/* * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "asm/macroAssembler.hpp" #include "asm/macroAssembler.inline.hpp" #include "logging/log.hpp" #include "memory/resourceArea.hpp" #include "runtime/java.hpp" #include "runtime/os.hpp" #include "runtime/stubCodeGenerator.hpp" #include "vm_version_x86.hpp" int VM_Version::_cpu; int VM_Version::_model; int VM_Version::_stepping; VM_Version::CpuidInfo VM_Version::_cpuid_info = { 0, }; // Address of instruction which causes SEGV address VM_Version::_cpuinfo_segv_addr = 0; // Address of instruction after the one which causes SEGV address VM_Version::_cpuinfo_cont_addr = 0; static BufferBlob* stub_blob; static const int stub_size = 1000; extern "C" { typedef void (*get_cpu_info_stub_t)(void*); } static get_cpu_info_stub_t get_cpu_info_stub = NULL; class VM_Version_StubGenerator: public StubCodeGenerator { public: VM_Version_StubGenerator(CodeBuffer *c) : StubCodeGenerator(c) {} address generate_get_cpu_info() { // Flags to test CPU type. const uint32_t HS_EFL_AC = 0x40000; const uint32_t HS_EFL_ID = 0x200000; // Values for when we don't have a CPUID instruction. const int CPU_FAMILY_SHIFT = 8; const uint32_t CPU_FAMILY_386 = (3 << CPU_FAMILY_SHIFT); const uint32_t CPU_FAMILY_486 = (4 << CPU_FAMILY_SHIFT); bool use_evex = FLAG_IS_DEFAULT(UseAVX) || (UseAVX > 2); Label detect_486, cpu486, detect_586, std_cpuid1, std_cpuid4; Label sef_cpuid, ext_cpuid, ext_cpuid1, ext_cpuid5, ext_cpuid7, done, wrapup; Label legacy_setup, save_restore_except, legacy_save_restore, start_simd_check; StubCodeMark mark(this, "VM_Version", "get_cpu_info_stub"); # define __ _masm-> address start = __ pc(); // // void get_cpu_info(VM_Version::CpuidInfo* cpuid_info); // // LP64: rcx and rdx are first and second argument registers on windows __ push(rbp); #ifdef _LP64 __ mov(rbp, c_rarg0); // cpuid_info address #else __ movptr(rbp, Address(rsp, 8)); // cpuid_info address #endif __ push(rbx); __ push(rsi); __ pushf(); // preserve rbx, and flags __ pop(rax); __ push(rax); __ mov(rcx, rax); // // if we are unable to change the AC flag, we have a 386 // __ xorl(rax, HS_EFL_AC); __ push(rax); __ popf(); __ pushf(); __ pop(rax); __ cmpptr(rax, rcx); __ jccb(Assembler::notEqual, detect_486); __ movl(rax, CPU_FAMILY_386); __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax); __ jmp(done); // // If we are unable to change the ID flag, we have a 486 which does // not support the "cpuid" instruction. // __ bind(detect_486); __ mov(rax, rcx); __ xorl(rax, HS_EFL_ID); __ push(rax); __ popf(); __ pushf(); __ pop(rax); __ cmpptr(rcx, rax); __ jccb(Assembler::notEqual, detect_586); __ bind(cpu486); __ movl(rax, CPU_FAMILY_486); __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax); __ jmp(done); // // At this point, we have a chip which supports the "cpuid" instruction // __ bind(detect_586); __ xorl(rax, rax); __ cpuid(); __ orl(rax, rax); __ jcc(Assembler::equal, cpu486); // if cpuid doesn't support an input // value of at least 1, we give up and // assume a 486 __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); __ movl(Address(rsi, 0), rax); __ movl(Address(rsi, 4), rbx); __ movl(Address(rsi, 8), rcx); __ movl(Address(rsi,12), rdx); __ cmpl(rax, 0xa); // Is cpuid(0xB) supported? __ jccb(Assembler::belowEqual, std_cpuid4); // // cpuid(0xB) Processor Topology // __ movl(rax, 0xb); __ xorl(rcx, rcx); // Threads level __ cpuid(); __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB0_offset()))); __ movl(Address(rsi, 0), rax); __ movl(Address(rsi, 4), rbx); __ movl(Address(rsi, 8), rcx); __ movl(Address(rsi,12), rdx); __ movl(rax, 0xb); __ movl(rcx, 1); // Cores level __ cpuid(); __ push(rax); __ andl(rax, 0x1f); // Determine if valid