/* * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARALLELSCAVENGEHEAP_HPP #define SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARALLELSCAVENGEHEAP_HPP #include "gc_implementation/parallelScavenge/objectStartArray.hpp" #include "gc_implementation/parallelScavenge/psGCAdaptivePolicyCounters.hpp" #include "gc_implementation/parallelScavenge/psOldGen.hpp" #include "gc_implementation/parallelScavenge/psPermGen.hpp" #include "gc_implementation/parallelScavenge/psYoungGen.hpp" #include "gc_implementation/shared/gcPolicyCounters.hpp" #include "gc_interface/collectedHeap.inline.hpp" #include "utilities/ostream.hpp" class AdjoiningGenerations; class GCTaskManager; class PSAdaptiveSizePolicy; class GenerationSizer; class CollectorPolicy; class ParallelScavengeHeap : public CollectedHeap { friend class VMStructs; private: static PSYoungGen* _young_gen; static PSOldGen* _old_gen; static PSPermGen* _perm_gen; // Sizing policy for entire heap static PSAdaptiveSizePolicy* _size_policy; static PSGCAdaptivePolicyCounters* _gc_policy_counters; static ParallelScavengeHeap* _psh; size_t _perm_gen_alignment; size_t _young_gen_alignment; size_t _old_gen_alignment; GenerationSizer* _collector_policy; inline size_t set_alignment(size_t& var, size_t val); // Collection of generations that are adjacent in the // space reserved for the heap. AdjoiningGenerations* _gens; unsigned int _death_march_count; static GCTaskManager* _gc_task_manager; // The task manager. protected: static inline size_t total_invocations(); HeapWord* allocate_new_tlab(size_t size); inline bool should_alloc_in_eden(size_t size) const; inline void death_march_check(HeapWord* const result, size_t size); HeapWord* mem_allocate_old_gen(size_t size); public: ParallelScavengeHeap() : CollectedHeap() { _death_march_count = 0; set_alignment(_perm_gen_alignment, intra_heap_alignment()); set_alignment(_young_gen_alignment, intra_heap_alignment()); set_alignment(_old_gen_alignment, intra_heap_alignment()); } // For use by VM operations enum CollectionType { Scavenge, MarkSweep }; ParallelScavengeHeap::Name kind() const { return CollectedHeap::ParallelScavengeHeap; } CollectorPolicy* collector_policy() const { return (CollectorPolicy*) _collector_policy; } // GenerationSizer* collector_policy() const { return _collector_policy; } static PSYoungGen* young_gen() { return _young_gen; } static PSOldGen* old_gen() { return _old_gen; } static PSPermGen* perm_gen() { return _perm_gen; } virtual PSAdaptiveSizePolicy* size_policy() { return _size_policy; } static PSGCAdaptivePolicyCounters* gc_policy_counters() { return _gc_policy_counters; } static ParallelScavengeHeap* heap(); static GCTaskManager* const gc_task_manager() { return _gc_task_manager; } AdjoiningGenerations* gens() { return _gens; } // Returns JNI_OK on success virtual jint initialize(); void post_initialize(); void update_counters(); // The alignment used for the various generations. size_t perm_gen_alignment() const { return _perm_gen_alignment; } size_t young_gen_alignment() const { return _young_gen_alignment; } size_t old_gen_alignment() const { return _old_gen_alignment; } // The alignment used for eden and survivors within the young gen // and for boundary between young gen and old gen. size_t intra_heap_alignment() const { return 64 * K; } size_t capacity() const; size_t used() const; // Return "true" if all generations (but perm) have reached the // maximal committed limit that they can reach, without a garbage // collection. virtual bool is_maximal_no_gc() const; // Return true if the reference points to an object that // can be moved in a partial collection. For currently implemented // generational collectors that means during a collection of // the young gen. virtual bool is_scavengable(const void* addr); // Does this heap support heap inspection? (+PrintClassHistogram) bool supports_heap_inspection() const { return true; } size_t permanent_capacity() const; size_t permanent_used() const; size_t max_capacity() const; // Whether p is in the allocated part of the heap bool is_in(const void* p) const; bool is_in_reserved(const void* p) const; bool is_in_permanent(const void *p) const { // reserved part return perm_gen()->reserved().contains(p); } #ifdef ASSERT virtual bool is_in_partial_collection(const void *p); #endif bool is_permanent(const void *p) const { // committed part return perm_gen()->is_in(p); } inline bool is_in_young(oop p); // reserved part inline bool is_in_old_or_perm(oop