDouble(0x7FFDeadBeef00000L), NaNd}, {Double.longBitsToDouble(0xFFFDeadBeef00000L), NaNd}, {Double.longBitsToDouble(0x7FFCafeBabe00000L), NaNd}, {Double.longBitsToDouble(0xFFFCafeBabe00000L), NaNd}, {Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY} }; for(int i = 0; i < specialTestCases.length; i++) { failures += testSinhCaseWithUlpDiff(specialTestCases[i][0], specialTestCases[i][1], 0.0); } // For powers of 2 less than 2^(-27), the second and // subsequent terms of the Taylor series expansion will get // rounded away since |n-n^3| > 53, the binary precision of a // double significand. for(int i = DoubleConsts.MIN_SUB_EXPONENT; i < -27; i++) { double d = Math.scalb(2.0, i); // Result and expected are the same. failures += testSinhCaseWithUlpDiff(d, d, 2.5); } // For values of x larger than 22, the e^(-x) term is // insignificant to the floating-point result. Util exp(x) // overflows around 709.8, sinh(x) ~= exp(x)/2; will will test // 10000 values in this range. long trans22 = Double.doubleToLongBits(22.0); // (approximately) largest value such that exp shouldn't // overflow long transExpOvfl = Double.doubleToLongBits(Math.nextDown(709.7827128933841)); for(long i = trans22; i < transExpOvfl; i +=(transExpOvfl-trans22)/10000) { double d = Double.longBitsToDouble(i); // Allow 3.5 ulps of error to deal with error in exp. failures += testSinhCaseWithUlpDiff(d, StrictMath.exp(d)*0.5, 3.5); } // (approximately) largest value such that sinh shouldn't // overflow. long transSinhOvfl = Double.doubleToLongBits(710.4758600739439); // Make sure sinh(x) doesn't overflow as soon as exp(x) // overflows. /* * For large values of x, sinh(x) ~= 0.5*(e^x). Therefore, * * sinh(x) ~= e^(ln 0.5) * e^x = e^(x + ln 0.5) * * So, we can calculate the approximate expected result as * exp(x + -0.693147186). However, this sum suffers from * roundoff, limiting the accuracy of the approximation. The * accuracy can be improved by recovering the rounded-off * information. Since x is larger than ln(0.5), the trailing * bits of ln(0.5) get rounded away when the two values are * added. However, high-order bits of ln(0.5) that * contribute to the sum can be found: * * offset = log(0.5); * effective_offset = (x + offset) - x; // exact subtraction * rounded_away_offset = offset - effective_offset; // exact subtraction * * Therefore, the product * * exp(x + offset)*exp(rounded_away_offset) * * will be a better approximation to the exact value of * * e^(x + offset) * * than exp(x+offset) alone. (The expected result cannot be * computed as exp(x)*exp(offset) since exp(x) by itself would * overflow to infinity.) */ double offset = StrictMath.log(0.5); for(long i = transExpOvfl+1; i < transSinhOvfl; i += (transSinhOvfl-transExpOvfl)/1000 ) { double input = Double.longBitsToDouble(i); double expected = StrictMath.exp(input + offset) * StrictMath.exp( offset - ((input + offset) - input) ); failures += testSinhCaseWithUlpDiff(input, expected, 4.0); } // sinh(x) overflows for values greater than 710; in // particular, it overflows for all 2^i, i > 10. for(int i = 10; i <= DoubleConsts.MAX_EXPONENT; i++) { double d = Math.scalb(2.0, i); // Result and expected are the same. failures += testSinhCaseWithUlpDiff(d, Double.POSITIVE_INFINITY, 0.0); } return failures; } public static int testSinhCaseWithTolerance(double input, double expected, double tolerance) { int failures = 0; failures += Tests.testTolerance("Math.sinh(double)", input, Math.sinh(input), expected, tolerance); failures += Tests.testTolerance("Math.sinh(double)", -input, Math.sinh(-input), -expected, tolerance); failures += Tests.testTolerance("StrictMath.sinh(double)", input, StrictMath.sinh(input), expected, tolerance); failures += Tests.testTolerance("StrictMath.sinh(double)", -input, StrictMath.sinh(-input), -expected, tolerance); return failures; } public static int testSinhCaseWithUlpDiff(double input, double expected, double ulps) { int failures = 0; failures += Tests.testUlpDiff("Math.sinh(double)", input, Math.sinh(input), expected, ulps); failures += Tests.testUlpDiff("Math.sinh(double)", -input, Math.sinh(-input), -expected, ulps); failures += Tests.testUlpDiff("StrictMath.sinh(double)", input, StrictMath.sinh(input), expected, ulps); failures += Tests.testUlpDiff("StrictMath.sinh(double)", -input, StrictMath.sinh(-input), -expected, ulps); return failures; } /** * Test accuracy of {Math, StrictMath}.cosh. The specified * accuracy is 2.5 ulps. * * The defintion of cosh(x) is * * (e^x + e^(-x))/2 * * The series expansion of cosh(x) = * * 1 + x^2/2! + x^4/4! + x^6/6! +... * * Therefore, * * 1. For large values of x cosh(x) ~= exp(|x|)/2 * * 2. For small values of x, cosh(x) ~= 1. * * Additionally, cosh is an even function; cosh(-x) = cosh(x). * */ static int testCosh() { int failures = 0; /* * Array elements below generated using a quad cosh * implementation. Rounded to a double, the quad result * *should* be correctly rounded, unless we are quite unlucky. * Assuming the quad value is a correctly rounded double, the * allowed error is 3.0 ulps instead of 2.5 since the quad * value rounded to double can have its own 1/2 ulp error. */ double [][] testCases = { // x cosh(x) {0.0625, 1.001953760865667607841550709632597376}, {0.1250, 1.007822677825710859846949685520422223}, {0.1875, 1.017629683800690526835115759894757615}, {0.2500, 1.031413099879573176159295417520378622}, {0.3125, 1.049226785060219076999158096606305793}, {0.3750, 1.071140346704586767299498015567016002}, {0.4375, 1.097239412531012567673453832328262160}, {0.5000, 1.127625965206380785226225161402672030}, {0.5625, 1.162418740845610783505338363214045218}, {0.6250, 1.201753692975606324229229064105075301}, {0.6875, 1.245784523776616395403056980542275175}, {0.7500, 1.294683284676844687841708185390181730}, {0.8125, 1.348641048647144208352285714214372703}, {0.8750, 1.407868656822803158638471458026344506}, {0.9375, 1.472597542369862933336886403008640891}, {1.0000, 1.543080634815243778477905620757061497}, {1.0625, 1.619593348374367728682469968448090763}, {1.1250, 1.702434658138190487400868008124755757}, {1.1875, 1.791928268324866464246665745956119612}, {1.2500, 1.888423877161015738227715728160051696}, {1.3125, 1.992298543335143985091891077551921106}, {1.3750, 2.103958159362661802010972984204389619}, {1.4375, 2.223839037619709260803023946704272699}, {1.5000, 2.352409615243247325767667965441644201}, {1.5625, 2.490172284559350293104864895029231913}, {1.6250, 2.637665356192137582275019088061812951}, {1.6875, 2.795465162524235691253423614360562624}, {1.7500, 2.964188309728087781773608481754531801}, {1.8125, 3.144494087167972176411236052303565201}, {1.8750, 3.337087043587520514308832278928116525}, {1.9375, 3.542719740149244276729383650503145346}, {2.0000, 3.762195691083631459562213477773746099}, {2.0625, 3.996372503438463642260225717607554880}, {2.1250, 4.246165228196992140600291052990934410}, {2.1875, 4.512549935859540340856119781585096760}, {2.2500, 4.796567530460195028666793366876218854}, {2.3125, 5.099327816921939817643745917141739051}, {2.3750, 5.422013837643509250646323138888569746}, {2.4375, 5.765886495263270945949271410819116399}, {2.5000, 6.132289479663686116619852312817562517}, {2.5625, 6.522654518468725462969589397439224177}, {2.6250, 6.938506971550673190999796241172117288}, {2.6875, 7.381471791406976069645686221095397137}, {2.7500, 7.853279872697439591457564035857305647}, {2.8125, 8.355774815752725814638234943192709129}, {2.8750, 8.890920130482709321824793617157134961}, {2.9375, 