topology level __ orl(rax, rbx); // eax[4:0] | ebx[0:15] == 0 indicates invalid level __ andl(rax, 0xffff); __ pop(rax); __ jccb(Assembler::equal, std_cpuid4); __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB1_offset()))); __ movl(Address(rsi, 0), rax); __ movl(Address(rsi, 4), rbx); __ movl(Address(rsi, 8), rcx); __ movl(Address(rsi,12), rdx); __ movl(rax, 0xb); __ movl(rcx, 2); // Packages level __ cpuid(); __ push(rax); __ andl(rax, 0x1f); // Determine if valid topology level __ orl(rax, rbx); // eax[4:0] | ebx[0:15] == 0 indicates invalid level __ andl(rax, 0xffff); __ pop(rax); __ jccb(Assembler::equal, std_cpuid4); __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB2_offset()))); __ movl(Address(rsi, 0), rax); __ movl(Address(rsi, 4), rbx); __ movl(Address(rsi, 8), rcx); __ movl(Address(rsi,12), rdx); // // cpuid(0x4) Deterministic cache params // __ bind(std_cpuid4); __ movl(rax, 4); __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x4) supported? __ jccb(Assembler::greater, std_cpuid1); __ xorl(rcx, rcx); // L1 cache __ cpuid(); __ push(rax); __ andl(rax, 0x1f); // Determine if valid cache parameters used __ orl(rax, rax); // eax[4:0] == 0 indicates invalid cache __ pop(rax); __ jccb(Assembler::equal, std_cpuid1); __ lea(rsi, Address(rbp, in_bytes(VM_Version::dcp_cpuid4_offset()))); __ movl(Address(rsi, 0), rax); __ movl(Address(rsi, 4), rbx); __ movl(Address(rsi, 8), rcx); __ movl(Address(rsi,12), rdx); // // Standard cpuid(0x1) // __ bind(std_cpuid1); __ movl(rax, 1); __ cpuid(); __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset()))); __ movl(Address(rsi, 0), rax); __ movl(Address(rsi, 4), rbx); __ movl(Address(rsi, 8), rcx); __ movl(Address(rsi,12), rdx); // // Check if OS has enabled XGETBV instruction to access XCR0 // (OSXSAVE feature flag) and CPU supports AVX // __ andl(rcx, 0x18000000); // cpuid1 bits osxsave | avx __ cmpl(rcx, 0x18000000); __ jccb(Assembler::notEqual, sef_cpuid); // jump if AVX is not supported // // XCR0, XFEATURE_ENABLED_MASK register // __ xorl(rcx, rcx); // zero for XCR0 register __ xgetbv(); __ lea(rsi, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset()))); __ movl(Address(rsi, 0), rax); __ movl(Address(rsi, 4), rdx); // // cpuid(0x7) Structured Extended Features // __ bind(sef_cpuid); __ movl(rax, 7); __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x7) supported? __ jccb(Assembler::greater, ext_cpuid); __ xorl(rcx, rcx); __ cpuid(); __ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset()))); __ movl(Address(rsi, 0), rax); __ movl(Address(rsi, 4), rbx); // // Extended cpuid(0x80000000) // __ bind(ext_cpuid); __ movl(rax, 0x80000000); __ cpuid(); __ cmpl(rax, 0x80000000); // Is cpuid(0x80000001) supported? __ jcc(Assembler::belowEqual, done); __ cmpl(rax, 0x80000004); // Is cpuid(0x80000005) supported? __ jccb(Assembler::belowEqual, ext_cpuid1); __ cmpl(rax, 0x80000006); // Is cpuid(0x80000007) supported? __ jccb(Assembler::belowEqual, ext_cpuid5); __ cmpl(rax, 0x80000007); // Is cpuid(0x80000008) supported? __ jccb(Assembler::belowEqual, ext_cpuid7); // // Extended cpuid(0x80000008) // __ movl(rax, 0x80000008); __ cpuid(); __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid8_offset()))); __ movl(Address(rsi, 0), rax); __ movl(Address(rsi, 4), rbx); __ movl(Address(rsi, 8), rcx); __ movl(Address(rsi,12), rdx); // // Extended cpuid(0x80000007) // __ bind(ext_cpuid7); __ movl(rax, 0x80000007); __ cpuid(); __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid7_offset()))); __ movl(Address(rsi, 0), rax); __ movl(Address(rsi, 4), rbx); __ movl(Address(rsi, 8), rcx); __ movl(Address(rsi,12), rdx); // // Extended cpuid(0x80000005) // __ bind(ext_cpuid5); __ movl(rax, 