/* * Copyright (c) 2016, 2023, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ #include "precompiled.hpp" #include "jvm.h" #include "unittest.hpp" #include "runtime/arguments.hpp" #include "runtime/flags/jvmFlag.hpp" #include "utilities/align.hpp" #include "utilities/globalDefinitions.hpp" #include class ArgumentsTest : public ::testing::Test { public: static intx parse_xss_inner_annotated(const char* str, jint expected_err, const char* file, int line_number); // Expose the private Arguments functions. static Arguments::ArgsRange check_memory_size(julong size, julong min_size, julong max_size) { return Arguments::check_memory_size(size, min_size, max_size); } static jint parse_xss(const JavaVMOption* option, const char* tail, intx* out_ThreadStackSize) { return Arguments::parse_xss(option, tail, out_ThreadStackSize); } static bool parse_argument(const char* name, const char* value) { char buf[1024]; int ret = jio_snprintf(buf, sizeof(buf), "%s=%s", name, value); if (ret > 0) { return Arguments::parse_argument(buf, JVMFlagOrigin::COMMAND_LINE); } else { return false; } } }; TEST_F(ArgumentsTest, atojulong) { char ullong_max[32]; int ret = jio_snprintf(ullong_max, sizeof(ullong_max), JULONG_FORMAT, ULLONG_MAX); ASSERT_NE(-1, ret); julong value; const char* invalid_strings[] = { "", "-1", "-100", " 1", "2 ", "3 2", "1.0", "0x4.5", "0x", "0x0x1" "0.001", "4e10", "e" "K", "M", "G", "1MB", "1KM", "AA", "0B", "18446744073709551615K", "17179869184G", "999999999999999999999999999999" }; for (uint i = 0; i < ARRAY_SIZE(invalid_strings); i++) { ASSERT_FALSE(Arguments::atojulong(invalid_strings[i], &value)) << "Invalid string '" << invalid_strings[i] << "' parsed without error."; } struct { const char* str; julong expected_value; } valid_strings[] = { { "0", 0 }, { "4711", 4711 }, { "1K", 1ULL * K }, { "1k", 1ULL * K }, { "2M", 2ULL * M }, { "2m", 2ULL * M }, { "4G", 4ULL * G }, { "4g", 4ULL * G }, { "0K", 0 }, { ullong_max, ULLONG_MAX }, { "0xcafebabe", 0xcafebabe }, { "0XCAFEBABE", 0xcafebabe }, { "0XCAFEbabe", 0xcafebabe }, { "0x10K", 0x10 * K } }; for (uint i = 0; i < ARRAY_SIZE(valid_strings); i++) { ASSERT_TRUE(Arguments::atojulong(valid_strings[i].str, &value)) << "Valid string '" << valid_strings[i].str << "' did not parse."; ASSERT_EQ(valid_strings[i].expected_value, value); } } TEST_F(ArgumentsTest, check_memory_size__min) { EXPECT_EQ(check_memory_size(999, 1000, max_uintx), Arguments::arg_too_small); EXPECT_EQ(check_memory_size(1000, 1000, max_uintx), Arguments::arg_in_range); EXPECT_EQ(check_memory_size(1001, 1000, max_uintx), Arguments::arg_in_range); EXPECT_EQ(check_memory_size(max_intx - 2, max_intx - 1, max_uintx), Arguments::arg_too_small); EXPECT_EQ(check_memory_size(max_intx - 1, max_intx - 1, max_uintx), Arguments::arg_in_range); EXPECT_EQ(check_memory_size(max_intx - 0, max_intx - 1, max_uintx), Arguments::arg_in_range); EXPECT_EQ(check_memory_size(max_intx - 1, max_intx, max_uintx), Arguments::arg_too_small); EXPECT_EQ(check_memory_size(max_intx , max_intx, max_uintx), Arguments::arg_in_range); NOT_LP64( EXPECT_EQ(check_memory_size((julong)max_intx + 1, max_intx, max_uintx), Arguments::arg_in_range); EXPECT_EQ(check_memory_size( max_intx - 1, (julong)max_intx + 1, max_uintx), Arguments::arg_too_small); EXPECT_EQ(check_memory_size( max_intx , (julong)max_intx + 1, max_uintx), Arguments::arg_too_small); EXPECT_EQ(check_memory_size((julong)max_intx + 1, (julong)max_intx + 1, max_uintx), Arguments::arg_in_range); EXPECT_EQ(check_memory_size((julong)max_intx + 2, (julong)max_intx + 1, max_uintx), Arguments::arg_in_range); ); EXPECT_EQ(check_memory_size(max_uintx - 2, max_uintx - 1, max_uintx), Arguments::arg_too_small); EXPECT_EQ(check_memory_size(max_uintx - 1, max_uintx - 1, max_uintx), Arguments::arg_in_range); EXPECT_EQ(check_memory_size(max_uintx , max_uintx - 1, max_uintx), Arguments::arg_in_range); EXPECT_EQ(check_memory_size(max_uintx - 1, max_uintx, max_uintx), Arguments::arg_too_small); EXPECT_EQ(check_memory_size(max_uintx , max_uintx, max_uintx), Arguments::arg_in_range); } TEST_F(ArgumentsTest, check_memory_size__max) { EXPECT_EQ(check_memory_size(max_uintx - 1, 1000, max_uintx), Arguments::arg_in_range); EXPECT_EQ(check_memory_size(max_uintx , 1000, max_uintx), Arguments::arg_in_range); EXPECT_EQ(check_memory_size(max_intx - 2 , 1000, max_intx - 1), Arguments::arg_in_range); EXPECT_EQ(check_memory_size(max_intx - 1 , 1000, max_intx - 1), Arguments::arg_in_range); EXPECT_EQ(check_memory_size(max_intx , 1000, max_intx - 1), Arguments::arg_too_big); EXPECT_EQ(check_memory_size(max_intx - 1 , 1000, max_intx), Arguments::arg_in_range); EXPECT_EQ(check_memory_size(max_intx , 1000, max_intx), Arguments::arg_in_range); NOT_LP64( EXPECT_EQ(check_memory_size((julong)max_intx + 1 , 1000, max_intx), Arguments::arg_too_big); EXPECT_EQ(check_memory_size( max_intx , 1000, (julong)max_intx + 1), Arguments::arg_in_range); EXPECT_EQ(check_memory_size((julong)max_intx + 1 , 1000, (julong)max_intx + 1), Arguments::arg_in_range); EXPECT_EQ(check_memory_size((julong)max_intx + 2 , 1000, (julong)max_intx + 1), Arguments::arg_too_big); ); } // A random value - used to verify the output when parsing is expected to fail. static const intx no_value = 4711; inline intx ArgumentsTest::parse_xss_inner_annotated(const char* str, jint expected_err, const char* file, int line_number) { intx value = no_value; jint err = parse_xss(NULL /* Silence error messages */, str, &value); EXPECT_EQ(err, expected_err) << "Failure from: " << file << ":" << line_number; return value; } // Wrapper around the help function - gives file and line number when a test failure occurs. #define parse_xss_inner(str, expected_err) ArgumentsTest::parse_xss_inner_annotated(str, expected_err, __FILE__, __LINE__) static intx calc_expected(julong