9.460806908834119747071078865866737196}, {3.0000, 10.067661995777765841953936035115890343}, {3.0625, 10.713856690753651225304006562698007312}, {3.1250, 11.401916013575067700373788969458446177}, {3.1875, 12.134528570998387744547733730974713055}, {3.2500, 12.914557062512392049483503752322408761}, {3.3125, 13.745049466398732213877084541992751273}, {3.3750, 14.629250949773302934853381428660210721}, {3.4375, 15.570616549147269180921654324879141947}, {3.5000, 16.572824671057316125696517821376119469}, {3.5625, 17.639791465519127930722105721028711044}, {3.6250, 18.775686128468677200079039891415789429}, {3.6875, 19.984947192985946987799359614758598457}, {3.7500, 21.272299872959396081877161903352144126}, {3.8125, 22.642774526961913363958587775566619798}, {3.8750, 24.101726314486257781049388094955970560}, {3.9375, 25.654856121347151067170940701379544221}, {4.0000, 27.308232836016486629201989612067059978}, {4.0625, 29.068317063936918520135334110824828950}, {4.1250, 30.941986372478026192360480044849306606}, {4.1875, 32.936562165180269851350626768308756303}, {4.2500, 35.059838290298428678502583470475012235}, {4.3125, 37.320111495433027109832850313172338419}, {4.3750, 39.726213847251883288518263854094284091}, {4.4375, 42.287547242982546165696077854963452084}, {4.5000, 45.014120148530027928305799939930642658}, {4.5625, 47.916586706774825161786212701923307169}, {4.6250, 51.006288368867753140854830589583165950}, {4.6875, 54.295298211196782516984520211780624960}, {4.7500, 57.796468111195389383795669320243166117}, {4.8125, 61.523478966332915041549750463563672435}, {4.8750, 65.490894152518731617237739112888213645}, {4.9375, 69.714216430810089539924900313140922323}, {5.0000, 74.209948524787844444106108044487704798}, {5.0625, 78.995657605307475581204965926043112946}, {5.1250, 84.090043934600961683400343038519519678}, {5.1875, 89.513013937957834087706670952561002466}, {5.2500, 95.285757988514588780586084642381131013}, {5.3125, 101.430833209098212357990123684449846912}, {5.3750, 107.972251614673824873137995865940755392}, {5.4375, 114.935573939814969189535554289886848550}, {5.5000, 122.348009517829425991091207107262038316}, {5.5625, 130.238522601820409078244923165746295574}, {5.6250, 138.637945543134998069351279801575968875}, {5.6875, 147.579099269447055276899288971207106581}, {5.7500, 157.096921533245353905868840194264636395}, {5.8125, 167.228603431860671946045256541679445836}, {5.8750, 178.013734732486824390148614309727161925}, {5.9375, 189.494458570056311567917444025807275896}, {6.0000, 201.715636122455894483405112855409538488}, {6.0625, 214.725021906554080628430756558271312513}, {6.1250, 228.573450380013557089736092321068279231}, {6.1875, 243.315034578039208138752165587134488645}, {6.2500, 259.007377561239126824465367865430519592}, {6.3125, 275.711797500835732516530131577254654076}, {6.3750, 293.493567280752348242602902925987643443}, {6.4375, 312.422169552825597994104814531010579387}, {6.5000, 332.571568241777409133204438572983297292}, {6.5625, 354.020497560858198165985214519757890505}, {6.6250, 376.852769667496146326030849450983914197}, {6.6875, 401.157602161123700280816957271992998156}, {6.7500, 427.029966702886171977469256622451185850}, {6.8125, 454.570960119471524953536004647195906721}, {6.8750, 483.888199441157626584508920036981010995}, {6.9375, 515.096242417696720610477570797503766179}, {7.0000, 548.317035155212076889964120712102928484}, {7.0625, 583.680388623257719787307547662358502345}, {7.1250, 621.324485894002926216918634755431456031}, {7.1875, 661.396422095589629755266517362992812037}, {7.2500, 704.052779189542208784574955807004218856}, {7.3125, 749.460237818184878095966335081928645934}, {7.3750, 797.796228612873763671070863694973560629}, {7.4375, 849.249625508044731271830060572510241864}, {7.5000, 