/* * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "incls/_precompiled.incl" #include "incls/_sharedRuntime.cpp.incl" #include HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t); HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int, char*, int, char*, int, char*, int); HS_DTRACE_PROBE_DECL7(hotspot, method__return, int, char*, int, char*, int, char*, int); // Implementation of SharedRuntime #ifndef PRODUCT // For statistics int SharedRuntime::_ic_miss_ctr = 0; int SharedRuntime::_wrong_method_ctr = 0; int SharedRuntime::_resolve_static_ctr = 0; int SharedRuntime::_resolve_virtual_ctr = 0; int SharedRuntime::_resolve_opt_virtual_ctr = 0; int SharedRuntime::_implicit_null_throws = 0; int SharedRuntime::_implicit_div0_throws = 0; int SharedRuntime::_throw_null_ctr = 0; int SharedRuntime::_nof_normal_calls = 0; int SharedRuntime::_nof_optimized_calls = 0; int SharedRuntime::_nof_inlined_calls = 0; int SharedRuntime::_nof_megamorphic_calls = 0; int SharedRuntime::_nof_static_calls = 0; int SharedRuntime::_nof_inlined_static_calls = 0; int SharedRuntime::_nof_interface_calls = 0; int SharedRuntime::_nof_optimized_interface_calls = 0; int SharedRuntime::_nof_inlined_interface_calls = 0; int SharedRuntime::_nof_megamorphic_interface_calls = 0; int SharedRuntime::_nof_removable_exceptions = 0; int SharedRuntime::_new_instance_ctr=0; int SharedRuntime::_new_array_ctr=0; int SharedRuntime::_multi1_ctr=0; int SharedRuntime::_multi2_ctr=0; int SharedRuntime::_multi3_ctr=0; int SharedRuntime::_multi4_ctr=0; int SharedRuntime::_multi5_ctr=0; int SharedRuntime::_mon_enter_stub_ctr=0; int SharedRuntime::_mon_exit_stub_ctr=0; int SharedRuntime::_mon_enter_ctr=0; int SharedRuntime::_mon_exit_ctr=0; int SharedRuntime::_partial_subtype_ctr=0; int SharedRuntime::_jbyte_array_copy_ctr=0; int SharedRuntime::_jshort_array_copy_ctr=0; int SharedRuntime::_jint_array_copy_ctr=0; int SharedRuntime::_jlong_array_copy_ctr=0; int SharedRuntime::_oop_array_copy_ctr=0; int SharedRuntime::_checkcast_array_copy_ctr=0; int SharedRuntime::_unsafe_array_copy_ctr=0; int SharedRuntime::_generic_array_copy_ctr=0; int SharedRuntime::_slow_array_copy_ctr=0; int SharedRuntime::_find_handler_ctr=0; int SharedRuntime::_rethrow_ctr=0; int SharedRuntime::_ICmiss_index = 0; int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count]; address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count]; void SharedRuntime::trace_ic_miss(address at) { for (int i = 0; i < _ICmiss_index; i++) { if (_ICmiss_at[i] == at) { _ICmiss_count[i]++; return; } } int index = _ICmiss_index++; if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1; _ICmiss_at[index] = at; _ICmiss_count[index] = 1; } void SharedRuntime::print_ic_miss_histogram() { if (ICMissHistogram) { tty->print_cr ("IC Miss Histogram:"); int tot_misses = 0; for (int i = 0; i < _ICmiss_index; i++) { tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", _ICmiss_at[i], _ICmiss_count[i]); tot_misses += _ICmiss_count[i]; } tty->print_cr ("Total IC misses: %7d", tot_misses); } } #endif // PRODUCT #ifndef SERIALGC // G1 write-barrier pre: executed before a pointer store. JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread)) if (orig == NULL) { assert(false, "should be optimized out"); return; } assert(orig->is_oop(true /* ignore mark word */), "Error"); // store the original value that was in the field reference thread->satb_mark_queue().enqueue(orig); JRT_END // G1 write-barrier post: executed after a pointer store. JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread)) thread->dirty_card_queue().enqueue(card_addr); JRT_END #endif // !SERIALGC JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x)) return x * y; JRT_END JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x)) if (x == min_jlong && y == CONST64(-1)) { return x; } else { return x / y; } JRT_END JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x)) if (x == min_jlong && y == CONST64(-1)) { return 0; } else { return x % y; } JRT_END const juint float_sign_mask = 0x7FFFFFFF; const juint float_infinity = 0x7F800000; const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF); const julong double_infinity = CONST64(0x7FF0000000000000); JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y)) #ifdef _WIN64 // 64-bit Windows on amd64 returns the wrong values for // infinity operands. union { jfloat f; juint i; } xbits, ybits; xbits.f = x; ybits.f = y; // x Mod Infinity == x unless x is infinity if ( ((xbits.i & float_sign_mask) != float_infinity) && ((ybits.i & float_sign_mask) == float_infinity) ) { return x; } #endif return ((jfloat)fmod((double)x,(double)y)); JRT_END JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y)) #ifdef _WIN64 union { jdouble d; julong l; } xbits, ybits; xbits.d = x; ybits.d = y; // x Mod Infinity == x unless x is infinity if ( ((xbits.l & double_sign_mask) != double_infinity) && ((ybits.l & double_sign_mask) == double_infinity) ) { return x; } #endif return ((jdouble)fmod((double)x,(double)y)); JRT_END #ifdef __SOFTFP__ JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y)) return x + y; JRT_END JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y)) return x - y; JRT_END JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y)) return x * y; JRT_END JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y)) return x / y; JRT_END JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y)) return x + y; JRT_END JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y)) return x - y; JRT_END JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y)) return x * y; JRT_END JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y)) return x / y; JRT_END JRT_LEAF(jfloat, SharedRuntime::i2f(jint x)) return (jfloat)x; JRT_END JRT_LEAF(jdouble, SharedRuntime::i2d(jint x)) return (jdouble)x; JRT_END JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x)) return (jdouble)x; JRT_END JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y)) return x>y ? 1 : (x==y ? 0 : -1); /* xy or is_nan */ JRT_END JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y)) return x>y ? 1 : (x==y ? 0 : -1); /* xy or is_nan */ JRT_END // Functions to return the opposite of the aeabi functions for nan. JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y)) return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); JRT_END JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y)) return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); JRT_END JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y)) return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); JRT_END JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y)) return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); JRT_END JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y)) return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); JRT_END JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y)) return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); JRT_END JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y)) return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); JRT_END JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y)) return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); JRT_END // Intrinsics make gcc generate code for these. float SharedRuntime::fneg(float f) { return -f; } double SharedRuntime::dneg(double f) { return -f; } #endif // __SOFTFP__ #if defined(__SOFTFP__) || defined(E500V2) // Intrinsics make gcc generate code for these. double SharedRuntime::dabs(double f) { return (f <= (double)0.0) ? (double)0.0 - f : f; } double SharedRuntime::dsqrt(double f) { return sqrt(f); } #endif JRT_LEAF(jint, SharedRuntime::f2i(jfloat x)) if (g_isnan(x)) return 0; if (x >= (jfloat) max_jint) return max_jint; if (x <= (jfloat) min_jint) return min_jint; return (jint) x; JRT_END JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x)) if (g_isnan(x)) return 0; if (x >= (jfloat) max_jlong) return max_jlong; if (x <= (jfloat) min_jlong) return min_jlong; return (jlong) x; JRT_END JRT_LEAF(jint, SharedRuntime::d2i(jdouble x)) if (g_isnan(x)) return 0; if (x >= (jdouble) max_jint) return max_jint; if (x <= (jdouble) min_jint) return min_jint; return (jint) x; JRT_END JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x)) if (g_isnan(x)) return 0; if (x >= (jdouble) max_jlong) return max_jlong; if (x <= (jdouble) min_jlong) return min_jlong; return (jlong) x; JRT_END JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x)) return (jfloat)x; JRT_END JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x)) return (jfloat)x; JRT_END JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x)) return (jdouble)x; JRT_END // Exception handling accross interpreter/compiler boundaries // // exception_handler_for_return_address(...) returns the continuation address. // The continuation address is the entry point of the exception handler of the // previous frame depending on the return address. address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) { assert(frame::verify_return_pc(return_address), "must be a return pc"); // Reset MethodHandle flag. thread->set_is_method_handle_return(false); // the fastest case first CodeBlob* blob = CodeCache::find_blob(return_address); if (blob != NULL && blob->is_nmethod()) { nmethod* code = (nmethod*)blob; assert(code != NULL, "nmethod must be present"); // Check if the return address is a MethodHandle call site. thread->set_is_method_handle_return(code->is_method_handle_return(return_address)); // native nmethods don't have exception handlers assert(!code->is_native_method(), "no exception handler"); assert(code->header_begin() != code->exception_begin(), "no exception handler"); if (code->is_deopt_pc(return_address)) { return SharedRuntime::deopt_blob()->unpack_with_exception(); } else { return code->exception_begin(); } } // Entry code if (StubRoutines::returns_to_call_stub(return_address)) { return StubRoutines::catch_exception_entry(); } // Interpreted code if (Interpreter::contains(return_address)) { return Interpreter::rethrow_exception_entry(); } // Compiled code if (CodeCache::contains(return_address)) { CodeBlob* blob = CodeCache::find_blob(return_address); if (blob->is_nmethod()) { nmethod* code = (nmethod*)blob; assert(code != NULL, "nmethod must be present"); // Check if the return address is a MethodHandle call site. thread->set_is_method_handle_return(code->is_method_handle_return(return_address)); assert(code->header_begin() != code->exception_begin(), "no exception handler"); return code->exception_begin(); } if (blob->is_runtime_stub()) { ShouldNotReachHere(); // callers are responsible for skipping runtime stub frames } } guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!"); #ifndef PRODUCT { ResourceMark