p); // reserved part // Memory allocation. "gc_time_limit_was_exceeded" will // be set to true if the adaptive size policy determine that // an excessive amount of time is being spent doing collections // and caused a NULL to be returned. If a NULL is not returned, // "gc_time_limit_was_exceeded" has an undefined meaning. HeapWord* mem_allocate(size_t size, bool* gc_overhead_limit_was_exceeded); // Allocation attempt(s) during a safepoint. It should never be called // to allocate a new TLAB as this allocation might be satisfied out // of the old generation. HeapWord* failed_mem_allocate(size_t size); HeapWord* permanent_mem_allocate(size_t size); HeapWord* failed_permanent_mem_allocate(size_t size); // Support for System.gc() void collect(GCCause::Cause cause); // This interface assumes that it's being called by the // vm thread. It collects the heap assuming that the // heap lock is already held and that we are executing in // the context of the vm thread. void collect_as_vm_thread(GCCause::Cause cause); // These also should be called by the vm thread at a safepoint (e.g., from a // VM operation). // // The first collects the young generation only, unless the scavenge fails; it // will then attempt a full gc. The second collects the entire heap; if // maximum_compaction is true, it will compact everything and clear all soft // references. inline void invoke_scavenge(); inline void invoke_full_gc(bool maximum_compaction); bool supports_inline_contig_alloc() const { return !UseNUMA; } HeapWord** top_addr() const { return !UseNUMA ? young_gen()->top_addr() : (HeapWord**)-1; } HeapWord** end_addr() const { return !UseNUMA ? young_gen()->end_addr() : (HeapWord**)-1; } void ensure_parsability(bool retire_tlabs); void accumulate_statistics_all_tlabs(); void resize_all_tlabs(); size_t unsafe_max_alloc(); bool supports_tlab_allocation() const { return true; } size_t tlab_capacity(Thread* thr) const; size_t unsafe_max_tlab_alloc(Thread* thr) const; // Can a compiler initialize a new object without store barriers? // This permission only extends from the creation of a new object // via a TLAB up to the first subsequent safepoint. virtual bool can_elide_tlab_store_barriers() const { return true; } virtual bool card_mark_must_follow_store() const { return false; } // Return true if we don't we need a store barrier for // initializing stores to an object at this address. virtual bool can_elide_initializing_store_barrier(oop new_obj); // Can a compiler elide a store barrier when it writes // a permanent oop into the heap? Applies when the compiler // is storing x to the heap, where x->is_perm() is true. virtual bool can_elide_permanent_oop_store_barriers() const { return true; } void oop_iterate(OopClosure* cl); void object_iterate(ObjectClosure* cl); void safe_object_iterate(ObjectClosure* cl) { object_iterate(cl); } void permanent_oop_iterate(OopClosure* cl); void permanent_object_iterate(ObjectClosure* cl); HeapWord* block_start(const void* addr) const; size_t block_size(const HeapWord* addr) const; bool block_is_obj(const HeapWord* addr) const; jlong millis_since_last_gc(); void prepare_for_verify(); virtual void print_on(outputStream* st) const; virtual void print_gc_threads_on(outputStream* st) const; virtual void gc_threads_do(ThreadClosure* tc) const; virtual void print_tracing_info() const; void verify(bool allow_dirty, bool silent, VerifyOption option /* ignored */); void print_heap_change(size_t prev_used); // Resize the young generation. The reserved space for the // generation may be expanded in preparation for the resize. void resize_young_gen(size_t eden_size, size_t survivor_size); // Resize the old generation. The reserved space for the // generation may be expanded in preparation for the resize. void resize_old_gen(size_t desired_free_space); // Save the tops of the spaces in all generations void record_gen_tops_before_GC() PRODUCT_RETURN; // Mangle the unused parts of all spaces in the heap void gen_mangle_unused_area() PRODUCT_RETURN; // Call these in sequential code around the processing of strong roots. class ParStrongRootsScope : public MarkingCodeBlobClosure::MarkScope { public: ParStrongRootsScope(); ~ParStrongRootsScope(); }; }; inline size_t ParallelScavengeHeap::set_alignment(size_t& var, size_t val) { assert(is_power_of_2((intptr_t)val), "must be a power of 2"); var = round_to(val, intra_heap_alignment()); return var; } #endif // SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARALLELSCAVENGEHEAP_HPP