/* * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * */ # include "incls/_precompiled.incl" # include "incls/_frame_x86.cpp.incl" #ifdef ASSERT void RegisterMap::check_location_valid() { } #endif // Profiling/safepoint support bool frame::safe_for_sender(JavaThread *thread) { address sp = (address)_sp; address fp = (address)_fp; address unextended_sp = (address)_unextended_sp; bool sp_safe = (sp != NULL && (sp <= thread->stack_base()) && (sp >= thread->stack_base() - thread->stack_size())); bool unextended_sp_safe = (unextended_sp != NULL && (unextended_sp <= thread->stack_base()) && (unextended_sp >= thread->stack_base() - thread->stack_size())); bool fp_safe = (fp != NULL && (fp <= thread->stack_base()) && (fp >= thread->stack_base() - thread->stack_size())); if (sp_safe && unextended_sp_safe && fp_safe) { // Unfortunately we can only check frame complete for runtime stubs and nmethod // other generic buffer blobs are more problematic so we just assume they are // ok. adapter blobs never have a frame complete and are never ok. if (_cb != NULL && !_cb->is_frame_complete_at(_pc)) { if (_cb->is_nmethod() || _cb->is_adapter_blob() || _cb->is_runtime_stub()) { return false; } } return true; } // Note: fp == NULL is not really a prerequisite for this to be safe to // walk for c2. However we've modified the code such that if we get // a failure with fp != NULL that we then try with FP == NULL. // This is basically to mimic what a last_frame would look like if // c2 had generated it. if (sp_safe && unextended_sp_safe && fp == NULL) { // frame must be complete if fp == NULL as fp == NULL is only sensible // if we are looking at a nmethod and frame complete assures us of that. if (_cb != NULL && _cb->is_frame_complete_at(_pc) && _cb->is_compiled_by_c2()) { return true; } } return false; } void frame::patch_pc(Thread* thread, address pc) { if (TracePcPatching) { tty->print_cr("patch_pc at address 0x%x [0x%x -> 0x%x] ", &((address *)sp())[-1], ((address *)sp())[-1], pc); } ((address *)sp())[-1] = pc; _cb = CodeCache::find_blob(pc); if (_cb != NULL && _cb->is_nmethod() && ((nmethod*)_cb)->is_deopt_pc(_pc)) { address orig = (((nmethod*)_cb)->get_original_pc(this)); assert(orig == _pc, "expected original to be stored before patching"); _deopt_state = is_deoptimized; // leave _pc as is } else { _deopt_state = not_deoptimized; _pc = pc; } } bool frame::is_interpreted_frame() const { return Interpreter::contains(pc()); } int frame::frame_size() const { RegisterMap map(JavaThread::current(), false); frame sender = this->sender(&map); return sender.sp() - sp(); } intptr_t* frame::entry_frame_argument_at(int offset) const { // convert offset to index to deal with tsi int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize); // Entry frame's arguments are always in relation to unextended_sp() return &unextended_sp()[index]; } // sender_sp #ifdef CC_INTERP intptr_t* frame::interpreter_frame_sender_sp() const { assert(is_interpreted_frame(), "interpreted frame expected"); // QQQ why does this specialize method exist if frame::sender_sp() does same thing? // seems odd and if we always know interpreted vs. non then sender_sp() is really // doing too much work. return get_interpreterState()->sender_sp(); } // monitor elements BasicObjectLock* frame::interpreter_frame_monitor_begin() const { return get_interpreterState()->monitor_base(); } BasicObjectLock* frame::interpreter_frame_monitor_end() const { return (BasicObjectLock*) get_interpreterState()->stack_base(); } #else // CC_INTERP intptr_t* frame::interpreter_frame_sender_sp() const { assert(is_interpreted_frame(), "interpreted frame expected"); return (intptr_t*) at(interpreter_frame_sender_sp_offset); } void frame::set_interpreter_frame_sender_sp(intptr_t* sender_sp) { assert(is_interpreted_frame(), "interpreted frame expected"); ptr_at_put(interpreter_frame_sender_sp_offset, (intptr_t) sender_sp); } // monitor elements BasicObjectLock* frame::interpreter_frame_monitor_begin() const { return (BasicObjectLock*) addr_at(interpreter_frame_monitor_block_bottom_offset); } BasicObjectLock* frame::interpreter_frame_monitor_end() const { BasicObjectLock* result = (BasicObjectLock*) *addr_at(interpreter_frame_monitor_block_top_offset); // make