rm; tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address); tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here"); tty->print_cr("b) other problem"); } #endif // PRODUCT ShouldNotReachHere(); return NULL; } JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address)) return raw_exception_handler_for_return_address(thread, return_address); JRT_END address SharedRuntime::get_poll_stub(address pc) { address stub; // Look up the code blob CodeBlob *cb = CodeCache::find_blob(pc); // Should be an nmethod assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" ); // Look up the relocation information assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc), "safepoint polling: type must be poll" ); assert( ((NativeInstruction*)pc)->is_safepoint_poll(), "Only polling locations are used for safepoint"); bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc); if (at_poll_return) { assert(SharedRuntime::polling_page_return_handler_blob() != NULL, "polling page return stub not created yet"); stub = SharedRuntime::polling_page_return_handler_blob()->entry_point(); } else { assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL, "polling page safepoint stub not created yet"); stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point(); } #ifndef PRODUCT if( TraceSafepoint ) { char buf[256]; jio_snprintf(buf, sizeof(buf), "... found polling page %s exception at pc = " INTPTR_FORMAT ", stub =" INTPTR_FORMAT, at_poll_return ? "return" : "loop", (intptr_t)pc, (intptr_t)stub); tty->print_raw_cr(buf); } #endif // PRODUCT return stub; } oop SharedRuntime::retrieve_receiver( symbolHandle sig, frame caller ) { assert(caller.is_interpreted_frame(), ""); int args_size = ArgumentSizeComputer(sig).size() + 1; assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack"); oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1); assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop"); return result; } void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) { if (JvmtiExport::can_post_on_exceptions()) { vframeStream vfst(thread, true); methodHandle method = methodHandle(thread, vfst.method()); address bcp = method()->bcp_from(vfst.bci()); JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception()); } Exceptions::_throw(thread, __FILE__, __LINE__, h_exception); } void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, symbolOop name, const char *message) { Handle h_exception = Exceptions::new_exception(thread, name, message); throw_and_post_jvmti_exception(thread, h_exception); } // The interpreter code to call this tracing function is only // called/generated when TraceRedefineClasses has the right bits // set. Since obsolete methods are never compiled, we don't have // to modify the compilers to generate calls to this function. // JRT_LEAF(int, SharedRuntime::rc_trace_method_entry( JavaThread* thread, methodOopDesc* method)) assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call"); if (method->is_obsolete()) { // We are calling an obsolete method, but this is not necessarily // an error. Our method could have been redefined just after we // fetched the methodOop from the constant pool. // RC_TRACE macro has an embedded ResourceMark RC_TRACE_WITH_THREAD(0x00001000, thread, ("calling obsolete method '%s'", method->name_and_sig_as_C_string())); if (RC_TRACE_ENABLED(0x00002000)) { // this option is provided to debug calls to obsolete methods guarantee(false, "faulting at call to an obsolete method."); } } return 0; JRT_END // ret_pc points into caller; we are returning caller's exception handler // for given exception address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception, bool force_unwind, bool top_frame_only) { assert(nm != NULL, "must exist"); ResourceMark rm; ScopeDesc* sd = nm->scope_desc_at(ret_pc); // determine handler bci, if any EXCEPTION_MARK; int handler_bci = -1; int scope_depth = 0; if (!force_unwind) { int bci = sd->bci(); do { bool skip_scope_increment = false; // exception handler lookup KlassHandle ek (THREAD, exception->klass()); handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD); if (HAS_PENDING_EXCEPTION) { // We threw an exception while trying to find the exception handler. // Transfer the new exception to the exception handle which will // be set into thread local storage, and do another lookup for an // exception handler for this exception, this time starting at the // BCI of the exception handler which caused the exception to be // thrown (bugs 4307310 and 4546590). Set "exception" reference // argument to ensure that the correct exception is thrown (4870175). exception = Handle(THREAD, PENDING_EXCEPTION); CLEAR_PENDING_EXCEPTION; if (handler_bci >= 0) { bci = handler_bci; handler_bci = -1; skip_scope_increment = true; } } if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) { sd = sd->sender(); if (sd != NULL) { bci = sd->bci(); } ++scope_depth; } } while (!top_frame_only && handler_bci < 0 && sd != NULL); } // found handling method => lookup exception handler int catch_pco = ret_pc - nm->code_begin(); ExceptionHandlerTable table(nm); HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth); if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) { // Allow abbreviated catch tables. The idea is to allow a method // to materialize its exceptions without committing to the exact // routing of exceptions. In particular this is needed for adding // a synthethic handler to unlock monitors when inlining // synchonized methods since the unlock path isn't represented in // the bytecodes. t = table.entry_for(catch_pco, -1, 0); } #ifdef COMPILER1 if (t == NULL && nm->is_compiled_by_c1()) { assert(nm->unwind_handler_begin() != NULL, ""); return nm->unwind_handler_begin(); } #endif if (t == NULL) { tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci); tty->print_cr(" Exception:"); exception->print(); tty->cr(); tty->print_cr(" Compiled exception table :"); table.print(); nm->print_code(); guarantee(false, "missing exception handler"); return NULL; } return nm->code_begin() + t->pco(); } JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread)) // These errors occur only at call sites throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError()); JRT_END JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread)) // These errors occur only at call sites throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub"); JRT_END JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread)) throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); JRT_END JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread)) throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException()); JRT_END JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread)) // This entry point is effectively only used for NullPointerExceptions which occur at inline // cache sites (when the callee activation is not yet set up) so we are at a call site throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException()); JRT_END JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread)) // We avoid using the normal exception construction in this case because // it performs an upcall to Java, and we're already out of stack space. klassOop k = SystemDictionary::StackOverflowError_klass(); oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK); Handle exception (thread, exception_oop); if (StackTraceInThrowable) { java_lang_Throwable::fill_in_stack_trace(exception); } throw_and_post_jvmti_exception(thread, exception); JRT_END address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread, address pc, SharedRuntime::ImplicitExceptionKind exception_kind) { address target_pc = NULL; if (Interpreter::contains(pc)) { #ifdef CC_INTERP // C++ interpreter doesn't throw implicit exceptions ShouldNotReachHere(); #else switch (exception_kind) { case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry(); case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry(); case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry(); default: ShouldNotReachHere(); } #endif // !CC_INTERP } else { switch (exception_kind) { case STACK_OVERFLOW: { // Stack overflow only occurs upon frame setup; the callee is // going to be unwound. Dispatch to a shared runtime stub // which will cause the StackOverflowError to be fabricated // and processed. // For stack overflow in deoptimization blob, cleanup thread. if (thread->deopt_mark() != NULL) { Deoptimization::cleanup_deopt_info(thread, NULL); } return StubRoutines::throw_StackOverflowError_entry(); } case IMPLICIT_NULL: { if (VtableStubs::contains(pc)) { // We haven't yet entered the callee frame. Fabricate an // exception and begin dispatching it in the caller. Since // the caller was at a call site, it's safe to destroy all // caller-saved registers, as these entry points do. VtableStub* vt_stub = VtableStubs::stub_containing(pc); // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error. if (vt_stub == NULL) return NULL; if (vt_stub->is_abstract_method_error(pc)) { assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs"); return StubRoutines::throw_AbstractMethodError_entry(); } else { return StubRoutines::throw_NullPointerException_at_call_entry(); } } else { CodeBlob* cb = CodeCache::find_blob(pc); // If code blob is NULL, then return NULL to signal handler to report the SEGV error. if (cb == NULL) return NULL; // Exception happened in CodeCache. Must be either: // 1. Inline-cache check in C2I handler blob, // 2. Inline-cache check in nmethod, or // 3. Implict null exception in nmethod if (!cb->is_nmethod()) { guarantee(cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(), "exception happened outside interpreter, nmethods and vtable stubs (1)"); // There is no handler here, so we will simply unwind. return StubRoutines::throw_NullPointerException_at_call_entry(); } // Otherwise, it's an nmethod. Consult its exception handlers. nmethod* nm = (nmethod*)cb; if (nm->inlinecache_check_contains(pc)) { // exception happened inside inline-cache check code // => the nmethod is not yet active (i.e., the frame // is not set up yet) => use return address pushed by // caller => don't push another return address return StubRoutines::throw_NullPointerException_at_call_entry(); } #ifndef PRODUCT _implicit_null_throws++; #endif target_pc = nm->continuation_for_implicit_exception(pc); // If there's an unexpected fault, target_pc might be NULL, // in which case we want to fall through into the normal // error handling code. } break; // fall through } case IMPLICIT_DIVIDE_BY_ZERO: { nmethod* nm = CodeCache::find_nmethod(pc); guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions"); #ifndef PRODUCT _implicit_div0_throws++; #endif target_pc = nm->continuation_for_implicit_exception(pc); // If there's an unexpected fault, target_pc might be NULL, // in which case we want to fall through into the normal // error handling code. break; // fall through } default: ShouldNotReachHere(); } assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind"); // for AbortVMOnException flag NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException")); if (exception_kind == IMPLICIT_NULL) { Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc); } else { Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc); } return target_pc; } ShouldNotReachHere(); return NULL; } JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...)) { THROW(vmSymbols::java_lang_UnsatisfiedLinkError()); } JNI_END address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() { return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error); } #ifndef PRODUCT JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2)) const frame f = thread->last_frame(); assert(f.is_interpreted_frame(), "must be an interpreted frame"); #ifndef PRODUCT methodHandle mh(THREAD, f.interpreter_frame_method()); BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2); #endif // !PRODUCT return preserve_this_value; JRT_END #endif // !PRODUCT JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts)) os::yield_all(attempts); JRT_END JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj)) assert(obj->is_oop(), "must be a valid oop"); assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise"); instanceKlass::register_finalizer(instanceOop(obj), CHECK); JRT_END jlong SharedRuntime::get_java_tid(Thread* thread) { if (thread != NULL) { if (thread->is_Java_thread()) { oop obj = ((JavaThread*)thread)->threadObj(); return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj); } } return 0; } /** * This function ought to be a void function, but cannot be because * it gets turned into a tail-call on sparc, which runs into dtrace bug * 6254741. Once that is fixed we can remove the dummy return value. */ int SharedRuntime::dtrace_object_alloc(oopDesc* o) { return dtrace_object_alloc_base(Thread::current(), o); } int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) { assert(DTraceAllocProbes, "wrong call"); Klass* klass = o->blueprint(); int size = o->size(); symbolOop name = klass->name(); HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread), name->bytes(), name->utf8_length(), size * HeapWordSize); return 0; } JRT_LEAF(int, SharedRuntime::dtrace_method_entry( JavaThread* thread, methodOopDesc* method)) assert(DTraceMethodProbes, "wrong call"); symbolOop kname = method->klass_name(); symbolOop name = method->name(); symbolOop sig = method->signature(); HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread), kname->bytes(), kname->utf8_length(), name->bytes(), name->utf8_length(), sig->bytes(), sig->utf8_length()); return 0; JRT_END JRT_LEAF(int, SharedRuntime::dtrace_method_exit( JavaThread* thread, methodOopDesc* method)) assert(DTraceMethodProbes, "wrong call"); symbolOop kname = method->klass_name(); symbolOop name = method->name(); symbolOop sig = method->signature(); HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread), kname->bytes(), kname->utf8_length(), name->bytes(), name->utf8_length(), sig->bytes(), sig->utf8_length()); return 0; JRT_END // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode) // for a call current in progress, i.e., arguments has been pushed on stack // put callee has not been invoked yet. Used by: resolve virtual/static, // vtable updates, etc. Caller frame must be compiled. Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) { ResourceMark rm(THREAD); // last java frame on stack (which includes native call frames) vframeStream vfst(thread, true); // Do not skip and javaCalls return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle())); } // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode // for a call current in progress, i.e., arguments has been pushed on stack // but callee has not been invoked yet. Caller frame must be compiled. Handle SharedRuntime::find_callee_info_helper(JavaThread* thread, vframeStream& vfst, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) { Handle receiver; Handle nullHandle; //create a handy null handle for exception returns assert(!vfst.at_end(), "Java frame must exist"); // Find caller and bci from vframe methodHandle caller (THREAD, vfst.method()); int bci = vfst.bci(); // Find bytecode Bytecode_invoke* bytecode = Bytecode_invoke_at(caller, bci); bc = bytecode->java_code(); int bytecode_index = bytecode->index(); // Find receiver for non-static call if (bc != Bytecodes::_invokestatic) { // This register map must be update since we need to find the receiver for // compiled frames. The receiver might be in a register. RegisterMap reg_map2(thread); frame stubFrame = thread->last_frame(); // Caller-frame is a compiled frame frame callerFrame = stubFrame.sender(®_map2); methodHandle callee = bytecode->static_target(CHECK_(nullHandle)); if (callee.is_null()) { THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle); } // Retrieve from a compiled argument list receiver = Handle(THREAD, callerFrame.retrieve_receiver(®_map2)); if (receiver.is_null()) { THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle); } } // Resolve method. This is parameterized by bytecode. constantPoolHandle constants (THREAD, caller->constants()); assert (receiver.is_null() || receiver->is_oop(), "wrong receiver"); LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle)); #ifdef ASSERT // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) { assert(receiver.not_null(), "should have thrown exception"); KlassHandle receiver_klass (THREAD, receiver->klass()); klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle)); // klass is already loaded KlassHandle static_receiver_klass (THREAD, rk); assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass"); if (receiver_klass->oop_is_instance()) { if (instanceKlass::cast(receiver_klass())->is_not_initialized()) { tty->print_cr("ERROR: Klass not yet initialized!!"); receiver_klass.print(); } assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized"); } } #endif return receiver; } methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) { ResourceMark rm(THREAD); // We need first to check if any Java activations (compiled, interpreted) // exist on the stack since last JavaCall. If not, we need // to get the target method from the JavaCall wrapper. vframeStream vfst(thread, true); // Do not skip any javaCalls methodHandle callee_method; if (vfst.at_end()) { // No Java frames were found on stack since we did the JavaCall. // Hence the stack can only contain an entry_frame. We need to // find the target method from the stub frame. RegisterMap reg_map(thread, false); frame fr = thread->last_frame(); assert(fr.is_runtime_frame(), "must be a runtimeStub"); fr = fr.sender(®_map); assert(fr.is_entry_frame(), "must be"); // fr is now pointing to the entry frame. callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method()); assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??"); } else { Bytecodes::Code bc; CallInfo callinfo; find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle())); callee_method = callinfo.selected_method(); } assert(callee_method()->is_method(), "must be"); return callee_method; } // Resolves a call. methodHandle SharedRuntime::resolve_helper(JavaThread *thread, bool is_virtual, bool is_optimized, TRAPS) { methodHandle callee_method; callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD); if (JvmtiExport::can_hotswap_or_post_breakpoint()) { int retry_count = 0; while (!HAS_PENDING_EXCEPTION && callee_method->is_old() && callee_method->method_holder() != SystemDictionary::Object_klass()) { // If has a pending exception then there is no need to re-try to // resolve this method. // If the method has been redefined, we need to try again. // Hack: we have no way to update the vtables of arrays, so don't // require that java.lang.Object has been updated. // It is very unlikely that method is redefined more than 100 times // in the middle of resolve. If it is looping here more than 100 times // means then there could be a bug here. guarantee((retry_count++ < 100), "Could not resolve to latest version of redefined method"); // method is redefined in the middle of resolve so re-try. callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD); } } return callee_method; } // Resolves a call. The compilers generate code for calls that go here // and are patched with the real destination of the call. methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread, bool is_virtual, bool is_optimized, TRAPS) { ResourceMark rm(thread); RegisterMap cbl_map(thread, false); frame caller_frame = thread->last_frame().sender(&cbl_map); CodeBlob* caller_cb = caller_frame.cb(); guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod"); nmethod* caller_nm = caller_cb->as_nmethod_or_null(); // make sure caller is not getting deoptimized // and removed before we are done with it. // CLEANUP - with lazy deopt shouldn't need this lock nmethodLocker caller_lock(caller_nm); // determine call info & receiver // note: a) receiver is NULL for static calls // b) an exception is thrown if receiver is NULL for non-static calls CallInfo call_info; Bytecodes::Code invoke_code = Bytecodes::_illegal; Handle receiver = find_callee_info(thread, invoke_code, call_info, CHECK_(methodHandle())); methodHandle callee_method = call_info.selected_method(); assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) || ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode"); #ifndef PRODUCT // tracing/debugging/statistics int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) : (is_virtual) ? (&_resolve_virtual_ctr) : (&_resolve_static_ctr); Atomic::inc(addr); if (TraceCallFixup) { ResourceMark rm(thread); tty->print("resolving %s%s (%s) call to", (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static", Bytecodes::name(invoke_code)); callee_method->print_short_name(tty); tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code()); } #endif // JSR 292 // If the resolved method is a MethodHandle invoke target the call // site must be a MethodHandle call site. if (callee_method->is_method_handle_invoke()) { assert(caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site"); } // Compute entry points. This might require generation of C2I converter // frames, so we cannot be holding any locks here. Furthermore, the // computation of the entry points is independent of patching the call. We // always return the entry-point, but we only patch the stub if the call has // not been deoptimized. Return values: For a virtual call this is an // (cached_oop, destination address) pair. For a static call/optimized // virtual this is just a destination address. StaticCallInfo static_call_info; CompiledICInfo virtual_call_info; // Make sure the callee nmethod does not get deoptimized and removed before // we are done patching the code. nmethod* callee_nm = callee_method->code(); nmethodLocker nl_callee(callee_nm); #ifdef ASSERT address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below #endif if (is_virtual) { assert(receiver.not_null(), "sanity check"); bool static_bound = call_info.resolved_method()->can_be_statically_bound(); KlassHandle h_klass(THREAD, receiver->klass()); CompiledIC::compute_monomorphic_entry(callee_method, h_klass, is_optimized, static_bound, virtual_call_info, CHECK_(methodHandle())); } else { // static call CompiledStaticCall::compute_entry(callee_method, static_call_info); } // grab lock, check for deoptimization and potentially patch caller { MutexLocker ml_patch(CompiledIC_lock); // Now that we are ready to patch if the methodOop was redefined then // don't update call site and let the caller retry. if (!callee_method->is_old()) { #ifdef ASSERT // We must not try to patch to jump to an already unloaded method. if (dest_entry_point != 0) { assert(CodeCache::find_blob(dest_entry_point) != NULL, "should not unload nmethod while locked"); } #endif if (is_virtual) { CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc()); if (inline_cache->is_clean()) { inline_cache->set_to_monomorphic(virtual_call_info); } } else { CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc()); if (ssc->is_clean()) ssc->set(static_call_info); } } } // unlock CompiledIC_lock return callee_method; } // Inline caches exist only in compiled code JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread)) #ifdef ASSERT RegisterMap reg_map(thread, false); frame stub_frame = thread->last_frame(); assert(stub_frame.is_runtime_frame(), "sanity check"); frame caller_frame = stub_frame.sender(®_map); assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame"); #endif /* ASSERT */ methodHandle callee_method; JRT_BLOCK callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL); // Return methodOop through TLS thread->set_vm_result(callee_method()); JRT_BLOCK_END // return compiled code entry point after potential safepoints assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); return callee_method->verified_code_entry(); JRT_END // Handle call site that has been made non-entrant JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread)) // 6243940 We might end up in here if the callee is deoptimized // as we race to call it. We don't want to take a safepoint if // the caller was interpreted because the caller frame will look // interpreted to the stack walkers and arguments are now // "compiled" so it is much better to make this transition // invisible to the stack walking code. The i2c path will // place the callee method in the callee_target. It is stashed // there because if we try and find the callee by normal means a // safepoint is possible and have trouble gc'ing the compiled args. RegisterMap reg_map(thread, false); frame stub_frame = thread->last_frame(); assert(stub_frame.is_runtime_frame(), "sanity check"); frame caller_frame = stub_frame.sender(®_map); // MethodHandle invokes don't have a CompiledIC and should always // simply redispatch to the callee_target. address sender_pc = caller_frame.pc(); CodeBlob* sender_cb = caller_frame.cb(); nmethod* sender_nm = sender_cb->as_nmethod_or_null(); bool is_mh_invoke_via_adapter = false; // Direct c2c call or via adapter? if (sender_nm != NULL && sender_nm->is_method_handle_return(sender_pc)) { // If the callee_target is set, then we have come here via an i2c // adapter. methodOop callee = thread->callee_target(); if (callee != NULL) { assert(callee->is_method(), "sanity"); is_mh_invoke_via_adapter = true; } } if (caller_frame.is_interpreted_frame() || caller_frame.is_entry_frame() || is_mh_invoke_via_adapter) { methodOop callee = thread->callee_target(); guarantee(callee != NULL && callee->is_method(), "bad handshake"); thread->set_vm_result(callee); thread->set_callee_target(NULL); return callee->get_c2i_entry(); } // Must be compiled to compiled path which is safe to stackwalk methodHandle callee_method; JRT_BLOCK // Force resolving of caller (if we called from compiled frame) callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL); thread->set_vm_result(callee_method()); JRT_BLOCK_END // return compiled code entry point after potential safepoints assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); return callee_method->verified_code_entry(); JRT_END // resolve a static call and patch code JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread )) methodHandle callee_method; JRT_BLOCK callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL); thread->set_vm_result(callee_method()); JRT_BLOCK_END // return compiled code entry point after potential safepoints assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); return callee_method->verified_code_entry(); JRT_END // resolve virtual call and update inline cache to monomorphic JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread )) methodHandle callee_method; JRT_BLOCK callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL); thread->set_vm_result(callee_method()); JRT_BLOCK_END // return compiled code entry point after potential safepoints assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); return callee_method->verified_code_entry(); JRT_END // Resolve a virtual call that can be statically bound (e.g., always // monomorphic, so it has no inline cache). Patch code to resolved target. JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread)) methodHandle callee_method; JRT_BLOCK callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL); thread->set_vm_result(callee_method()); JRT_BLOCK_END // return compiled code entry point after potential safepoints assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); return callee_method->verified_code_entry(); JRT_END methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) { ResourceMark rm(thread); CallInfo call_info; Bytecodes::Code bc; // receiver is NULL for static calls. An exception is thrown for NULL // receivers for non-static calls Handle receiver = find_callee_info(thread, bc, call_info, CHECK_(methodHandle())); // Compiler1 can produce virtual call sites that can actually be statically bound // If we fell thru to below we would think that the site was going megamorphic // when in fact the site can never miss. Worse because we'd think it was megamorphic // we'd try and do a vtable dispatch however methods that can be statically bound // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a // reresolution of the call site (as if we did a handle_wrong_method and not an // plain ic_miss) and the site will be converted to an optimized virtual call site // never to miss again. I don't believe C2 will produce code like this but if it // did this would still be the correct thing to do for it too, hence no ifdef. // if (call_info.resolved_method()->can_be_statically_bound()) { methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle())); if (TraceCallFixup) { RegisterMap reg_map(thread, false); frame caller_frame = thread->last_frame().sender(®_map); ResourceMark rm(thread); tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc)); callee_method->print_short_name(tty); tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc()); tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code()); } return callee_method; } methodHandle callee_method = call_info.selected_method(); bool should_be_mono = false; #ifndef PRODUCT Atomic::inc(&_ic_miss_ctr); // Statistics & Tracing if (TraceCallFixup) { ResourceMark rm(thread); tty->print("IC miss (%s) call to", Bytecodes::name(bc)); callee_method->print_short_name(tty); tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code()); } if (ICMissHistogram) { MutexLocker m(VMStatistic_lock); RegisterMap reg_map(thread, false); frame f = thread->last_frame().real_sender(®_map);// skip runtime stub // produce statistics under the lock trace_ic_miss(f.pc()); } #endif // install an event collector so that when a vtable stub is created the // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The // event can't be posted when the stub is created as locks are held // - instead the event will be deferred until the event collector goes // out of scope. JvmtiDynamicCodeEventCollector event_collector; // Update inline cache to megamorphic. Skip update if caller has been // made non-entrant or we are called from interpreted. { MutexLocker ml_patch (CompiledIC_lock); RegisterMap reg_map(thread, false); frame caller_frame = thread->last_frame().sender(®_map); CodeBlob* cb = caller_frame.cb(); if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) { // Not a non-entrant nmethod, so find inline_cache CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc()); bool should_be_mono = false; if (inline_cache->is_optimized()) { if (TraceCallFixup) { ResourceMark rm(thread); tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc)); callee_method->print_short_name(tty); tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code()); } should_be_mono = true; } else { compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop(); if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) { if (receiver()->klass() == ic_oop->holder_klass()) { // This isn't a real miss. We must have seen that compiled code // is now available and we want the call site converted to a // monomorphic compiled call site. // We can't assert for callee_method->code() != NULL because it // could have been deoptimized in the meantime if (TraceCallFixup) { ResourceMark rm(thread); tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc)); callee_method->print_short_name(tty); tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code()); } should_be_mono = true; } } } if (should_be_mono) { // We have a path that was monomorphic but was going interpreted // and now we have (or had) a compiled entry. We correct the IC // by using a new icBuffer. CompiledICInfo info; KlassHandle receiver_klass(THREAD, receiver()->klass()); inline_cache->compute_monomorphic_entry(callee_method, receiver_klass, inline_cache->is_optimized(), false, info, CHECK_(methodHandle())); inline_cache->set_to_monomorphic(info); } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) { // Change to megamorphic inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle())); } else { // Either clean or megamorphic } } } // Release CompiledIC_lock return callee_method; } // // Resets a call-site in compiled code so it will get resolved again. // This routines handles both virtual call sites, optimized virtual call // sites, and static call sites. Typically used to change a call sites // destination from compiled to interpreted. // methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) { ResourceMark rm(thread); RegisterMap reg_map(thread, false); frame stub_frame = thread->last_frame(); assert(stub_frame.is_runtime_frame(), "must