/* * Copyright (c) 1998, 2020, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * @test * @run main BigIntegerParallelMultiplyTest * @summary tests parallelMultiply() method in BigInteger * @author Heinz Kabutz heinz@javaspecialists.eu */ import java.math.BigInteger; import java.util.function.BinaryOperator; /** * This is a simple test class created to ensure that the results * of multiply() are the same as multiplyParallel(). We calculate * the Fibonacci numbers using Dijkstra's sum of squares to get * very large numbers (hundreds of thousands of bits). * * @author Heinz Kabutz, heinz@javaspecialists.eu */ public class BigIntegerParallelMultiplyTest { public static BigInteger fibonacci(int n, BinaryOperator multiplyOperator) { if (n == 0) return BigInteger.ZERO; if (n == 1) return BigInteger.ONE; int half = (n + 1) / 2; BigInteger f0 = fibonacci(half - 1, multiplyOperator); BigInteger f1 = fibonacci(half, multiplyOperator); if (n % 2 == 1) { BigInteger b0 = multiplyOperator.apply(f0, f0); BigInteger b1 = multiplyOperator.apply(f1, f1); return b0.add(b1); } else { BigInteger b0 = f0.shiftLeft(1).add(f1); return multiplyOperator.apply(b0, f1); } } public static void main(String[] args) throws Exception { compare(1000, 324); compare(10_000, 3473); compare(100_000, 34883); compare(1_000_000, 347084); } private static void compare(int n, int expectedBitCount) { BigInteger multiplyResult = fibonacci(n, BigInteger::multiply); BigInteger parallelMultiplyResult = fibonacci(n, BigInteger::parallelMultiply); checkBitCount(n, expectedBitCount, multiplyResult); checkBitCount(n, expectedBitCount, parallelMultiplyResult); if (!multiplyResult.equals(parallelMultiplyResult)) throw new AssertionError("multiply() and parallelMultiply() give different results"); } private static void checkBitCount(int n, int expectedBitCount, BigInteger number) { if (number.bitCount() != expectedBitCount) throw new AssertionError( "bitCount of fibonacci(" + n + ") was expected to be " + expectedBitCount + " but was " + number.bitCount()); } }