small_xss_input) { assert(small_xss_input <= max_julong / 2, "Sanity"); // Match code in arguments.cpp julong julong_ret = align_up(small_xss_input, K) / K; assert(julong_ret <= (julong)max_intx, "Overflow: " JULONG_FORMAT, julong_ret); return (intx)julong_ret; } static char buff[100]; static char* to_string(julong value) { jio_snprintf(buff, sizeof(buff), JULONG_FORMAT, value); return buff; } TEST_VM_F(ArgumentsTest, parse_xss) { // Test the maximum input value - should fail. { EXPECT_EQ(parse_xss_inner(to_string(max_julong), JNI_EINVAL), no_value); NOT_LP64(EXPECT_EQ(parse_xss_inner(to_string(max_uintx), JNI_EINVAL), no_value)); } // Test values "far" away from the uintx boundary, // but still beyond the max limit. { LP64_ONLY(EXPECT_EQ(parse_xss_inner(to_string(max_julong / 2), JNI_EINVAL), no_value)); EXPECT_EQ(parse_xss_inner(to_string(INT_MAX), JNI_EINVAL), no_value); } // Test at and around the max limit. { EXPECT_EQ(parse_xss_inner(to_string(1 * M * K - 1), JNI_OK), calc_expected(1 * M * K - 1)); EXPECT_EQ(parse_xss_inner(to_string(1 * M * K), JNI_OK), calc_expected(1 * M * K)); EXPECT_EQ(parse_xss_inner(to_string(1 * M * K + 1), JNI_EINVAL), no_value); } // Test value aligned both to K and vm_page_size. { EXPECT_TRUE(is_aligned(32 * M, K)); EXPECT_TRUE(is_aligned(32 * M, os::vm_page_size())); EXPECT_EQ(parse_xss_inner(to_string(32 * M), JNI_OK), (intx)(32 * M / K)); } // Test around the min limit. { EXPECT_EQ(parse_xss_inner(to_string(0), JNI_OK), calc_expected(0)); EXPECT_EQ(parse_xss_inner(to_string(1), JNI_OK), calc_expected(1)); EXPECT_EQ(parse_xss_inner(to_string(K - 1), JNI_OK), calc_expected(K - 1)); EXPECT_EQ(parse_xss_inner(to_string(K), JNI_OK), calc_expected(K)); EXPECT_EQ(parse_xss_inner(to_string(K + 1), JNI_OK), calc_expected(K + 1)); } } struct Dummy {}; static Dummy BAD_INT; template struct NumericArgument { bool bad; const char* str; T expected_value; NumericArgument(const char* s, T v) : bad(false), str(s), expected_value(v) {} NumericArgument(const char* s, Dummy & dummy) : bad(true), str(s), expected_value(0) {} }; static void check_invalid_numeric_string(JVMFlag* flag, const char** invalid_strings) { for (uint i = 0; ; i++) { const char* str = invalid_strings[i]; if (str == NULL) { return; } ASSERT_FALSE(ArgumentsTest::parse_argument(flag->name(), str)) << "Invalid string '" << str << "' parsed without error for type " << flag->type_string() << "."; } } template void check_numeric_flag(JVMFlag* flag, T getvalue(JVMFlag* flag), NumericArgument* valid_args, size_t n, bool is_double = false) { for (size_t i = 0; i < n; i++) { NumericArgument* info = &valid_args[i]; const char* str = info->str; if (info->bad) { ASSERT_FALSE(ArgumentsTest::parse_argument(flag->name(), str)) << "Invalid string '" << str << "' parsed without error for type " << flag->type_string() << "."; } else { ASSERT_TRUE(ArgumentsTest::parse_argument(flag->name(), str)) << "Valid