904.021483770216677368692292389446994987}, {7.5625, 962.325825625814651122171697031114091993}, {7.6250, 1024.390476557670599008492465853663578558}, {7.6875, 1090.457955538048482588540574008226583335}, {7.7500, 1160.786422676798661020094043586456606003}, {7.8125, 1235.650687987597295222707689125107720568}, {7.8750, 1315.343285214046776004329388551335841550}, {7.9375, 1400.175614911635999247504386054087931958}, {8.0000, 1490.479161252178088627715460421007179728}, {8.0625, 1586.606787305415349050508956232945539108}, {8.1250, 1688.934113859132470361718199038326340668}, {8.1875, 1797.860987165547537276364148450577336075}, {8.2500, 1913.813041349231764486365114317586148767}, {8.3125, 2037.243361581700856522236313401822532385}, {8.3750, 2168.634254521568851112005905503069409349}, {8.4375, 2308.499132938297821208734949028296170563}, {8.5000, 2457.384521883751693037774022640629666294}, {8.5625, 2615.872194250713123494312356053193077854}, {8.6250, 2784.581444063104750127653362960649823247}, {8.6875, 2964.171506380845754878370650565756538203}, {8.7500, 3155.344133275174556354775488913749659006}, {8.8125, 3358.846335940117183452010789979584950102}, {8.8750, 3575.473303654961482727206202358956274888}, {8.9375, 3806.071511003646460448021740303914939059}, {9.0000, 4051.542025492594047194773093534725371440}, {9.0625, 4312.844028491571841588188869958240355518}, {9.1250, 4590.998563255739769060078863130940205710}, {9.1875, 4887.092524674358252509551443117048351290}, {9.2500, 5202.282906336187674588222835339193136030}, {9.3125, 5537.801321507079474415176386655744387251}, {9.3750, 5894.958815685577062811620236195525504885}, {9.4375, 6275.150989541692149890530417987358096221}, {9.5000, 6679.863452256851081801173722051940058824}, {9.5625, 7110.677626574055535297758456126491707647}, {9.6250, 7569.276928241617224537226019600213961572}, {9.6875, 8057.453343996777301036241026375049070162}, {9.7500, 8577.114433792824387959788368429252257664}, {9.8125, 9130.290784631065880205118262838330689429}, {9.8750, 9719.143945123662919857326995631317996715}, {9.9375, 10345.974871791805753327922796701684092861}, {10.0000, 11013.232920103323139721376090437880844591}, }; for(int i = 0; i < testCases.length; i++) { double [] testCase = testCases[i]; failures += testCoshCaseWithUlpDiff(testCase[0], testCase[1], 3.0); } double [][] specialTestCases = { {0.0, 1.0}, {NaNd, NaNd}, {Double.longBitsToDouble(0x7FF0000000000001L), NaNd}, {Double.longBitsToDouble(0xFFF0000000000001L), NaNd}, {Double.longBitsToDouble(0x7FF8555555555555L), NaNd}, {Double.longBitsToDouble(0xFFF8555555555555L), NaNd}, {Double.longBitsToDouble(0x7FFFFFFFFFFFFFFFL), NaNd}, {Double.longBitsToDouble(0xFFFFFFFFFFFFFFFFL), NaNd}, {Double.longBitsToDouble(0x7FFDeadBeef00000L), NaNd}, {Double.longBitsToDouble(0xFFFDeadBeef00000L), NaNd}, {Double.longBitsToDouble(0x7FFCafeBabe00000L), NaNd}, {Double.longBitsToDouble(0xFFFCafeBabe00000L), NaNd}, {Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY} }; for(int i = 0; i < specialTestCases.length; i++ ) { failures += testCoshCaseWithUlpDiff(specialTestCases[i][0], specialTestCases[i][1], 0.0); } // For powers of 2 less than 2^(-27), the second and // subsequent terms of the Taylor series expansion will get // rounded. for(int i = DoubleConsts.MIN_SUB_EXPONENT; i < -27; i++) { double d = Math.scalb(2.0, i); // Result and expected are the same. failures += testCoshCaseWithUlpDiff(d, 1.0, 2.5); } // For values of x larger than 22, the e^(-x) term is // insignificant to the floating-point result. Util exp(x) // overflows around 709.8, cosh(x) ~= exp(x)/2; will will test // 10000 values in this range. long trans22 = Double.doubleToLongBits(22.0); // (approximately) largest value such that exp shouldn't // overflow long