/* * Copyright (c) 2020, 2022, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ /* * @test * @enablePreview * @modules java.base/jdk.internal.foreign * java.base/jdk.internal.foreign.abi * java.base/jdk.internal.foreign.abi.aarch64 * @build CallArrangerTestBase * @run testng TestAarch64CallArranger */ import java.lang.foreign.Addressable; import java.lang.foreign.FunctionDescriptor; import java.lang.foreign.MemoryAddress; import java.lang.foreign.MemoryLayout; import java.lang.foreign.MemorySegment; import jdk.internal.foreign.abi.Binding; import jdk.internal.foreign.abi.CallingSequence; import jdk.internal.foreign.abi.aarch64.CallArranger; import org.testng.annotations.DataProvider; import org.testng.annotations.Test; import java.lang.invoke.MethodType; import static java.lang.foreign.ValueLayout.ADDRESS; import static jdk.internal.foreign.PlatformLayouts.AArch64.*; import static jdk.internal.foreign.abi.Binding.*; import static jdk.internal.foreign.abi.aarch64.AArch64Architecture.*; import static org.testng.Assert.assertEquals; import static org.testng.Assert.assertFalse; import static org.testng.Assert.assertTrue; public class TestAarch64CallArranger extends CallArrangerTestBase { @Test public void testEmpty() { MethodType mt = MethodType.methodType(void.class); FunctionDescriptor fd = FunctionDescriptor.ofVoid(); CallArranger.Bindings bindings = CallArranger.LINUX.getBindings(mt, fd, false); assertFalse(bindings.isInMemoryReturn); CallingSequence callingSequence = bindings.callingSequence; assertEquals(callingSequence.callerMethodType(), mt.insertParameterTypes(0, Addressable.class)); assertEquals(callingSequence.functionDesc(), fd.insertArgumentLayouts(0, ADDRESS)); checkArgumentBindings(callingSequence, new Binding[][]{ { unboxAddress(Addressable.class), vmStore(r9, long.class) } }); checkReturnBindings(callingSequence, new Binding[]{}); } @Test public void testInteger() { MethodType mt = MethodType.methodType(void.class, int.class, int.class, int.class, int.class, int.class, int.class, int.class, int.class, int.class, int.class); FunctionDescriptor fd = FunctionDescriptor.ofVoid( C_INT, C_INT, C_INT, C_INT, C_INT, C_INT, C_INT, C_INT, C_INT, C_INT); CallArranger.Bindings bindings = CallArranger.LINUX.getBindings(mt, fd, false); assertFalse(bindings.isInMemoryReturn); CallingSequence callingSequence = bindings.callingSequence; assertEquals(callingSequence.callerMethodType(), mt.insertParameterTypes(0, Addressable.class)); assertEquals(callingSequence.functionDesc(), fd.insertArgumentLayouts(0, ADDRESS)); checkArgumentBindings(callingSequence, new Binding[][]{ { unboxAddress(Addressable.class), vmStore(r9, long.class) }, { vmStore(r0, int.class) }, { vmStore(r1, int.class) }, { vmStore(r2, int.class) }, { vmStore(r3, int.class) }, { vmStore(r4, int.class) }, { vmStore(r5, int.class) }, { vmStore(r6, int.class) }, { vmStore(r7, int.class) }, { vmStore(stackStorage(0), int.class) }, { vmStore(stackStorage(1), int.class) }, }); checkReturnBindings(callingSequence, new Binding[]{}); } @Test public void testTwoIntTwoFloat() { MethodType mt = MethodType.methodType(void.class, int.class, int.class, float.class, float.class); FunctionDescriptor fd = FunctionDescriptor.ofVoid( C_INT, C_INT, C_FLOAT, C_FLOAT); CallArranger.Bindings bindings = CallArranger.LINUX.getBindings(mt, fd, false); assertFalse(bindings.isInMemoryReturn); CallingSequence callingSequence = bindings.callingSequence; assertEquals(callingSequence.callerMethodType(), mt.insertParameterTypes(0, Addressable.class)); assertEquals(callingSequence.functionDesc(), fd.insertArgumentLayouts(0, ADDRESS)); checkArgumentBindings(callingSequence, new Binding[][]{ { unboxAddress(Addressable.class), vmStore(r9, long.class) }, { vmStore(r0, int.class) }, { vmStore(r1, int.class) }, { vmStore(v0, float.class) }, { vmStore(v1, float.class) }, }); checkReturnBindings(callingSequence, new Binding[]{}); } @Test(dataProvider = "structs") public void testStruct(MemoryLayout struct, Binding[] expectedBindings) { MethodType mt = MethodType.methodType(void.class, MemorySegment.class); FunctionDescriptor fd = FunctionDescriptor.ofVoid(struct); CallArranger.Bindings bindings = CallArranger.LINUX.getBindings(mt, fd, false); assertFalse(bindings.isInMemoryReturn); CallingSequence callingSequence = bindings.callingSequence; assertEquals(callingSequence.callerMethodType(), mt.insertParameterTypes(0, Addressable.class)); assertEquals(callingSequence.functionDesc(), fd.insertArgumentLayouts(0, ADDRESS)); checkArgumentBindings(callingSequence, new Binding[][]{ { unboxAddress(Addressable.class), vmStore(r9, long.class) }, expectedBindings }); checkReturnBindings(callingSequence, new Binding[]{}); } @DataProvider public static Object[][] structs() { MemoryLayout struct2 = MemoryLayout.structLayout(C_INT, C_INT, C_DOUBLE, C_INT); return new Object[][]{ // struct s { int32_t a, b; double c; }; { MemoryLayout.structLayout(C_INT, C_INT, C_DOUBLE), new Binding[] { dup(), // s.a & s.b bufferLoad(0, long.class), vmStore(r0, long.class), // s.c --> note AArch64 passes this in an *integer* register bufferLoad(8, long.class), vmStore(r1, long.class), }}, // struct s { int32_t a, b; double c; int32_t d }; { struct2, new Binding[] { copy(struct2), unboxAddress(MemorySegment.class), vmStore(r0, long.class) }}, // struct s { int32_t a[2]; float b[2] }; { MemoryLayout.structLayout(C_INT, C_INT, C_FLOAT, C_FLOAT), new Binding[] { dup(), // s.a[0] & s.a[1] bufferLoad(0, long.class), vmStore(r0, long.class), // s.b[0] & s.b[1] bufferLoad(8, long.class), vmStore(r1, long.class), }}, // struct s { float a; /* padding */ double b }; { MemoryLayout.structLayout(C_FLOAT, MemoryLayout.paddingLayout(32), C_DOUBLE), new Binding[] { dup(), // s.a bufferLoad(0, long.class), vmStore(r0, long.class), // s.b bufferLoad(8, long.class), vmStore(r1, long.class), }}, }; } @Test public void testMultipleStructs() { MemoryLayout struct1 = MemoryLayout.structLayout(C_INT, C_INT, C_DOUBLE, C_INT); MemoryLayout struct2 = MemoryLayout.structLayout(C_LONG, C_LONG, C_LONG); MethodType mt = MethodType.methodType(void.class, MemorySegment.class, MemorySegment.class, int.class); FunctionDescriptor fd = FunctionDescriptor.ofVoid(struct1, struct2, C_INT); CallArranger.Bindings bindings = CallArranger.LINUX.getBindings(mt, fd, false); assertFalse(bindings.isInMemoryReturn); CallingSequence callingSequence = bindings.callingSequence; assertEquals(callingSequence.callerMethodType(), mt.insertParameterTypes(0, Addressable.class)); assertEquals(callingSequence.functionDesc(), fd.insertArgumentLayouts(0, ADDRESS)); checkArgumentBindings(callingSequence, new Binding[][]{ { unboxAddress(Addressable.class), vmStore(r9, long.class) }, { copy(struct1), unboxAddress(MemorySegment.class), vmStore(r0, long.class) }, { copy(struct2), unboxAddress(MemorySegment.class), vmStore(r1, long.class) }, { vmStore(r2, int.class) } }); checkReturnBindings(callingSequence, new Binding[]{}); } @Test public void testReturnStruct1() { MemoryLayout struct = MemoryLayout.structLayout(C_LONG, C_LONG, C_FLOAT); MethodType mt = MethodType.methodType(MemorySegment.class); FunctionDescriptor fd = FunctionDescriptor.of(struct); CallArranger.Bindings bindings = CallArranger.LINUX.getBindings(mt, fd, false); assertTrue(bindings.isInMemoryReturn); CallingSequence callingSequence = bindings.callingSequence; assertEquals(callingSequence.callerMethodType(), MethodType.methodType(void.class, Addressable.class, MemoryAddress.class)); assertEquals(callingSequence.functionDesc(), FunctionDescriptor.ofVoid(ADDRESS, C_POINTER)); checkArgumentBindings(callingSequence, new Binding[][]{ { unboxAddress(Addressable.class), vmStore(r9, long.class) }, { unboxAddress(), vmStore(r8, long.class) } }); checkReturnBindings(callingSequence, new Binding[]{}); } @Test public void testReturnStruct2() { MemoryLayout struct = MemoryLayout.structLayout(C_LONG, C_LONG); MethodType mt = MethodType.methodType(MemorySegment.class); FunctionDescriptor fd = FunctionDescriptor.of(struct); CallArranger.Bindings bindings = CallArranger.LINUX.getBindings(mt, fd, false); assertFalse(bindings.isInMemoryReturn); CallingSequence callingSequence = bindings.callingSequence; assertEquals(callingSequence.callerMethodType(), mt.insertParameterTypes(0, MemorySegment.class, Addressable.class)); assertEquals(callingSequence.functionDesc(), fd.insertArgumentLayouts(0, ADDRESS, ADDRESS)); checkArgumentBindings(callingSequence, new Binding[][]{ { unboxAddress(MemorySegment.class), vmStore(r10, long.class) }, { unboxAddress(Addressable.class), vmStore(r9, long.class) } }); checkReturnBindings(callingSequence, new Binding[]{ allocate(struct), dup(), vmLoad(r0, long.class), bufferStore(0, long.class), dup(), vmLoad(r1, long.class), bufferStore(8, long.class), }); } @Test public void testStructHFA1() { MemoryLayout hfa = MemoryLayout.structLayout(C_FLOAT, C_FLOAT); MethodType mt = MethodType.methodType(MemorySegment.class, float.class, int.class, MemorySegment.class); FunctionDescriptor fd = FunctionDescriptor.of(hfa, C_FLOAT, C_INT, hfa); CallArranger.Bindings bindings = CallArranger.LINUX.getBindings(mt, fd, false); assertFalse(bindings.isInMemoryReturn); CallingSequence callingSequence = bindings.callingSequence; assertEquals(callingSequence.callerMethodType(), mt.insertParameterTypes(0, MemorySegment.class, Addressable.class)); assertEquals(callingSequence.functionDesc(), fd.insertArgumentLayouts(0, ADDRESS, ADDRESS)); checkArgumentBindings(callingSequence, new Binding[][]{ { unboxAddress(MemorySegment.class), vmStore(r10, long.class) }, { unboxAddress(Addressable.class), vmStore(r9, long.class) }, { vmStore(v0, float.class) }, { vmStore(r0, int.class) }, { dup(), bufferLoad(0, float.class), vmStore(v1, float.class), bufferLoad(4, float.class), vmStore(v2, float.class) } }); checkReturnBindings(callingSequence, new Binding[]{ allocate(hfa), dup(), vmLoad(v0, float.class), bufferStore(0, float.class), dup(), vmLoad(v1, float.class), bufferStore(4, float.class), }); } @Test public void testStructHFA3() { MemoryLayout struct = MemoryLayout.structLayout(C_FLOAT, C_FLOAT, C_FLOAT); MethodType mt = MethodType.methodType(void.class, MemorySegment.class, MemorySegment.class, MemorySegment.class); FunctionDescriptor fd = FunctionDescriptor.ofVoid(struct, struct, struct); CallArranger.Bindings bindings = CallArranger.LINUX.getBindings(mt, fd, false); assertFalse(bindings.isInMemoryReturn); CallingSequence callingSequence = bindings.callingSequence; assertEquals(callingSequence.callerMethodType(), mt.insertParameterTypes(0, Addressable.class)); assertEquals(callingSequence.functionDesc(), fd.insertArgumentLayouts(0, ADDRESS)); checkArgumentBindings(callingSequence, new Binding[][]{ { unboxAddress(Addressable.class), vmStore(r9, long.class) }, { dup(), bufferLoad(0, float.class), vmStore(v0, float.class), dup(), bufferLoad(4, float.class), vmStore(v1, float.class), bufferLoad(8, float.class), vmStore(v2, float.class) }, { dup(), bufferLoad(0, float.class), vmStore(v3, float.class), dup(), bufferLoad(4, float.class), vmStore(v4, float.class), bufferLoad(8, float.class), vmStore(v5, float.class) }, { dup(), bufferLoad(0, long.class), vmStore(stackStorage(0), long.class), bufferLoad(8, int.class), vmStore(stackStorage(1), int.class), } }); checkReturnBindings(callingSequence, new