string '" << str << "' did not parse for type " << flag->type_string() << "."; ASSERT_EQ(getvalue(flag), info->expected_value) << "Valid string '" << str << "' did not parse to the correct value for type " << flag->type_string() << "."; } } { // Invalid strings for *any* numeric type of VM arguments const char* invalid_strings[] = { "", " 1", "2 ", "3 2", "0x", "0x0x1" "e" "K", "M", "G", "1MB", "1KM", "AA", "0B", "18446744073709551615K", "17179869184G", "0x8000000t", "0x800000000g", "0x800000000000m", "0x800000000000000k", "-0x8000000t", "-0x800000000g", "-0x800000000000m", "-0x800000000000000k", NULL, }; check_invalid_numeric_string(flag, invalid_strings); } if (is_double) { const char* invalid_strings_for_double[] = { "INF", "Inf", "Infinity", "INFINITY", "-INF", "-Inf", "-Infinity", "-INFINITY", "nan", "NAN", "NaN", NULL, }; check_invalid_numeric_string(flag, invalid_strings_for_double); } else { const char* invalid_strings_for_integers[] = { "1.0", "0x4.5", "0.001", "4e10", "999999999999999999999999999999", "0x10000000000000000", "18446744073709551616", "-0x10000000000000000", "-18446744073709551616", "-0x8000000000000001", "-9223372036854775809", NULL, }; check_invalid_numeric_string(flag, invalid_strings_for_integers); } } #define INTEGER_TEST_TABLE(f) \ /*input i32 u32 i64 u64 */ \ f("0", 0, 0, 0, 0 ) \ f("-0", 0, BAD_INT, 0, BAD_INT ) \ f("-1", -1, BAD_INT, -1, BAD_INT ) \ f("0x1", 1, 1, 1, 1 ) \ f("-0x1", -1, BAD_INT, -1, BAD_INT ) \ f("4711", 4711, 4711, 4711, 4711 ) \ f("1K", 1024, 1024, 1024, 1024 ) \ f("1k", 1024, 1024, 1024, 1024 ) \ f("2M", 2097152, 2097152, 2097152, 2097152 ) \ f("2m", 2097152, 2097152, 2097152, 2097152 ) \ f("1G", 1073741824, 1073741824, 1073741824, 1073741824 ) \ f("2G", BAD_INT, 0x80000000, 2147483648LL, 2147483648ULL ) \ f("1T", BAD_INT, BAD_INT, 1099511627776LL, 1099511627776ULL ) \ f("1t", BAD_INT, BAD_INT, 1099511627776LL, 1099511627776ULL ) \ f("-1K", -1024, BAD_INT, -1024, BAD_INT ) \ f("0x1K", 1024, 1024, 1024, 1024 ) \ f("-0x1K", -1024, BAD_INT, -1024, BAD_INT ) \ f("0K", 0, 0, 0, 0 ) \ f("0x1000000k", BAD_INT, BAD_INT, 17179869184LL, 17179869184ULL ) \ f("0x800000m", BAD_INT, BAD_INT, 0x80000000000LL, 0x80000000000ULL ) \ f("0x8000g", BAD_INT, BAD_INT, 0x200000000000LL, 0x200000000000ULL ) \ f("0x8000t", BAD_INT, BAD_INT, 0x80000000000000LL, 0x80000000000000ULL ) \ f("-0x1000000k", BAD_INT, BAD_INT, -17179869184LL, BAD_INT ) \ f("-0x800000m", BAD_INT, BAD_INT, -0x80000000000LL, BAD_INT ) \ f("-0x8000g", BAD_INT, BAD_INT, -0x200000000000LL, BAD_INT ) \ f("-0x8000t", BAD_INT, BAD_INT, -0x80000000000000LL, BAD_INT ) \ f("0x7fffffff", 0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff ) \ f("0xffffffff", BAD_INT, 0xffffffff, 0xffffffff, 0xffffffff ) \ f("0x80000000", BAD_INT, 0x80000000, 0x80000000, 0x80000000 ) \ f("-0x7fffffff", -2147483647, BAD_INT, -2147483647LL, BAD_INT ) \ f("-0x80000000", -2147483648, BAD_INT, -2147483648LL, BAD_INT ) \ f("-0x80000001", BAD_INT, BAD_INT, -2147483649LL, BAD_INT ) \ f("0x100000000", BAD_INT, BAD_INT, 0x100000000LL, 0x100000000ULL ) \ f("0xcafebabe", BAD_INT, 0xcafebabe, 0xcafebabe, 0xcafebabe ) \ f("0XCAFEBABE", BAD_INT, 0xcafebabe, 0xcafebabe, 0xcafebabe ) \ f("0XCAFEbabe", BAD_INT, 0xcafebabe, 0xcafebabe, 0xcafebabe ) \ f("0xcafebabe1", BAD_INT, BAD_INT, 0xcafebabe1, 0xcafebabe1 ) \ f("0x7fffffffffffffff", BAD_INT, BAD_INT, max_jlong, 9223372036854775807ULL ) \ f("0x8000000000000000", BAD_INT, BAD_INT, BAD_INT, 9223372036854775808ULL ) \ f("0xffffffffffffffff", BAD_INT, BAD_INT, BAD_INT, max_julong ) \ f("9223372036854775807", BAD_INT, BAD_INT, 9223372036854775807LL, 9223372036854775807ULL ) \ f("9223372036854775808", BAD_INT, BAD_INT, BAD_INT, 9223372036854775808ULL ) \ f("-9223372036854775808", BAD_INT, BAD_INT, min_jlong, BAD_INT ) \ f("18446744073709551615", BAD_INT, BAD_INT, BAD_INT, max_julong ) \ \ /* All edge cases without a k/m/g/t suffix */ \ f("0x7ffffffe", max_jint-1, 0x7ffffffe, 0x7ffffffeLL, 0x7ffffffeULL ) \ f("0x7fffffff", max_jint, 0x7fffffff, 0x7fffffffLL, 0x7fffffffULL ) \ f("0x80000000", BAD_INT, 0x80000000, 0x80000000LL, 0x80000000ULL ) \ f("0xfffffffe", BAD_INT, max_juint-1, 0xfffffffeLL, 0xfffffffeULL ) \ f("0xffffffff", BAD_INT, max_juint, 0xffffffffLL, 0xffffffffULL ) \ f("0x100000000", BAD_INT, BAD_INT, 0x100000000LL, 0x100000000ULL ) \ f("-0x7fffffff", min_jint+1, BAD_INT, -0x7fffffffLL, BAD_INT ) \ f("-0x80000000", min_jint, BAD_INT, -0x80000000LL, BAD_INT ) \ f("-0x80000001", BAD_INT, BAD_INT, -0x80000001LL, BAD_INT ) \ \ f("0x7ffffffffffffffe", BAD_INT, BAD_INT, max_jlong-1, 0x7ffffffffffffffeULL ) \ f("0x7fffffffffffffff", BAD_INT, BAD_INT, max_jlong, 0x7fffffffffffffffULL ) \ f("0x8000000000000000", BAD_INT, BAD_INT, BAD_INT, 0x8000000000000000ULL ) \ f("0xfffffffffffffffe", BAD_INT, BAD_INT, BAD_INT, max_julong-1 ) \ f("0xffffffffffffffff", BAD_INT, BAD_INT, BAD_INT, max_julong ) \ f("0x10000000000000000", BAD_INT, BAD_INT, BAD_INT, BAD_INT ) \ f("-0x7fffffffffffffff", BAD_INT, BAD_INT, min_jlong+1, BAD_INT ) \ f("-0x8000000000000000", BAD_INT, BAD_INT, min_jlong, BAD_INT ) \ f("-0x8000000000000001", BAD_INT, BAD_INT, BAD_INT, BAD_INT ) \ \ /* edge cases for suffix: K */ \ f("0x1ffffek", 0x1ffffe * k, 0x1ffffeU * k,0x1ffffeLL * k, 0x1ffffeULL * k ) \ f("0x1fffffk", 0x1fffff * k, 0x1fffffU * k,0x1fffffLL * k, 0x1fffffULL * k ) \ f("0x200000k", BAD_INT, 0x200000U * k,0x200000LL * k, 0x200000ULL * k ) \ f("0x3ffffek", BAD_INT, 0x3ffffeU * k,0x3ffffeLL * k, 0x3ffffeULL * k ) \ f("0x3fffffk", BAD_INT, 0x3fffffU * k,0x3fffffLL * k, 0x3fffffULL * k ) \ f("0x400000k", BAD_INT, BAD_INT, 0x400000LL * k, 0x400000ULL * k ) \ f("-0x1fffffk", -0x1fffff * k, BAD_INT, -0x1fffffLL * k, BAD_INT ) \ f("-0x200000k", -0x200000 * k, BAD_INT, -0x200000LL * k, BAD_INT ) \ f("-0x200001k", BAD_INT, BAD_INT, -0x200001LL * k, BAD_INT ) \ \ f("0x1ffffffffffffek", BAD_INT, BAD_INT, 0x1ffffffffffffeLL * k, 0x1ffffffffffffeULL * k ) \ f("0x1fffffffffffffk", BAD_INT, BAD_INT, 0x1fffffffffffffLL * k, 0x1fffffffffffffULL * k ) \ f("0x20000000000000k", BAD_INT, BAD_INT, BAD_INT, 0x20000000000000ULL * k ) \ f("0x3ffffffffffffek", BAD_INT, BAD_INT, BAD_INT, 0x3ffffffffffffeULL * k ) \ f("0x3fffffffffffffk", BAD_INT, BAD_INT, BAD_INT, 0x3fffffffffffffULL * k ) \ f("0x40000000000000k", BAD_INT, BAD_INT, BAD_INT, BAD_INT ) \ f("-0x1fffffffffffffk", BAD_INT, BAD_INT, -0x1fffffffffffffLL * k, BAD_INT ) \ f("-0x20000000000000k", BAD_INT, BAD_INT, -0x20000000000000LL * k, BAD_INT ) \ f("-0x20000000000001k", BAD_INT, BAD_INT, BAD_INT, BAD_INT ) \ \ /* edge cases for suffix: M */ \ f("0x7fem", 0x7fe * m, 0x7feU * m, 0x7feLL * m, 0x7feULL * m ) \ f("0x7ffm", 0x7ff * m, 0x7ffU * m, 0x7ffLL * m, 0x7ffULL * m ) \ f("0x800m", BAD_INT, 0x800U * m, 0x800LL * m, 0x800ULL * m ) \ f("0xffem", BAD_INT, 0xffeU * m, 0xffeLL * m, 0xffeULL * m ) \ f("0xfffm", BAD_INT, 0xfffU * m, 0xfffLL * m, 0xfffULL * m ) \ f("0x1000m", BAD_INT, BAD_INT, 0x1000LL * m, 0x1000ULL * m ) \ f("-0x7ffm", -0x7ff * m, BAD_INT, -0x7ffLL * m, BAD_INT ) \ f("-0x800m", -0x800 * m, BAD_INT, -0x800LL * m, BAD_INT ) \ f("-0x801m", BAD_INT, BAD_INT, -0x801LL * m, BAD_INT ) \ \ f("0x7fffffffffem", BAD_INT, BAD_INT, 0x7fffffffffeLL * m, 0x7fffffffffeULL * m ) \ f("0x7ffffffffffm", BAD_INT, BAD_INT, 0x7ffffffffffLL * m, 0x7ffffffffffULL * m ) \ f("0x80000000000m", BAD_INT, BAD_INT, BAD_INT, 0x80000000000ULL * m ) \ f("0xffffffffffem", BAD_INT, BAD_INT, BAD_INT, 0xffffffffffeULL * m ) \ f("0xfffffffffffm", BAD_INT, BAD_INT, BAD_INT, 0xfffffffffffULL * m ) \ f("0x100000000000m", BAD_INT, BAD_INT, BAD_INT, BAD_INT ) \ f("-0x7ffffffffffm", BAD_INT, BAD_INT, -0x7ffffffffffLL * m, BAD_INT ) \ f("-0x80000000000m", BAD_INT, BAD_INT, -0x80000000000LL * m, BAD_INT ) \ f("-0x80000000001m", BAD_INT, BAD_INT, BAD_INT, BAD_INT ) \ \ /* edge cases for suffix: G */ \ f("0x0g", 0x0 * g, 0x0U * g, 0x0LL * g, 0x0ULL * g ) \ f("0x1g", 0x1 * g, 0x1U * g, 0x1LL * g, 0x1ULL * g ) \ f("0x2g", BAD_INT, 0x2U * g, 0x2LL * g, 0x2ULL * g ) \ f("0x3g", BAD_INT, 0x3U * g, 0x3LL * g, 0x3ULL * g ) \ f("0x4g", BAD_INT, BAD_INT, 0x4LL * g, 0x4ULL * g ) \ f("-0x1g", -0x1 * g, BAD_INT, -0x1LL * g, BAD_INT ) \ f("-0x2g", -0x2 * g, BAD_INT, -0x2LL * g, BAD_INT ) \ f("-0x3g", BAD_INT, BAD_INT, -0x3LL * g, BAD_INT ) \ \ f("0x1fffffffeg", BAD_INT, BAD_INT, 0x1fffffffeLL * g, 0x1fffffffeULL * g ) \ f("0x1ffffffffg", BAD_INT, BAD_INT, 0x1ffffffffLL * g, 0x1ffffffffULL * g ) \ f("0x200000000g", BAD_INT, BAD_INT, BAD_INT, 0x200000000ULL * g ) \ f("0x3fffffffeg", BAD_INT, BAD_INT, BAD_INT, 0x3fffffffeULL * g ) \ f("0x3ffffffffg", BAD_INT, BAD_INT, BAD_INT, 0x3ffffffffULL * g ) \ f("0x400000000g", BAD_INT, BAD_INT, BAD_INT, BAD_INT ) \ f("-0x1ffffffffg", BAD_INT, BAD_INT, -0x1ffffffffLL * g, BAD_INT ) \ f("-0x200000000g", BAD_INT, BAD_INT, -0x200000000LL * g, BAD_INT ) \ f("-0x200000001g", BAD_INT, BAD_INT, BAD_INT, BAD_INT ) \ \ /* edge cases for suffix: T */ \ f("0x7ffffet", BAD_INT, BAD_INT, 0x7ffffeLL * t, 0x7ffffeULL * t ) \ f("0x7ffffft", BAD_INT, BAD_INT, 0x7fffffLL * t, 0x7fffffULL * t ) \ f("0x800000t", BAD_INT, BAD_INT, BAD_INT, 0x800000ULL * t ) \ f("0xfffffet", BAD_INT, BAD_INT, BAD_INT, 0xfffffeULL * t ) \ f("0xfffffft", BAD_INT, BAD_INT, BAD_INT, 0xffffffULL * t ) \ f("0x1000000t", BAD_INT, BAD_INT, BAD_INT, BAD_INT ) \ f("-0x7ffffft", BAD_INT, BAD_INT, -0x7fffffLL * t, BAD_INT ) \ f("-0x800000t", BAD_INT, BAD_INT, -0x800000LL * t, BAD_INT ) \ f("-0x800001t", BAD_INT, BAD_INT, BAD_INT, BAD_INT ) #define INTEGER_TEST_i32(s, i32, u32, i64, u64) NumericArgument(s, i32), #define INTEGER_TEST_u32(s, i32, u32, i64, u64) NumericArgument(s, u32), #define INTEGER_TEST_i64(s, i32, u32, i64, u64) NumericArgument(s, i64), #define INTEGER_TEST_u64(s, i32, u32, i64, u64) NumericArgument(s, u64), // signed 32-bit template ::value), ENABLE_IF(sizeof(T) == 4)> void check_flag(const char* f, T getvalue(JVMFlag* flag)) { JVMFlag* flag = JVMFlag::find_flag(f); if (flag == NULL) { // not available in product builds return; } T k = static_cast(K); T m = static_cast(M); T g = static_cast(G); NumericArgument valid_strings[] = { INTEGER_TEST_TABLE(INTEGER_TEST_i32) }; check_numeric_flag(flag, getvalue, valid_strings, ARRAY_SIZE(valid_strings)); } // unsigned 32-bit template ::value), ENABLE_IF(sizeof(T) == 4)> void check_flag(const char* f, T getvalue(JVMFlag* flag)) { JVMFlag* flag = JVMFlag::find_flag(f); if (flag == NULL) { // not available in product builds return; } T k = static_cast(K); T m = static_cast(M); T g = static_cast(G); NumericArgument valid_strings[] = { INTEGER_TEST_TABLE(INTEGER_TEST_u32) }; check_numeric_flag(flag, getvalue, valid_strings, ARRAY_SIZE(valid_strings)); } // signed 64-bit template ::value), ENABLE_IF(sizeof(T) == 8)> void check_flag(const char* f, T getvalue(JVMFlag* flag)) { JVMFlag* flag = JVMFlag::find_flag(f); if (flag == NULL) { // not available in product builds return; } T k = static_cast(K); T m = static_cast(M); T g = static_cast(G); T t = static_cast(G) * k; NumericArgument valid_strings[] = { INTEGER_TEST_TABLE(INTEGER_TEST_i64) }; check_numeric_flag(flag, getvalue, valid_strings, ARRAY_SIZE(valid_strings)); } // unsigned 64-bit template ::value), ENABLE_IF(sizeof(T) == 8)> void check_flag(const char* f, T getvalue(JVMFlag* flag)) { JVMFlag* flag = JVMFlag::find_flag(f); if (flag == NULL) { // not available in product builds return; } T k = static_cast(K); T m = static_cast(M); T g = static_cast(G); T t = static_cast(G) * k; NumericArgument valid_strings[] = { INTEGER_TEST_TABLE(INTEGER_TEST_u64) }; check_numeric_flag(flag, getvalue, valid_strings, ARRAY_SIZE(valid_strings)); } // Testing