sure the pointer points inside the frame assert((intptr_t) fp() > (intptr_t) result, "result must < than frame pointer"); assert((intptr_t) sp() <= (intptr_t) result, "result must >= than stack pointer"); return result; } void frame::interpreter_frame_set_monitor_end(BasicObjectLock* value) { *((BasicObjectLock**)addr_at(interpreter_frame_monitor_block_top_offset)) = value; } // Used by template based interpreter deoptimization void frame::interpreter_frame_set_last_sp(intptr_t* sp) { *((intptr_t**)addr_at(interpreter_frame_last_sp_offset)) = sp; } #endif // CC_INTERP frame frame::sender_for_entry_frame(RegisterMap* map) const { assert(map != NULL, "map must be set"); // Java frame called from C; skip all C frames and return top C // frame of that chunk as the sender JavaFrameAnchor* jfa = entry_frame_call_wrapper()->anchor(); assert(!entry_frame_is_first(), "next Java fp must be non zero"); assert(jfa->last_Java_sp() > sp(), "must be above this frame on stack"); map->clear(); assert(map->include_argument_oops(), "should be set by clear"); if (jfa->last_Java_pc() != NULL ) { frame fr(jfa->last_Java_sp(), jfa->last_Java_fp(), jfa->last_Java_pc()); return fr; } frame fr(jfa->last_Java_sp(), jfa->last_Java_fp()); return fr; } frame frame::sender_for_interpreter_frame(RegisterMap* map) const { // sp is the raw sp from the sender after adapter or interpreter extension intptr_t* sp = (intptr_t*) addr_at(sender_sp_offset); // This is the sp before any possible extension (adapter/locals). intptr_t* unextended_sp = interpreter_frame_sender_sp(); // The interpreter and compiler(s) always save EBP/RBP in a known // location on entry. We must record where that location is // so this if EBP/RBP was live on callout from c2 we can find // the saved copy no matter what it called. // Since the interpreter always saves EBP/RBP if we record where it is then // we don't have to always save EBP/RBP on entry and exit to c2 compiled // code, on entry will be enough. #ifdef COMPILER2 if (map->update_map()) { map->set_location(rbp->as_VMReg(), (address) addr_at(link_offset)); #ifdef AMD64 // this is weird "H" ought to be at a higher address however the // oopMaps seems to have the "H" regs at the same address and the // vanilla register. // XXXX make this go away if (true) { map->set_location(rbp->as_VMReg()->next(), (address)addr_at(link_offset)); } #endif // AMD64 } #endif /* COMPILER2 */ return frame(sp, unextended_sp, link(), sender_pc()); } //------------------------------sender_for_compiled_frame----------------------- frame frame::sender_for_compiled_frame(RegisterMap* map) const { assert(map != NULL, "map must be set"); const bool c1_compiled = _cb->is_compiled_by_c1(); // frame owned by optimizing compiler intptr_t* sender_sp = NULL; assert(_cb->frame_size() >= 0, "must have non-zero frame size"); sender_sp = unextended_sp() + _cb->frame_size(); // On Intel the return_address is always the word on the stack address sender_pc = (address) *(sender_sp-1); // This is the saved value of ebp which may or may not really be an fp. // it is only an fp if the sender is an interpreter frame (or c1?) intptr_t *saved_fp = (intptr_t*)*(sender_sp - frame::sender_sp_offset); if (map->update_map()) { // Tell GC to use argument oopmaps for some runtime stubs that need it. // For C1, the runtime stub might not have oop maps, so set this flag // outside of update_register_map. map->set_include_argument_oops(_cb->caller_must_gc_arguments(map->thread())); if (_cb->oop_maps() != NULL) { OopMapSet::update_register_map(this, map); } // Since the prolog does the save and restore of epb there is no oopmap // for it so we must fill in its location as if there was an oopmap entry // since if our caller was compiled code there could be live jvm state in it. map->set_location(rbp->as_VMReg(), (address) (sender_sp - frame::sender_sp_offset)); #ifdef AMD64 // this is weird "H" ought to be at a higher address however the // oopMaps seems to have the "H" regs at the same address and the // vanilla register. // XXXX make this go away if (true) { map->set_location(rbp->as_VMReg()->next(), (address) (sender_sp - frame::sender_sp_offset)); } #endif // AMD64 } assert(sender_sp != sp(), "must have changed"); return frame(sender_sp, saved_fp, sender_pc); } frame frame::sender(RegisterMap* map) const { // Default is we done have to follow them. The sender_for_xxx will // update it accordingly map->set_include_argument_oops(false); if (is_entry_frame()) return sender_for_entry_frame(map); if (is_interpreted_frame()) return sender_for_interpreter_frame(map); assert(_cb == CodeCache::find_blob(pc()),"Must be the same"); if (_cb != NULL) { return sender_for_compiled_frame(map); } // Must be native-compiled frame, i.e. the marshaling code for native // methods that exists in the core system. return frame(sender_sp(), link(), sender_pc()); } bool frame::interpreter_frame_equals_unpacked_fp(intptr_t* fp) { assert(is_interpreted_frame(), "must be interpreter frame"); methodOop method = interpreter_frame_method(); // When unpacking an optimized frame the frame pointer is // adjusted with: int diff = (method->max_locals() - method->size_of_parameters()) * Interpreter::stackElementWords(); return _fp == (fp - diff); } void frame::pd_gc_epilog() { // nothing done here now } bool frame::is_interpreted_frame_valid() const { // QQQ #ifdef CC_INTERP #else assert(is_interpreted_frame(), "Not an interpreted frame"); // These are reasonable sanity checks if (fp() == 0 || (intptr_t(fp()) & (wordSize-1)) != 0) { return false; } if (sp() == 0 || (intptr_t(sp()) & (wordSize-1)) != 0) { return false; } if (fp() + interpreter_frame_initial_sp_offset < sp()) { return false; } // These are hacks to keep us out of trouble. // The problem with these is that they mask other problems if (fp() <= sp()) { // this attempts to deal with unsigned comparison above return false; } if (fp() - sp() > 4096) { // stack frames shouldn't be large. return false; } #endif // CC_INTERP return true; } BasicType frame::interpreter_frame_result(oop* oop_result, jvalue* value_result) { #ifdef CC_INTERP // Needed for JVMTI. The result should always be in the interpreterState object assert(false, "NYI"); interpreterState istate = get_interpreterState(); #endif // CC_INTERP assert(is_interpreted_frame(), "interpreted frame expected"); methodOop method = interpreter_frame_method(); BasicType type = method->result_type(); intptr_t* tos_addr; if (method->is_native()) { // Prior to calling into the runtime to report the method_exit the possible // return value is pushed to the native stack. If the result is a jfloat/jdouble // then ST0 is saved before EAX/EDX. See the note in generate_native_result tos_addr = (intptr_t*)sp(); if (type == T_FLOAT || type == T_DOUBLE) { // QQQ seems like this code is equivalent on the two platforms #ifdef AMD64 // This is times two because we do a push(ltos) after pushing XMM0 // and that takes two interpreter stack slots. tos_addr += 2 * Interpreter::stackElementWords(); #else tos_addr += 2; #endif // AMD64 } } else { tos_addr = (intptr_t*)interpreter_frame_tos_address(); } switch (type) { case T_OBJECT : case T_ARRAY : { oop obj; if (method->is_native()) { #ifdef CC_INTERP obj = istate->_oop_temp; #else obj = (oop) at(interpreter_frame_oop_temp_offset); #endif // CC_INTERP } else { oop* obj_p = (oop*)tos_addr; obj = (obj_p == NULL) ? (oop)NULL : *obj_p; } assert(obj == NULL || Universe::heap()->is_in(obj), "sanity check"); *oop_result = obj; break; } case T_BOOLEAN : value_result->z = *(jboolean*)tos_addr; break; case T_BYTE : value_result->b = *(jbyte*)tos_addr; break; case T_CHAR : value_result->c = *(jchar*)tos_addr; break; case T_SHORT : value_result->s = *(jshort*)tos_addr; break; case T_INT : value_result->i = *(jint*)tos_addr; break; case T_LONG : value_result->j = *(jlong*)tos_addr; break; case T_FLOAT : { #ifdef AMD64 value_result->f = *(jfloat*)tos_addr; #else if (method->is_native()) { jdouble d = *(jdouble*)tos_addr; // Result was in ST0 so need to convert to jfloat value_result->f = (jfloat)d; } else { value_result->f = *(jfloat*)tos_addr; } #endif // AMD64 break; } case T_DOUBLE : value_result->d = *(jdouble*)tos_addr; break; case T_VOID : /* Nothing to do */ break; default : ShouldNotReachHere(); } return type; } intptr_t* frame::interpreter_frame_tos_at(jint offset) const { int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize); return &interpreter_frame_tos_address()[index]; }