0x80000005); __ cpuid(); __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid5_offset()))); __ movl(Address(rsi, 0), rax); __ movl(Address(rsi, 4), rbx); __ movl(Address(rsi, 8), rcx); __ movl(Address(rsi,12), rdx); // // Extended cpuid(0x80000001) // __ bind(ext_cpuid1); __ movl(rax, 0x80000001); __ cpuid(); __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid1_offset()))); __ movl(Address(rsi, 0), rax); __ movl(Address(rsi, 4), rbx); __ movl(Address(rsi, 8), rcx); __ movl(Address(rsi,12), rdx); // // Check if OS has enabled XGETBV instruction to access XCR0 // (OSXSAVE feature flag) and CPU supports AVX // __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset()))); __ movl(rcx, 0x18000000); // cpuid1 bits osxsave | avx __ andl(rcx, Address(rsi, 8)); // cpuid1 bits osxsave | avx __ cmpl(rcx, 0x18000000); __ jccb(Assembler::notEqual, done); // jump if AVX is not supported __ movl(rax, 0x6); __ andl(rax, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset()))); // xcr0 bits sse | ymm __ cmpl(rax, 0x6); __ jccb(Assembler::equal, start_simd_check); // return if AVX is not supported // we need to bridge farther than imm8, so we use this island as a thunk __ bind(done); __ jmp(wrapup); __ bind(start_simd_check); // // Some OSs have a bug when upper 128/256bits of YMM/ZMM // registers are not restored after a signal processing. // Generate SEGV here (reference through NULL) // and check upper YMM/ZMM bits after it. // intx saved_useavx = UseAVX; intx saved_usesse = UseSSE; // check _cpuid_info.sef_cpuid7_ebx.bits.avx512f __ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset()))); __ movl(rax, 0x10000); __ andl(rax, Address(rsi, 4)); // xcr0 bits sse | ymm __ cmpl(rax, 0x10000); __ jccb(Assembler::notEqual, legacy_setup); // jump if EVEX is not supported // check _cpuid_info.xem_xcr0_eax.bits.opmask // check _cpuid_info.xem_xcr0_eax.bits.zmm512 // check _cpuid_info.xem_xcr0_eax.bits.zmm32 __ movl(rax, 0xE0); __ andl(rax, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset()))); // xcr0 bits sse | ymm __ cmpl(rax, 0xE0); __ jccb(Assembler::notEqual, legacy_setup); // jump if EVEX is not supported // If UseAVX is unitialized or is set by the user to include EVEX if (use_evex) { // EVEX setup: run in lowest evex mode VM_Version::set_evex_cpuFeatures(); // Enable temporary to pass asserts UseAVX = 3; UseSSE = 2; #ifdef _WINDOWS // xmm5-xmm15 are not preserved by caller on windows // https://msdn.microsoft.com/en-us/library/9z1stfyw.aspx __ subptr(rsp, 64); __ evmovdqul(Address(rsp, 0), xmm7, Assembler::AVX_512bit); #ifdef _LP64 __ subptr(rsp, 64); __ evmovdqul(Address(rsp, 0), xmm8, Assembler::AVX_512bit); __ subptr(rsp, 64); __ evmovdqul(Address(rsp, 0), xmm31, Assembler::AVX_512bit); #endif // _LP64 #endif // _WINDOWS // load value into all 64 bytes of zmm7 register __ movl(rcx, VM_Version::ymm_test_value()); __ movdl(xmm0, rcx); __ movl(rcx, 0xffff); __ kmovwl(k1, rcx); __ evpbroadcastd(xmm0, xmm0, Assembler::AVX_512bit); __ evmovdqul(xmm7, xmm0, Assembler::AVX_512bit); #ifdef _LP64 __ evmovdqul(xmm8, xmm0, Assembler::AVX_512bit); __ evmovdqul(xmm31, xmm0, Assembler::AVX_512bit); #endif VM_Version::clean_cpuFeatures(); __ jmp(save_restore_except); } __ bind(legacy_setup); // AVX setup VM_Version::set_avx_cpuFeatures(); // Enable temporary to pass asserts UseAVX = 1; UseSSE = 2; #ifdef _WINDOWS __ subptr(rsp, 32); __ vmovdqu(Address(rsp, 0), xmm7); #ifdef _LP64 __ subptr(rsp, 32); __ vmovdqu(Address(rsp, 0), xmm8); __ subptr(rsp, 32); __ vmovdqu(Address(rsp, 0), xmm15); #endif // _LP64 #endif // _WINDOWS // load value into all 32 bytes of ymm7 register __ movl(rcx, VM_Version::ymm_test_value()); __ movdl(xmm0, rcx); __ pshufd(xmm0, xmm0, 