the parsing of -XX:= // // All of the integral types that can be used for command line options: // int, uint, intx, uintx, uint64_t, size_t // // In all supported platforms, these types can be mapped to only 4 native types: // {signed, unsigned} x {32-bit, 64-bit} // // We use SFINAE to pick the correct column in the INTEGER_TEST_TABLE for each type. TEST_VM_F(ArgumentsTest, set_numeric_flag_int) { check_flag("TestFlagFor_int", [] (JVMFlag* flag) { return flag->get_int(); }); } TEST_VM_F(ArgumentsTest, set_numeric_flag_uint) { check_flag("TestFlagFor_uint", [] (JVMFlag* flag) { return flag->get_uint(); }); } TEST_VM_F(ArgumentsTest, set_numeric_flag_intx) { check_flag("TestFlagFor_intx", [] (JVMFlag* flag) { return flag->get_intx(); }); } TEST_VM_F(ArgumentsTest, set_numeric_flag_uintx) { check_flag("TestFlagFor_uintx", [] (JVMFlag* flag) { return flag->get_uintx(); }); } TEST_VM_F(ArgumentsTest, set_numeric_flag_uint64_t) { check_flag("TestFlagFor_uint64_t", [] (JVMFlag* flag) { return flag->get_uint64_t(); }); } TEST_VM_F(ArgumentsTest, set_numeric_flag_size_t) { check_flag("TestFlagFor_size_t", [] (JVMFlag* flag) { return flag->get_size_t(); }); } TEST_VM_F(ArgumentsTest, set_numeric_flag_double) { JVMFlag* flag = JVMFlag::find_flag("TestFlagFor_double"); if (flag == NULL) { // not available in product builds return; } NumericArgument valid_strings[] = { NumericArgument("0", 0.0), NumericArgument("1", 1.0), NumericArgument("-0", -0.0), NumericArgument("-1", -1.0), }; auto getvalue = [] (JVMFlag* flag) { return flag->get_double(); }; check_numeric_flag(flag, getvalue, valid_strings, ARRAY_SIZE(valid_strings), /*is_double=*/true); const char* more_test_strings[] = { // These examples are from https://en.cppreference.com/w/cpp/language/floating_literal // (but with the L and F suffix removed). "1e10", "1e-5", "1.e-2", "3.14", ".1", "0.1e-1", "0x1ffp10", "0X0p-1", "0x1.p0", "0xf.p-1", "0x0.123p-1", "0xa.bp10", "0x1.4p3", // More test cases "1.5", "6.02e23", "-6.02e+23", "1.7976931348623157E+308", // max double "-0", "0", "0x1.91eb85p+1", "999999999999999999999999999999", }; for (uint i = 0; i < ARRAY_SIZE(more_test_strings); i++) { const char* str = more_test_strings[i]; char* end; errno = 0; double expected = strtod(str, &end); if (errno == 0 && end != NULL && *end == '\0') { ASSERT_TRUE(ArgumentsTest::parse_argument(flag->name(), str)) << "Test string '" << str << "' did not parse for type " << flag->type_string() << ". (Expected value = " << expected << ")"; double d = flag->get_double(); ASSERT_TRUE(d == expected) << "Parsed number " << d << " is not the same as expected " << expected; } else { // Some of the strings like "1.e-2" are not valid in certain locales. // The decimal-point character is also locale dependent. ASSERT_FALSE(ArgumentsTest::parse_argument(flag->name(), str)) << "Invalid string '" << str << "' parsed without error."; } } }