Binding[]{}); } @Test public void testStructStackSpill() { // A large (> 16 byte) struct argument that is spilled to the // stack should be passed as a pointer to a copy and occupy one // stack slot. MemoryLayout struct = MemoryLayout.structLayout(C_INT, C_INT, C_DOUBLE, C_INT); MethodType mt = MethodType.methodType( void.class, MemorySegment.class, MemorySegment.class, int.class, int.class, int.class, int.class, int.class, int.class, MemorySegment.class, int.class); FunctionDescriptor fd = FunctionDescriptor.ofVoid( struct, struct, C_INT, C_INT, C_INT, C_INT, C_INT, C_INT, struct, C_INT); CallArranger.Bindings bindings = CallArranger.LINUX.getBindings(mt, fd, false); assertFalse(bindings.isInMemoryReturn); CallingSequence callingSequence = bindings.callingSequence; assertEquals(callingSequence.callerMethodType(), mt.insertParameterTypes(0, Addressable.class)); assertEquals(callingSequence.functionDesc(), fd.insertArgumentLayouts(0, ADDRESS)); checkArgumentBindings(callingSequence, new Binding[][]{ { unboxAddress(Addressable.class), vmStore(r9, long.class) }, { copy(struct), unboxAddress(MemorySegment.class), vmStore(r0, long.class) }, { copy(struct), unboxAddress(MemorySegment.class), vmStore(r1, long.class) }, { vmStore(r2, int.class) }, { vmStore(r3, int.class) }, { vmStore(r4, int.class) }, { vmStore(r5, int.class) }, { vmStore(r6, int.class) }, { vmStore(r7, int.class) }, { copy(struct), unboxAddress(MemorySegment.class), vmStore(stackStorage(0), long.class) }, { vmStore(stackStorage(1), int.class) }, }); checkReturnBindings(callingSequence, new Binding[]{}); } @Test public void testVarArgsInRegs() { MethodType mt = MethodType.methodType(void.class, int.class, int.class, float.class); FunctionDescriptor fd = FunctionDescriptor.ofVoid(C_INT).asVariadic(C_INT, C_FLOAT); FunctionDescriptor fdExpected = FunctionDescriptor.ofVoid(ADDRESS, C_INT, C_INT, C_FLOAT); CallArranger.Bindings bindings = CallArranger.LINUX.getBindings(mt, fd, false); assertFalse(bindings.isInMemoryReturn); CallingSequence callingSequence = bindings.callingSequence; assertEquals(callingSequence.callerMethodType(), mt.insertParameterTypes(0, Addressable.class)); assertEquals(callingSequence.functionDesc(), fdExpected); // This is identical to the non-variadic calling sequence checkArgumentBindings(callingSequence, new Binding[][]{ { unboxAddress(Addressable.class), vmStore(r9, long.class) }, { vmStore(r0, int.class) }, { vmStore(r1, int.class) }, { vmStore(v0, float.class) }, }); checkReturnBindings(callingSequence, new Binding[]{}); } @Test public void testVarArgsOnStack() { MethodType mt = MethodType.methodType(void.class, int.class, int.class, float.class); FunctionDescriptor fd = FunctionDescriptor.ofVoid(C_INT).asVariadic(C_INT, C_FLOAT); FunctionDescriptor fdExpected = FunctionDescriptor.ofVoid(ADDRESS, C_INT, C_INT, C_FLOAT); CallArranger.Bindings bindings = CallArranger.MACOS.getBindings(mt, fd, false); assertFalse(bindings.isInMemoryReturn); CallingSequence callingSequence = bindings.callingSequence; assertEquals(callingSequence.callerMethodType(), mt.insertParameterTypes(0, Addressable.class)); assertEquals(callingSequence.functionDesc(), fdExpected); // The two variadic arguments should be allocated on the stack checkArgumentBindings(callingSequence, new Binding[][]{ { unboxAddress(Addressable.class), vmStore(r9, long.class) }, { vmStore(r0, int.class) }, { vmStore(stackStorage(0), int.class) }, { vmStore(stackStorage(1), float.class) }, }); checkReturnBindings(callingSequence, new Binding[]{}); } }