transExpOvfl = Double.doubleToLongBits(Math.nextDown(709.7827128933841)); for(long i = trans22; i < transExpOvfl; i +=(transExpOvfl-trans22)/10000) { double d = Double.longBitsToDouble(i); // Allow 3.5 ulps of error to deal with error in exp. failures += testCoshCaseWithUlpDiff(d, StrictMath.exp(d)*0.5, 3.5); } // (approximately) largest value such that cosh shouldn't // overflow. long transCoshOvfl = Double.doubleToLongBits(710.4758600739439); // Make sure sinh(x) doesn't overflow as soon as exp(x) // overflows. /* * For large values of x, cosh(x) ~= 0.5*(e^x). Therefore, * * cosh(x) ~= e^(ln 0.5) * e^x = e^(x + ln 0.5) * * So, we can calculate the approximate expected result as * exp(x + -0.693147186). However, this sum suffers from * roundoff, limiting the accuracy of the approximation. The * accuracy can be improved by recovering the rounded-off * information. Since x is larger than ln(0.5), the trailing * bits of ln(0.5) get rounded away when the two values are * added. However, high-order bits of ln(0.5) that * contribute to the sum can be found: * * offset = log(0.5); * effective_offset = (x + offset) - x; // exact subtraction * rounded_away_offset = offset - effective_offset; // exact subtraction * * Therefore, the product * * exp(x + offset)*exp(rounded_away_offset) * * will be a better approximation to the exact value of * * e^(x + offset) * * than exp(x+offset) alone. (The expected result cannot be * computed as exp(x)*exp(offset) since exp(x) by itself would * overflow to infinity.) */ double offset = StrictMath.log(0.5); for(long i = transExpOvfl+1; i < transCoshOvfl; i += (transCoshOvfl-transExpOvfl)/1000 ) { double input = Double.longBitsToDouble(i); double expected = StrictMath.exp(input + offset) * StrictMath.exp( offset - ((input + offset) - input) ); failures += testCoshCaseWithUlpDiff(input, expected, 4.0); } // cosh(x) overflows for values greater than 710; in // particular, it overflows for all 2^i, i > 10. for(int i = 10; i <= DoubleConsts.MAX_EXPONENT; i++) { double d = Math.scalb(2.0, i); // Result and expected are the same. failures += testCoshCaseWithUlpDiff(d, Double.POSITIVE_INFINITY, 0.0); } return failures; } public static int testCoshCaseWithTolerance(double input, double expected, double tolerance) { int failures = 0; failures += Tests.testTolerance("Math.cosh(double)", input, Math.cosh(input), expected, tolerance); failures += Tests.testTolerance("Math.cosh(double)", -input, Math.cosh(-input), expected, tolerance); failures += Tests.testTolerance("StrictMath.cosh(double)", input, StrictMath.cosh(input), expected, tolerance); failures += Tests.testTolerance("StrictMath.cosh(double)", -input, StrictMath.cosh(-input), expected, tolerance); return failures; } public static int testCoshCaseWithUlpDiff(double input, double expected, double ulps) { int failures = 0; failures += Tests.testUlpDiff("Math.cosh(double)", input, Math.cosh(input), expected, ulps); failures += Tests.testUlpDiff("Math.cosh(double)", -input, Math.cosh(-input), expected, ulps); failures += Tests.testUlpDiff("StrictMath.cosh(double)", input, StrictMath.cosh(input), expected, ulps); failures += Tests.testUlpDiff("StrictMath.cosh(double)", -input, StrictMath.cosh(-input), expected, ulps); return failures; } /** * Test accuracy of {Math, StrictMath}.tanh. The specified * accuracy is 2.5 ulps. * * The defintion of tanh(x) is * * (e^x - e^(-x))/(e^x + e^(-x)) * * The series expansion of tanh(x) = * * x - x^3/3 + 2x^5/15 - 17x^7/315 + ... * * Therefore, * * 1. For large values of x tanh(x) ~= signum(x) * * 2. For small values of x, tanh(x) ~= x. * * Additionally, tanh is an odd function; tanh(-x) = -tanh(x). * */ static int testTanh() { int failures = 0; /* * Array elements below generated using a quad sinh * implementation. Rounded to a double, the quad result * *should* be correctly rounded, unless we are quite unlucky. * Assuming the quad value is a correctly rounded double, the * allowed error is 3.0 ulps instead of 2.5 since the quad * value rounded to double can have its own 1/2 ulp error. */ double [][] testCases = { // x tanh(x) {0.0625, 0.06241874674751251449014289119421133}, {0.1250, 0.12435300177159620805464727580589271}, {0.1875, 0.18533319990813951753211997502482787}, {0.2500, 0.24491866240370912927780113149101697}, {0.3125, 0.30270972933210848724239738970991712}, {0.3750, 0.35835739835078594631936023155315807}, {0.4375, 0.41157005567402245143207555859415687}, {0.5000, 0.46211715726000975850231848364367256}, {0.5625, 0.50982997373525658248931213507053130}, {0.6250, 0.55459972234938229399903909532308371}, {0.6875, 0.59637355547924233984437303950726939}, {0.7500, 0.63514895238728731921443435731249638}, {0.8125, 0.67096707420687367394810954721913358}, {0.8750, 0.70390560393662106058763026963135371}, {0.9375, 0.73407151960434149263991588052503660}, {1.0000, 0.76159415595576488811945828260479366}, {1.0625, 0.78661881210869761781941794647736081}, {1.1250, 0.80930107020178101206077047354332696}, {1.1875, 0.82980190998595952708572559629034476}, {1.2500, 0.84828363995751289761338764670750445}, {1.3125, 0.86490661772074179125443141102709751}, {1.3750, 0.87982669965198475596055310881018259}, {1.4375, 0.89319334040035153149249598745889365}, {1.5000, 0.90514825364486643824230369645649557}, {1.5625, 0.91582454416876231820084311814416443}, {1.6250, 0.92534622531174107960457166792300374}, {1.6875, 0.93382804322259173763570528576138652}, {1.7500, 0.94137553849728736226942088377163687}, {1.8125, 0.94808528560440629971240651310180052}, {1.8750, 0.95404526017994877009219222661968285}, {1.9375, 0.95933529331468249183399461756952555}, {2.0000, 0.96402758007581688394641372410092317}, {2.0625, 0.96818721657637057702714316097855370}, {2.1250, 0.97187274591350905151254495374870401}, {2.1875, 0.97513669829362836159665586901156483}, {2.2500, 0.97802611473881363992272924300618321}, {2.3125, 0.98058304703705186541999427134482061}, {2.3750, 0.98284502917257603002353801620158861}, {2.4375, 0.98484551746427837912703608465407824}, {2.5000, 0.98661429815143028888127603923734964}, {2.5625, 0.98817786228751240824802592958012269}, {2.6250, 0.98955974861288320579361709496051109}, {2.6875, 0.99078085564125158320311117560719312}, {2.7500, 0.99185972456820774534967078914285035}, {2.8125, 0.99281279483715982021711715899682324}, {2.8750, 0.99365463431502962099607366282699651}, {2.9375, 0.99439814606575805343721743822723671}, {3.0000, 0.99505475368673045133188018525548849}, {3.0625, 0.99563456710930963835715538507891736}, {3.1250, 0.99614653067334504917102591131792951}, {3.1875, 0.99659855517712942451966113109487039}, {3.2500, 0.99699763548652601693227592643957226}, {3.3125, 0.99734995516557367804571991063376923}, {3.3750, 0.99766097946988897037219469409451602}, {3.4375, 0.99793553792649036103161966894686844}, {3.5000, 0.99817789761119870928427335245061171}, {3.5625, 0.99839182812874152902001617480606320}, {3.6250, 0.99858065920179882368897879066418294}, {3.6875, 0.99874733168378115962760304582965538}, {3.7500, 0.99889444272615280096784208280487888}, {3.8125, 0.99902428575443546808677966295308778}, {3.8750, 0.99913888583735077016137617231569011}, {3.9375, 0.99924003097049627100651907919688313}, {4.0000, 0.99932929973906704379224334434172499}, {4.0625, 0.99940808577297384603818654530731215}, {4.1250, 0.99947761936180856115470576756499454}, {4.1875, 0.99953898655601372055527046497863955}, {4.2500, 0.99959314604388958696521068958989891}, {4.3125, 0.99964094406130644525586201091350343}, {4.3750, 