be a runtimeStub"); frame caller = stub_frame.sender(®_map); // Do nothing if the frame isn't a live compiled frame. // nmethod could be deoptimized by the time we get here // so no update to the caller is needed. if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) { address pc = caller.pc(); Events::log("update call-site at pc " INTPTR_FORMAT, pc); // Default call_addr is the location of the "basic" call. // Determine the address of the call we a reresolving. With // Inline Caches we will always find a recognizable call. // With Inline Caches disabled we may or may not find a // recognizable call. We will always find a call for static // calls and for optimized virtual calls. For vanilla virtual // calls it depends on the state of the UseInlineCaches switch. // // With Inline Caches disabled we can get here for a virtual call // for two reasons: // 1 - calling an abstract method. The vtable for abstract methods // will run us thru handle_wrong_method and we will eventually // end up in the interpreter to throw the ame. // 2 - a racing deoptimization. We could be doing a vanilla vtable // call and between the time we fetch the entry address and // we jump to it the target gets deoptimized. Similar to 1 // we will wind up in the interprter (thru a c2i with c2). // address call_addr = NULL; { // Get call instruction under lock because another thread may be // busy patching it. MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag); // Location of call instruction if (NativeCall::is_call_before(pc)) { NativeCall *ncall = nativeCall_before(pc); call_addr = ncall->instruction_address(); } } // Check for static or virtual call bool is_static_call = false; nmethod* caller_nm = CodeCache::find_nmethod(pc); // Make sure nmethod doesn't get deoptimized and removed until // this is done with it. // CLEANUP - with lazy deopt shouldn't need this lock nmethodLocker nmlock(caller_nm); if (call_addr != NULL) { RelocIterator iter(caller_nm, call_addr, call_addr+1); int ret = iter.next(); // Get item if (ret) { assert(iter.addr() == call_addr, "must find call"); if (iter.type() == relocInfo::static_call_type) { is_static_call = true; } else { assert(iter.type() == relocInfo::virtual_call_type || iter.type() == relocInfo::opt_virtual_call_type , "unexpected relocInfo. type"); } } else { assert(!UseInlineCaches, "relocation info. must exist for this address"); } // Cleaning the inline cache will force a new resolve. This is more robust // than directly setting it to the new destination, since resolving of calls // is always done through the same code path. (experience shows that it // leads to very hard to track down bugs, if an inline cache gets updated // to a wrong method). It should not be performance critical, since the // resolve is only done once. MutexLocker ml(CompiledIC_lock); // // We do not patch the call site if the nmethod has been made non-entrant // as it is a waste of time // if (caller_nm->is_in_use()) { if (is_static_call) { CompiledStaticCall* ssc= compiledStaticCall_at(call_addr); ssc->set_to_clean(); } else { // compiled, dispatched call (which used to call an interpreted method) CompiledIC* inline_cache = CompiledIC_at(call_addr); inline_cache->set_to_clean(); } } } } methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle())); #ifndef PRODUCT Atomic::inc(&_wrong_method_ctr); if (TraceCallFixup) { ResourceMark rm(thread); tty->print("handle_wrong_method reresolving call to"); callee_method->print_short_name(tty); tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code()); } #endif return callee_method; } // --------------------------------------------------------------------------- // We are calling the interpreter via a c2i. Normally this would mean that // we were called by a compiled method. However we could have lost a race // where we went int -> i2c -> c2i and so the caller could in fact be // interpreted. If the caller is compiled we attempt to patch the caller // so he no longer calls into the interpreter. IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc)) methodOop moop(method); address entry_point = moop->from_compiled_entry(); // It's possible that deoptimization can occur at a call site which hasn't // been resolved yet, in which case this function will be called from // an nmethod that has been patched for deopt and we can ignore the // request for a fixup. // Also it is possible that we lost a race in that from_compiled_entry // is now back to the i2c in that case we don't need to patch and if // we did we'd leap into space because the callsite needs to use // "to interpreter" stub in order to load up the methodOop. Don't // ask me how I know this... CodeBlob* cb = CodeCache::find_blob(caller_pc); if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) { return; } // The check above makes sure this is a nmethod. nmethod* nm = cb->as_nmethod_or_null(); assert(nm, "must be"); // Don't fixup MethodHandle call sites as c2i/i2c adapters are used // to implement MethodHandle actions. if (nm->is_method_handle_return(caller_pc)) { return; } // There is a benign race here. We could be attempting to patch to a compiled // entry point at the same time the callee is being deoptimized. If that is // the case then entry_point may in fact point to a c2i and we'd patch the // call site with the same old data. clear_code will set code() to NULL // at the end of it. If we happen to see that NULL then we can skip trying // to patch. If we hit the window where the callee has a c2i in the // from_compiled_entry and the NULL isn't present yet then we lose the race // and patch the code with the same old data. Asi es la vida. if (moop->code() == NULL) return; if (nm->is_in_use()) { // Expect to find a native call there (unless it was no-inline cache vtable dispatch) MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag); if (NativeCall::is_call_before(caller_pc + frame::pc_return_offset)) { NativeCall *call = nativeCall_before(caller_pc + frame::pc_return_offset); // // bug 6281185. We might get here after resolving a call site to a vanilla // virtual call. Because the resolvee uses the verified entry it may then // see compiled code and attempt to patch the site by calling us. This would // then incorrectly convert the call site to optimized and its downhill from // there. If you're lucky you'll get the assert in the bugid, if not you've // just made a call site that could be megamorphic into a monomorphic site // for the rest of its life! Just another racing bug in the life of // fixup_callers_callsite ... // RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address()); iter.next(); assert(iter.has_current(), "must have a reloc at java call site"); relocInfo::relocType typ = iter.reloc()->type(); if ( typ != relocInfo::static_call_type && typ != relocInfo::opt_virtual_call_type && typ != relocInfo::static_stub_type) { return; } address destination = call->destination(); if (destination != entry_point) { CodeBlob* callee = CodeCache::find_blob(destination); // callee == cb seems weird. It means calling interpreter thru stub. if (callee == cb || callee->is_adapter_blob()) { // static call or optimized virtual if (TraceCallFixup) { tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc); moop->print_short_name(tty); tty->print_cr(" to " INTPTR_FORMAT, entry_point); } call->set_destination_mt_safe(entry_point); } else { if (TraceCallFixup) { tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc); moop->print_short_name(tty); tty->print_cr(" to " INTPTR_FORMAT, entry_point); } // assert is too strong could also be resolve destinations. // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be"); } } else { if (TraceCallFixup) { tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc); moop->print_short_name(tty); tty->print_cr(" to " INTPTR_FORMAT, entry_point); } } } } IRT_END // same as JVM_Arraycopy, but called directly from compiled code JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, oopDesc* dest, jint dest_pos, jint length, JavaThread* thread)) { #ifndef PRODUCT _slow_array_copy_ctr++; #endif // Check if we have null pointers if (src == NULL || dest == NULL) { THROW(vmSymbols::java_lang_NullPointerException()); } // Do the copy. The casts to arrayOop are necessary to the copy_array API, // even though the copy_array API also performs dynamic checks to ensure // that src and dest are truly arrays (and are conformable). // The copy_array mechanism is awkward and could be removed, but // the compilers don't call this function except as a last resort, // so it probably doesn't matter. Klass::cast(src->klass())->copy_array((arrayOopDesc*)src, src_pos, (arrayOopDesc*)dest, dest_pos, length, thread); } JRT_END char* SharedRuntime::generate_class_cast_message( JavaThread* thread, const char* objName) { // Get target class name from the checkcast instruction vframeStream vfst(thread, true); assert(!vfst.at_end(), "Java frame must exist"); Bytecode_checkcast* cc = Bytecode_checkcast_at( vfst.method()->bcp_from(vfst.bci())); Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at( cc->index(), thread)); return generate_class_cast_message(objName, targetKlass->external_name()); } char* SharedRuntime::generate_wrong_method_type_message(JavaThread* thread, oopDesc* required, oopDesc* actual) { if (TraceMethodHandles) { tty->print_cr("WrongMethodType thread="PTR_FORMAT" req="PTR_FORMAT" act="PTR_FORMAT"", thread, required, actual); } assert(EnableMethodHandles, ""); oop singleKlass = wrong_method_type_is_for_single_argument(thread, required); char* message = NULL; if (singleKlass != NULL) { const char* objName = "argument or return value"; if (actual != NULL) { // be flexible about the junk passed in: klassOop ak = (actual->is_klass() ? (klassOop)actual : actual->klass()); objName = Klass::cast(ak)->external_name(); } Klass* targetKlass = Klass::cast(required->is_klass() ? (klassOop)required : java_lang_Class::as_klassOop(required)); message = generate_class_cast_message(objName, targetKlass->external_name()); } else { // %%% need to get the MethodType string, without messing around too much // Get a signature from the invoke instruction const char* mhName = "method handle"; const char* targetType = "the required signature"; vframeStream vfst(thread, true); if (!vfst.at_end()) { Bytecode_invoke* call = Bytecode_invoke_at(vfst.method(), vfst.bci()); methodHandle target; { EXCEPTION_MARK; target = call->static_target(THREAD); if (HAS_PENDING_EXCEPTION) { CLEAR_PENDING_EXCEPTION; } } if (target.not_null() && target->is_method_handle_invoke() && required == target->method_handle_type()) { targetType = target->signature()->as_C_string(); } } klassOop kignore; int fignore; methodOop actual_method = MethodHandles::decode_method(actual, kignore, fignore); if (actual_method != NULL) { if (methodOopDesc::is_method_handle_invoke_name(actual_method->name())) mhName = "$"; else mhName = actual_method->signature()->as_C_string(); if (mhName[0] == '$') mhName = actual_method->signature()->as_C_string(); } message = generate_class_cast_message(mhName, targetType, " cannot be called as "); } if (TraceMethodHandles) { tty->print_cr("WrongMethodType => message=%s", message); } return message; } oop SharedRuntime::wrong_method_type_is_for_single_argument(JavaThread* thr, oopDesc* required) { if (required == NULL) return NULL; if (required->klass() == SystemDictionary::Class_klass()) return required; if (required->is_klass()) return Klass::cast(klassOop(required))->java_mirror(); return NULL; } char* SharedRuntime::generate_class_cast_message( const char* objName, const char* targetKlassName, const char* desc) { size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1; char* message = NEW_RESOURCE_ARRAY(char, msglen); if (NULL == message) { // Shouldn't happen, but don't cause even more problems if it does message = const_cast(objName); } else { jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName); } return message; } JRT_LEAF(void, SharedRuntime::reguard_yellow_pages()) (void) JavaThread::current()->reguard_stack(); JRT_END // Handles the uncommon case in locking, i.e., contention or an inflated lock. #ifndef PRODUCT int SharedRuntime::_monitor_enter_ctr=0; #endif JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread)) oop obj(_obj); #ifndef PRODUCT _monitor_enter_ctr++; // monitor enter slow #endif if (PrintBiasedLockingStatistics) { Atomic::inc(BiasedLocking::slow_path_entry_count_addr()); } Handle h_obj(THREAD, obj); if (UseBiasedLocking) { // Retry fast entry if bias is revoked to avoid unnecessary inflation ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK); } else { ObjectSynchronizer::slow_enter(h_obj, lock, CHECK); } assert(!HAS_PENDING_EXCEPTION, "Should have no exception here"); JRT_END #ifndef PRODUCT int SharedRuntime::_monitor_exit_ctr=0; #endif // Handles the uncommon cases of monitor unlocking in compiled code JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock)) oop obj(_obj); #ifndef PRODUCT _monitor_exit_ctr++; // monitor exit slow #endif Thread* THREAD = JavaThread::current(); // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore // testing was unable to ever fire the assert that guarded it so I have removed it. assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?"); #undef MIGHT_HAVE_PENDING #ifdef MIGHT_HAVE_PENDING // Save and restore any pending_exception around the exception mark. // While the slow_exit must not throw an exception, we could come into // this routine with one set. oop pending_excep = NULL; const char* pending_file; int pending_line; if (HAS_PENDING_EXCEPTION) { pending_excep = PENDING_EXCEPTION; pending_file = THREAD->exception_file(); pending_line = THREAD->exception_line(); CLEAR_PENDING_EXCEPTION; } #endif /* MIGHT_HAVE_PENDING */ { // Exit must be non-blocking, and therefore no exceptions can be thrown. EXCEPTION_MARK; ObjectSynchronizer::slow_exit(obj, lock, THREAD); } #ifdef MIGHT_HAVE_PENDING if (pending_excep != NULL) { THREAD->set_pending_exception(pending_excep, pending_file, pending_line); } #endif /* MIGHT_HAVE_PENDING */ JRT_END #ifndef PRODUCT void SharedRuntime::print_statistics() { ttyLocker ttyl; if (xtty != NULL) xtty->head("statistics type='SharedRuntime'"); if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow", _monitor_enter_ctr); if (_monitor_exit_ctr ) tty->print_cr("%5d monitor exit slow", _monitor_exit_ctr); if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr); SharedRuntime::print_ic_miss_histogram(); if (CountRemovableExceptions) { if (_nof_removable_exceptions > 0) { Unimplemented(); // this counter is not yet incremented tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions); } } // Dump the JRT_ENTRY counters if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr); if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr); if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr); if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr); if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr); if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr); if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr); tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr ); tty->print_cr("%5d wrong method", _wrong_method_ctr ); tty->print_cr("%5d unresolved static call site", _resolve_static_ctr ); tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr ); tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr ); if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr ); if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr ); if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr ); if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr ); if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr ); if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr ); if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr ); if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr ); if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr ); if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr ); if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr ); if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr ); if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr ); if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr ); if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr ); if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr ); AdapterHandlerLibrary::print_statistics(); if (xtty != NULL) xtty->tail("statistics"); } inline double percent(int x, int y) { return 100.0 * x / MAX2(y, 1); } class MethodArityHistogram { public: enum { MAX_ARITY = 256 }; private: static int _arity_histogram[MAX_ARITY]; // histogram of #args static int _size_histogram[MAX_ARITY]; // histogram of arg size in words static int _max_arity; // max. arity seen static int _max_size; // max. arg size seen static void add_method_to_histogram(nmethod* nm) { methodOop m = nm->method(); ArgumentCount args(m->signature()); int arity = args.size() + (m->is_static() ? 0 : 1); int argsize = m->size_of_parameters(); arity = MIN2(arity, MAX_ARITY-1); argsize = MIN2(argsize, MAX_ARITY-1); int count = nm->method()->compiled_invocation_count(); _arity_histogram[arity] += count; _size_histogram[argsize] += count; _max_arity = MAX2(_max_arity, arity); _max_size = MAX2(_max_size, argsize); } void print_histogram_helper(int n, int* histo, const char* name) { const int N = MIN2(5, n); tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); double sum = 0; double weighted_sum = 0; int i; for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; } double rest = sum; double percent = sum / 100; for (i = 0; i <= N; i++) { rest -= histo[i]; tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent); } tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent); tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n); } void print_histogram() { tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); print_histogram_helper(_max_arity, _arity_histogram, "arity"); tty->print_cr("\nSame for parameter size (in words):"); print_histogram_helper(_max_size, _size_histogram, "size"); tty->cr(); } public: MethodArityHistogram() { MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); _max_arity = _max_size = 0; for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0; CodeCache::nmethods_do(add_method_to_histogram); print_histogram(); } }; int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY]; int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY]; int MethodArityHistogram::_max_arity; int MethodArityHistogram::_max_size; void SharedRuntime::print_call_statistics(int comp_total) { tty->print_cr("Calls from compiled code:"); int total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls; int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls; int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls; tty->print_cr("\t%9d (%4.1f%%) total non-inlined ", total, percent(total, total)); tty->print_cr("\t%9d (%4.1f%%) virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total)); tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls)); tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls)); tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_c, percent(mono_c, _nof_normal_calls)); tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls)); tty->print_cr("\t%9d (%4.1f%%) interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total)); tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls)); tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls)); tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_i, percent(mono_i, _nof_interface_calls)); tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls)); tty->print_cr("\t%9d (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total)); tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls)); tty->cr(); tty->print_cr("Note 1: counter updates are not MT-safe."); tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;"); tty->print_cr(" %% in nested categories are relative to their category"); tty->print_cr(" (and thus add up to more than 100%% with inlining)"); tty->cr(); MethodArityHistogram h; } #endif // A simple wrapper class around the calling convention information // that allows sharing of adapters for the same calling convention. class AdapterFingerPrint : public CHeapObj { private: union { int _compact[3]; int* _fingerprint; } _value; int _length; // A negative length indicates the fingerprint is in the compact form, // Otherwise _value._fingerprint is the array. // Remap BasicTypes that are handled equivalently by the adapters. // These are correct for the current system but someday it might be // necessary to make this mapping platform dependent. static BasicType adapter_encoding(BasicType in) { assert((~0xf & in) == 0, "must fit in 4 bits"); switch(in) { case T_BOOLEAN: case T_BYTE: case T_SHORT: case T_CHAR: // There are all promoted to T_INT in the calling convention return T_INT; case T_OBJECT: case T_ARRAY: #ifdef _LP64 return T_LONG; #else return T_INT; #endif case T_INT: case T_LONG: case T_FLOAT: case T_DOUBLE: case T_VOID: return in; default: ShouldNotReachHere(); return T_CONFLICT; } } public: AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) { // The fingerprint is based on the BasicType signature encoded // into an array of ints with four entries per int. int* ptr; int len = (total_args_passed + 3) >> 2; if (len <= (int)(sizeof(_value._compact) / sizeof(int))) { _value._compact[0] = _value._compact[1] = _value._compact[2] = 0; // Storing the signature encoded as signed chars hits about 98% // of the time. _length = -len; ptr = _value._compact; } else { _length = len; _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length); ptr = _value._fingerprint; } // Now pack the BasicTypes with 4 per int int sig_index = 0; for (int index = 0; index < len; index++) { int value = 0; for (int byte = 0; byte < 4; byte++) { if (sig_index < total_args_passed) { value = (value << 4) | adapter_encoding(sig_bt[sig_index++]); } } ptr[index] = value; } } ~AdapterFingerPrint() { if (_length > 0) { FREE_C_HEAP_ARRAY(int, _value._fingerprint); } } int value(int index) { if (_length < 0) { return _value._compact[index]; } return _value._fingerprint[index]; } int length() { if (_length < 0) return -_length; return _length; } bool is_compact() { return _length <= 0; } unsigned int compute_hash() { int hash = 0; for (int i = 0; i < length(); i++) { int v = value(i); hash = (hash << 8) ^ v ^ (hash >> 5); } return (unsigned int)hash; } const char* as_string() { stringStream st; for (int i = 0; i < length(); i++) { st.print(PTR_FORMAT, value(i)); } return st.as_string(); } bool equals(AdapterFingerPrint* other) { if (other->_length != _length) { return false; } if (_length < 0) { return _value._compact[0] == other->_value._compact[0] && _value._compact[1] == other->_value._compact[1] && _value._compact[2] == other->_value._compact[2]; } else { for (int i = 0; i < _length; i++) { if (_value._fingerprint[i] != other->_value._fingerprint[i]) { return false; } } } return true; } }; // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries class AdapterHandlerTable : public BasicHashtable { friend class AdapterHandlerTableIterator; private: #ifndef PRODUCT static int _lookups; // number of calls to lookup static int _buckets; // number of buckets checked static int _equals; // number of buckets checked with matching hash static int _hits; // number of successful lookups static int _compact; // number of equals calls with compact signature #endif AdapterHandlerEntry* bucket(int i) { return (AdapterHandlerEntry*)BasicHashtable::bucket(i); } public: AdapterHandlerTable() : BasicHashtable(293, sizeof(AdapterHandlerEntry)) { } // Create a new entry suitable for insertion in the table AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) { AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable::new_entry(fingerprint->compute_hash()); entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry); return entry; } // Insert an entry into the table void add(AdapterHandlerEntry* entry) { int index = hash_to_index(entry->hash()); add_entry(index, entry); } void free_entry(AdapterHandlerEntry* entry) { entry->deallocate(); BasicHashtable::free_entry(entry); } // Find a entry with the same fingerprint if it exists AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) { NOT_PRODUCT(_lookups++); AdapterFingerPrint fp(total_args_passed, sig_bt); unsigned int hash = fp.compute_hash(); int index = hash_to_index(hash); for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) { NOT_PRODUCT(_buckets++); if (e->hash() == hash) { NOT_PRODUCT(_equals++); if (fp.equals(e->fingerprint())) { #ifndef PRODUCT if (fp.is_compact()) _compact++; _hits++; #endif return e; } } } return NULL; } #ifndef PRODUCT void print_statistics() { ResourceMark rm; int longest = 0; int empty = 0; int total = 0; int nonempty = 0; for (int index = 0; index < table_size(); index++) { int count = 0; for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) { count++; } if (count != 0) nonempty++; if (count == 0) empty++; if (count > longest) longest = count; total += count; } tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f", empty, longest, total, total / (double)nonempty); tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d", _lookups, _buckets, _equals, _hits, _compact); } #endif }; #ifndef PRODUCT int AdapterHandlerTable::_lookups; int AdapterHandlerTable::_buckets; int AdapterHandlerTable::_equals; int AdapterHandlerTable::_hits; int AdapterHandlerTable::_compact; #endif class AdapterHandlerTableIterator : public StackObj { private: AdapterHandlerTable* _table; int _index; AdapterHandlerEntry* _current; void scan() { while (_index < _table->table_size()) { AdapterHandlerEntry* a = _table->bucket(_index); _index++; if (a != NULL) { _current = a; return; } } } public: AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) { scan(); } bool has_next() { return _current != NULL; } AdapterHandlerEntry* next() { if (_current != NULL) { AdapterHandlerEntry* result = _current; _current = _current->next(); if (_current == NULL) scan(); return result; } else { return NULL; } } }; // --------------------------------------------------------------------------- // Implementation of AdapterHandlerLibrary AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL; AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL; const int AdapterHandlerLibrary_size = 16*K; BufferBlob* AdapterHandlerLibrary::_buffer = NULL; BufferBlob* AdapterHandlerLibrary::buffer_blob() { // Should be called only when AdapterHandlerLibrary_lock is active. if (_buffer == NULL) // Initialize lazily _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size); return _buffer; } void AdapterHandlerLibrary::initialize() { if (_adapters != NULL) return; _adapters = new AdapterHandlerTable(); // Create a special handler for abstract methods. Abstract methods // are never compiled so an i2c entry is somewhat meaningless, but // fill it in with something appropriate just in case. Pass handle // wrong method for the c2i transitions. address wrong_method = SharedRuntime::get_handle_wrong_method_stub(); _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL), StubRoutines::throw_AbstractMethodError_entry(), wrong_method, wrong_method); } AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) { return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry); } AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) { // Use customized signature handler. Need to lock around updates to // the AdapterHandlerTable (it is not safe for concurrent readers // and a single writer: this could be fixed if it becomes a // problem). // Get the address of the ic_miss handlers before we grab the // AdapterHandlerLibrary_lock. This fixes bug 6236259 which // was caused by the initialization of the stubs happening // while we held the lock and then notifying jvmti while // holding it. This just forces the initialization to be a little // earlier. address ic_miss = SharedRuntime::get_ic_miss_stub(); assert(ic_miss != NULL, "must have handler"); ResourceMark rm; NOT_PRODUCT(int insts_size); AdapterBlob* B = NULL; AdapterHandlerEntry* entry = NULL; AdapterFingerPrint* fingerprint = NULL; { MutexLocker mu(AdapterHandlerLibrary_lock); // make sure data structure is initialized initialize(); if (method->is_abstract()) { return _abstract_method_handler; } // Fill in the signature array, for the calling-convention call. int total_args_passed = method->size_of_parameters(); // All args on stack BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed); VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); int i = 0; if (!method->is_static()) // Pass in receiver first sig_bt[i++] = T_OBJECT; for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) { sig_bt[i++] = ss.type(); // Collect remaining bits of signature if (ss.type() == T_LONG || ss.type() == T_DOUBLE) sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots } assert(i == total_args_passed, ""); // Lookup method signature's fingerprint entry = _adapters->lookup(total_args_passed, sig_bt); #ifdef ASSERT AdapterHandlerEntry* shared_entry = NULL; if (VerifyAdapterSharing && entry != NULL) { shared_entry = entry; entry = NULL; } #endif if (entry != NULL) { return entry; } // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false); // Make a C heap allocated version of the fingerprint to store in the adapter fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt); // Create I2C & C2I handlers BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache if (buf != NULL) { CodeBuffer buffer(buf); short buffer_locs[20]; buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs, sizeof(buffer_locs)/sizeof(relocInfo)); MacroAssembler _masm(&buffer); entry = SharedRuntime::generate_i2c2i_adapters(&_masm, total_args_passed, comp_args_on_stack, sig_bt, regs, fingerprint); #ifdef ASSERT if (VerifyAdapterSharing) { if (shared_entry != NULL) { assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt), "code must match"); // Release the one just created and return the original _adapters->free_entry(entry); return shared_entry; } else { entry->save_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt); } } #endif B = AdapterBlob::create(&buffer); NOT_PRODUCT(insts_size = buffer.insts_size()); } if (B == NULL) { // CodeCache is full, disable compilation // Ought to log this but compile log is only per compile thread // and we're some non descript Java thread. MutexUnlocker mu(AdapterHandlerLibrary_lock); CompileBroker::handle_full_code_cache(); return NULL; // Out of CodeCache space } entry->relocate(B->content_begin()); #ifndef PRODUCT // debugging suppport if (PrintAdapterHandlers) { tty->cr(); tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = %s, %d bytes generated)", _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"), method->signature()->as_C_string(), fingerprint->as_string(), insts_size ); tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry()); Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + insts_size); } #endif _adapters->add(entry); } // Outside of the lock if (B != NULL) { char blob_id[256]; jio_snprintf(blob_id, sizeof(blob_id), "%s(%s)@" PTR_FORMAT, B->name(), fingerprint->as_string(), B->content_begin()); Forte::register_stub(blob_id, B->content_begin(), B->content_end()); if (JvmtiExport::should_post_dynamic_code_generated()) { JvmtiExport::post_dynamic_code_generated(blob_id, B->content_begin(), B->content_end()); } } return entry; } void AdapterHandlerEntry::relocate(address new_base) { ptrdiff_t delta = new_base - _i2c_entry; _i2c_entry += delta; _c2i_entry += delta; _c2i_unverified_entry += delta; } void AdapterHandlerEntry::deallocate() { delete _fingerprint; #ifdef ASSERT if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code); if (_saved_sig) FREE_C_HEAP_ARRAY(Basictype, _saved_sig); #endif } #ifdef ASSERT // Capture the code before relocation so that it can be compared // against other versions. If the code is captured after relocation // then relative instructions won't be equivalent. void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) { _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length); _code_length = length; memcpy(_saved_code, buffer, length); _total_args_passed = total_args_passed; _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed); memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType)); } bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) { if (length != _code_length) { return false; } for (int i = 0; i < length; i++) { if (buffer[i] != _saved_code[i]) { return false; } } return true; } #endif // Create a native wrapper for this native method. The wrapper converts the // java compiled calling convention to the native convention, handlizes // arguments, and transitions to native. On return from the native we transition // back to java blocking if a safepoint is in progress. nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method) { ResourceMark rm; nmethod* nm = NULL; if (PrintCompilation) { ttyLocker ttyl; tty->print("--- n%s ", (method->is_synchronized() ? "s" : " ")); method->print_short_name(tty); if (method->is_static()) { tty->print(" (static)"); } tty->cr(); } assert(method->has_native_function(), "must have something valid to call!"); { // perform the work while holding the lock, but perform any printing outside the lock MutexLocker mu(AdapterHandlerLibrary_lock); // See if somebody beat us to it nm = method->code(); if (nm) { return nm; } ResourceMark rm; BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache if (buf != NULL) { CodeBuffer buffer(buf); double locs_buf[20]; buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo)); MacroAssembler _masm(&buffer); // Fill in the signature array, for the calling-convention call. int total_args_passed = method->size_of_parameters(); BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed); VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair,total_args_passed); int i=0; if( !method->is_static() ) // Pass in receiver first sig_bt[i++] = T_OBJECT; SignatureStream ss(method->signature()); for( ; !ss.at_return_type(); ss.next()) { sig_bt[i++] = ss.type(); // Collect remaining bits of signature if( ss.type() == T_LONG || ss.type() == T_DOUBLE ) sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots } assert( i==total_args_passed, "" ); BasicType ret_type = ss.type(); // Now get the compiled-Java layout as input arguments int comp_args_on_stack; comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false); // Generate the compiled-to-native wrapper code nm = SharedRuntime::generate_native_wrapper(&_masm, method, total_args_passed, comp_args_on_stack, sig_bt,regs, ret_type); } } // Must unlock before calling set_code // Install the generated code. if (nm != NULL) { method->set_code(method, nm); nm->post_compiled_method_load_event(); } else { // CodeCache is full, disable compilation CompileBroker::handle_full_code_cache(); } return nm; } #ifdef HAVE_DTRACE_H // Create a dtrace nmethod for this method. The wrapper converts the // java compiled calling convention to the native convention, makes a dummy call // (actually nops for the size of the call instruction, which become a trap if // probe is enabled). The returns to the caller. Since this all looks like a // leaf no thread transition is needed. nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) { ResourceMark rm; nmethod* nm = NULL; if (PrintCompilation) { ttyLocker ttyl; tty->print("--- n%s "); method->print_short_name(tty); if (method->is_static()) { tty->print(" (static)"); } tty->cr(); } { // perform the work while holding the lock, but perform any printing // outside the lock MutexLocker mu(AdapterHandlerLibrary_lock); // See if somebody beat us to it nm = method->code(); if (nm) { return nm; } ResourceMark rm; BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache if (buf != NULL) { CodeBuffer buffer(buf); // Need a few relocation entries double locs_buf[20]; buffer.insts()->initialize_shared_locs( (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo)); MacroAssembler _masm(&buffer); // Generate the compiled-to-native wrapper code nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method); } } return nm; } // the dtrace method needs to convert java lang string to utf8 string. void SharedRuntime::get_utf(oopDesc* src, address dst) { typeArrayOop jlsValue = java_lang_String::value(src); int jlsOffset = java_lang_String::offset(src); int jlsLen = java_lang_String::length(src); jchar* jlsPos = (jlsLen == 0) ? NULL : jlsValue->char_at_addr(jlsOffset); (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size); } #endif // ndef HAVE_DTRACE_H // ------------------------------------------------------------------------- // Java-Java calling convention // (what you use when Java calls Java) //------------------------------name_for_receiver---------------------------------- // For a given signature, return the VMReg for parameter 0. VMReg SharedRuntime::name_for_receiver() { VMRegPair regs; BasicType sig_bt = T_OBJECT; (void) java_calling_convention(&sig_bt, ®s, 1, true); // Return argument 0 register. In the LP64 build pointers // take 2 registers, but the VM wants only the 'main' name. return regs.first(); } VMRegPair *SharedRuntime::find_callee_arguments(symbolOop sig, bool has_receiver, int* arg_size) { // This method is returning a data structure allocating as a // ResourceObject, so do not put any ResourceMarks in here. char *s = sig->as_C_string(); int len = (int)strlen(s); *s++; len--; // Skip opening paren char *t = s+len; while( *(--t) != ')' ) ; // Find close paren BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 ); VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 ); int cnt = 0; if (has_receiver) { sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature } while( s < t ) { switch( *s++ ) { // Switch on signature character case 'B': sig_bt[cnt++] = T_BYTE; break; case 'C': sig_bt[cnt++] = T_CHAR; break; case 'D': sig_bt[cnt++] = T_DOUBLE; sig_bt[cnt++] = T_VOID; break; case 'F': sig_bt[cnt++] = T_FLOAT; break; case 'I': sig_bt[cnt++] = T_INT; break; case 'J': sig_bt[cnt++] = T_LONG; sig_bt[cnt++] = T_VOID; break; case 'S': sig_bt[cnt++] = T_SHORT; break; case 'Z': sig_bt[cnt++] = T_BOOLEAN; break; case 'V': sig_bt[cnt++] = T_VOID; break; case 'L': // Oop while( *s++ != ';' ) ; // Skip signature sig_bt[cnt++] = T_OBJECT; break; case '[': { // Array do { // Skip optional size while( *s >= '0' && *s <= '9' ) s++; } while( *s++ == '[' ); // Nested arrays? // Skip element type if( s[-1] == 'L' ) while( *s++ != ';' ) ; // Skip signature sig_bt[cnt++] = T_ARRAY; break; } default : ShouldNotReachHere(); } } assert( cnt < 256, "grow table size" ); int comp_args_on_stack; comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true); // the calling convention doesn't count out_preserve_stack_slots so // we must add that in to get "true" stack offsets. if (comp_args_on_stack) { for (int i = 0; i < cnt; i++) { VMReg reg1 = regs[i].first(); if( reg1->is_stack()) { // Yuck reg1 = reg1->bias(out_preserve_stack_slots()); } VMReg reg2 = regs[i].second(); if( reg2->is_stack()) { // Yuck reg2 = reg2->bias(out_preserve_stack_slots()); } regs[i].set_pair(reg2, reg1); } } // results *arg_size = cnt; return regs; } // OSR Migration Code // // This code is used convert interpreter frames into compiled frames. It is // called from very start of a compiled OSR nmethod. A temp array is // allocated to hold the interesting bits of the interpreter frame. All // active locks are inflated to allow them to move. The displaced headers and // active interpeter locals are copied into the temp buffer. Then we return // back to the compiled code. The compiled code then pops the current // interpreter frame off the stack and pushes a new compiled frame. Then it // copies the interpreter locals and displaced headers where it wants. // Finally it calls back to free the temp buffer. // // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed. JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) ) #ifdef IA64 ShouldNotReachHere(); // NYI #endif /* IA64 */ // // This code is dependent on the memory layout of the interpreter local // array and the monitors. On all of our platforms the layout is identical // so this code is shared. If some platform lays the their arrays out // differently then this code could move to platform specific code or // the code here could be modified to copy items one at a time using // frame accessor methods and be platform independent. frame fr = thread->last_frame(); assert( fr.is_interpreted_frame(), "" ); assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" ); // Figure out how many monitors are active. int active_monitor_count = 0; for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end(); kptr < fr.interpreter_frame_monitor_begin(); kptr = fr.next_monitor_in_interpreter_frame(kptr) ) { if( kptr->obj() != NULL ) active_monitor_count++; } // QQQ we could place number of active monitors in the array so that compiled code // could double check it. methodOop moop = fr.interpreter_frame_method(); int max_locals = moop->max_locals(); // Allocate temp buffer, 1 word per local & 2 per active monitor int buf_size_words = max_locals + active_monitor_count*2; intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words); // Copy the locals. Order is preserved so that loading of longs works. // Since there's no GC I can copy the oops blindly. assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code"); Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1), (HeapWord*)&buf[0], max_locals); // Inflate locks. Copy the displaced headers. Be careful, there can be holes. int i = max_locals; for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end(); kptr2 < fr.interpreter_frame_monitor_begin(); kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) { if( kptr2->obj() != NULL) { // Avoid 'holes' in the monitor array BasicLock *lock = kptr2->lock(); // Inflate so the displaced header becomes position-independent if (lock->displaced_header()->is_unlocked()) ObjectSynchronizer::inflate_helper(kptr2->obj()); // Now the displaced header is free to move buf[i++] = (intptr_t)lock->displaced_header(); buf[i++] = (intptr_t)kptr2->obj(); } } assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" ); return buf; JRT_END JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) ) FREE_C_HEAP_ARRAY(intptr_t,buf); JRT_END bool AdapterHandlerLibrary::contains(CodeBlob* b) { AdapterHandlerTableIterator iter(_adapters); while (iter.has_next()) { AdapterHandlerEntry* a = iter.next(); if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true; } return false; } void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) { AdapterHandlerTableIterator iter(_adapters); while (iter.has_next()) { AdapterHandlerEntry* a = iter.next(); if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) { st->print("Adapter for signature: "); st->print_cr("%s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT, a->fingerprint()->as_string(), a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry()); return; } } assert(false, "Should have found handler"); } #ifndef PRODUCT void AdapterHandlerLibrary::print_statistics() { _adapters->print_statistics(); } #endif /* PRODUCT */