0.99968312756179494813069349082306235}, {4.4375, 0.99972035584870534179601447812936151}, {4.5000, 0.99975321084802753654050617379050162}, {4.5625, 0.99978220617994689112771768489030236}, {4.6250, 0.99980779516900105210240981251048167}, {4.6875, 0.99983037791655283849546303868853396}, {4.7500, 0.99985030754497877753787358852000255}, {4.8125, 0.99986789571029070417475400133989992}, {4.8750, 0.99988341746867772271011794614780441}, {4.9375, 0.99989711557251558205051185882773206}, {5.0000, 0.99990920426259513121099044753447306}, {5.0625, 0.99991987261554158551063867262784721}, {5.1250, 0.99992928749851651137225712249720606}, {5.1875, 0.99993759617721206697530526661105307}, {5.2500, 0.99994492861777083305830639416802036}, {5.3125, 0.99995139951851344080105352145538345}, {5.3750, 0.99995711010315817210152906092289064}, {5.4375, 0.99996214970350792531554669737676253}, {5.5000, 0.99996659715630380963848952941756868}, {5.5625, 0.99997052203605101013786592945475432}, {5.6250, 0.99997398574306704793434088941484766}, {5.6875, 0.99997704246374583929961850444364696}, {5.7500, 0.99997974001803825215761760428815437}, {5.8125, 0.99998212060739040166557477723121777}, {5.8750, 0.99998422147482750993344503195672517}, {5.9375, 0.99998607548749972326220227464612338}, {6.0000, 0.99998771165079557056434885235523206}, {6.0625, 0.99998915556205996764518917496149338}, {6.1250, 0.99999042981101021976277974520745310}, {6.1875, 0.99999155433311068015449574811497719}, {6.2500, 0.99999254672143162687722782398104276}, {6.3125, 0.99999342250186907900400800240980139}, {6.3750, 0.99999419537602957780612639767025158}, {6.4375, 0.99999487743557848265406225515388994}, {6.5000, 0.99999547935140419285107893831698753}, {6.5625, 0.99999601054055694588617385671796346}, {6.6250, 0.99999647931357331502887600387959900}, {6.6875, 0.99999689300449080997594368612277442}, {6.7500, 0.99999725808558628431084200832778748}, {6.8125, 0.99999758026863294516387464046135924}, {6.8750, 0.99999786459425991170635407313276785}, {6.9375, 0.99999811551081218572759991597586905}, {7.0000, 0.99999833694394467173571641595066708}, {7.0625, 0.99999853235803894918375164252059190}, {7.1250, 0.99999870481040359014665019356422927}, {7.1875, 0.99999885699910593255108365463415411}, {7.2500, 0.99999899130518359709674536482047025}, {7.3125, 0.99999910982989611769943303422227663}, {7.3750, 0.99999921442759946591163427422888252}, {7.4375, 0.99999930673475777603853435094943258}, {7.5000, 0.99999938819554614875054970643513124}, {7.5625, 0.99999946008444508183970109263856958}, {7.6250, 0.99999952352618001331402589096040117}, {7.6875, 0.99999957951331792817413683491979752}, {7.7500, 0.99999962892179632633374697389145081}, {7.8125, 0.99999967252462750190604116210421169}, {7.8750, 0.99999971100399253750324718031574484}, {7.9375, 0.99999974496191422474977283863588658}, {8.0000, 0.99999977492967588981001883295636840}, {8.0625, 0.99999980137613348259726597081723424}, {8.1250, 0.99999982471505097353529823063673263}, {8.1875, 0.99999984531157382142423402736529911}, {8.2500, 0.99999986348794179107425910499030547}, {8.3125, 0.99999987952853049895833839645847571}, {8.3750, 0.99999989368430056302584289932834041}, {8.4375, 0.99999990617672396471542088609051728}, {8.5000, 0.99999991720124905211338798152800748}, {8.5625, 0.99999992693035839516545287745322387}, {8.6250, 0.99999993551626733394129009365703767}, {8.6875, 0.99999994309330543951799157347876934}, {8.7500, 0.99999994978001814614368429416607424}, {8.8125, 0.99999995568102143535399207289008504}, {8.8750, 0.99999996088863858914831986187674522}, {8.9375, 0.99999996548434461974481685677429908}, {9.0000, 0.99999996954004097447930211118358244}, {9.0625, 0.99999997311918045901919121395899372}, {9.1250, 0.99999997627775997868467948564005257}, {9.1875, 0.99999997906519662964368381583648379}, {9.2500, 0.99999998152510084671976114264303159}, {9.3125, 0.99999998369595870397054673668361266}, {9.3750, 0.99999998561173404286033236040150950}, {9.4375, 0.99999998730239984852716512979473289}, {9.5000, 0.99999998879440718770812040917618843}, {9.5625, 0.99999999011109904501789298212541698}, {9.6250, 0.99999999127307553219220251303121960}, {9.6875, 0.99999999229851618412119275358396363}, {9.7500, 0.99999999320346438410630581726217930}, {9.8125, 0.99999999400207836827291739324060736}, {9.8750, 0.99999999470685273619047001387577653}, {9.9375, 0.99999999532881393331131526966058758}, {10.0000, 0.99999999587769276361959283713827574}, }; for(int i = 0; i < testCases.length; i++) { double [] testCase = testCases[i]; failures += testTanhCaseWithUlpDiff(testCase[0], testCase[1], 3.0); } double [][] specialTestCases = { {0.0, 0.0}, {NaNd, NaNd}, {Double.longBitsToDouble(0x7FF0000000000001L), NaNd}, {Double.longBitsToDouble(0xFFF0000000000001L), NaNd}, {Double.longBitsToDouble(0x7FF8555555555555L), NaNd}, {Double.longBitsToDouble(0xFFF8555555555555L), NaNd}, {Double.longBitsToDouble(0x7FFFFFFFFFFFFFFFL), NaNd}, {Double.longBitsToDouble(0xFFFFFFFFFFFFFFFFL), NaNd}, {Double.longBitsToDouble(0x7FFDeadBeef00000L), NaNd}, {Double.longBitsToDouble(0xFFFDeadBeef00000L), NaNd}, {Double.longBitsToDouble(0x7FFCafeBabe00000L), NaNd}, {Double.longBitsToDouble(0xFFFCafeBabe00000L), NaNd}, {Double.POSITIVE_INFINITY, 1.0} }; for(int i = 0; i < specialTestCases.length; i++) { failures += testTanhCaseWithUlpDiff(specialTestCases[i][0], specialTestCases[i][1], 0.0); } // For powers of 2 less than 2^(-27), the second and // subsequent terms of the Taylor series expansion will get // rounded away since |n-n^3| > 53, the binary precision of a // double significand. for(int i = DoubleConsts.MIN_SUB_EXPONENT; i < -27; i++) { double d = Math.scalb(2.0, i); // Result and expected are the same. failures += testTanhCaseWithUlpDiff(d, d, 2.5); } // For values of x larger than 22, tanh(x) is 1.0 in double // floating-point arithmetic. for(int i = 22; i < 32; i++) { failures += testTanhCaseWithUlpDiff(i, 1.0, 2.5); } for(int i = 5; i <= DoubleConsts.MAX_EXPONENT; i++) { double d = Math.scalb(2.0, i); failures += testTanhCaseWithUlpDiff(d, 1.0, 2.5); } return failures; } public static int testTanhCaseWithTolerance(double input, double expected, double tolerance) { int failures = 0; failures += Tests.testTolerance("Math.tanh(double", input, Math.tanh(input), expected, tolerance); failures += Tests.testTolerance("Math.tanh(double", -input, Math.tanh(-input), -expected, tolerance); failures += Tests.testTolerance("StrictMath.tanh(double", input, StrictMath.tanh(input), expected, tolerance); failures += Tests.testTolerance("StrictMath.tanh(double", -input, StrictMath.tanh(-input), -expected, tolerance); return failures; } public static int testTanhCaseWithUlpDiff(double input, double expected, double ulps) { int failures = 0; failures += Tests.testUlpDiffWithAbsBound("Math.tanh(double)", input, Math.tanh(input), expected, ulps, 1.0); failures += Tests.testUlpDiffWithAbsBound("Math.tanh(double)", -input, Math.tanh(-input), -expected, ulps, 1.0); failures += Tests.testUlpDiffWithAbsBound("StrictMath.tanh(double)", input, StrictMath.tanh(input), expected, ulps, 1.0); failures += Tests.testUlpDiffWithAbsBound("StrictMath.tanh(double)", -input, StrictMath.tanh(-input), -expected, ulps, 1.0); return failures; } public static void main(String argv[]) { int failures = 0; failures += testSinh(); failures += testCosh(); failures += testTanh(); if (failures > 0) { System.err.println("Testing the hyperbolic functions incurred " + failures + " failures."); throw new RuntimeException(); } } }