0x00); __ vinsertf128_high(xmm0, xmm0); __ vmovdqu(xmm7, xmm0); #ifdef _LP64 __ vmovdqu(xmm8, xmm0); __ vmovdqu(xmm15, xmm0); #endif VM_Version::clean_cpuFeatures(); __ bind(save_restore_except); __ xorl(rsi, rsi); VM_Version::set_cpuinfo_segv_addr(__ pc()); // Generate SEGV __ movl(rax, Address(rsi, 0)); VM_Version::set_cpuinfo_cont_addr(__ pc()); // Returns here after signal. Save xmm0 to check it later. // check _cpuid_info.sef_cpuid7_ebx.bits.avx512f __ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset()))); __ movl(rax, 0x10000); __ andl(rax, Address(rsi, 4)); __ cmpl(rax, 0x10000); __ jcc(Assembler::notEqual, legacy_save_restore); // check _cpuid_info.xem_xcr0_eax.bits.opmask // check _cpuid_info.xem_xcr0_eax.bits.zmm512 // check _cpuid_info.xem_xcr0_eax.bits.zmm32 __ movl(rax, 0xE0); __ andl(rax, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset()))); // xcr0 bits sse | ymm __ cmpl(rax, 0xE0); __ jcc(Assembler::notEqual, legacy_save_restore); // If UseAVX is unitialized or is set by the user to include EVEX if (use_evex) { // EVEX check: run in lowest evex mode VM_Version::set_evex_cpuFeatures(); // Enable temporary to pass asserts UseAVX = 3; UseSSE = 2; __ lea(rsi, Address(rbp, in_bytes(VM_Version::zmm_save_offset()))); __ evmovdqul(Address(rsi, 0), xmm0, Assembler::AVX_512bit); __ evmovdqul(Address(rsi, 64), xmm7, Assembler::AVX_512bit); #ifdef _LP64 __ evmovdqul(Address(rsi, 128), xmm8, Assembler::AVX_512bit); __ evmovdqul(Address(rsi, 192), xmm31, Assembler::AVX_512bit); #endif #ifdef _WINDOWS #ifdef _LP64 __ evmovdqul(xmm31, Address(rsp, 0), Assembler::AVX_512bit); __ addptr(rsp, 64); __ evmovdqul(xmm8, Address(rsp, 0), Assembler::AVX_512bit); __ addptr(rsp, 64); #endif // _LP64 __ evmovdqul(xmm7, Address(rsp, 0), Assembler::AVX_512bit); __ addptr(rsp, 64); #endif // _WINDOWS generate_vzeroupper(wrapup); VM_Version::clean_cpuFeatures(); UseAVX = saved_useavx; UseSSE = saved_usesse; __ jmp(wrapup); } __ bind(legacy_save_restore); // AVX check VM_Version::set_avx_cpuFeatures(); // Enable temporary to pass asserts UseAVX = 1; UseSSE = 2; __ lea(rsi, Address(rbp, in_bytes(VM_Version::ymm_save_offset()))); __ vmovdqu(Address(rsi, 0), xmm0); __ vmovdqu(Address(rsi, 32), xmm7); #ifdef _LP64 __ vmovdqu(Address(rsi, 64), xmm8); __ vmovdqu(Address(rsi, 96), xmm15); #endif #ifdef _WINDOWS #ifdef _LP64 __ vmovdqu(xmm15, Address(rsp, 0)); __ addptr(rsp, 32); __ vmovdqu(xmm8, Address(rsp, 0)); __ addptr(rsp, 32); #endif // _LP64 __ vmovdqu(xmm7, Address(rsp, 0)); __ addptr(rsp, 32); #endif // _WINDOWS generate_vzeroupper(wrapup); VM_Version::clean_cpuFeatures(); UseAVX = saved_useavx; UseSSE = saved_usesse; __ bind(wrapup); __ popf(); __ pop(rsi); __ pop(rbx); __ pop(rbp); __ ret(0); # undef __ return start; }; void generate_vzeroupper(Label& L_wrapup) { # define __ _masm-> __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); __ cmpl(Address(rsi, 4), 0x756e6547); // 'uneG' __ jcc(Assembler::notEqual, L_wrapup); __ movl(rcx, 0x0FFF0FF0); __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset()))); __ andl(rcx, Address(rsi, 0)); __ cmpl(rcx, 0x00050670); // If it is Xeon Phi 3200/5200/7200 __ jcc(Assembler::equal, L_wrapup); __ cmpl(rcx, 0x00080650); // If it is Future Xeon Phi __ jcc(Assembler::equal, L_wrapup); __ vzeroupper(); # undef __ } }; void VM_Version::get_processor_features() { _cpu = 4; // 486 by default _model = 0; _stepping = 0; _features = 0; _logical_processors_per_package = 1; // i486 internal cache is both I&D and has a 16-byte line size _L1_data_cache_line_size = 16; // Get raw processor info get_cpu_info_stub(&_cpuid_info); assert_is_initialized(); _cpu = extended_cpu_family(); _model = extended_cpu_model(); _stepping = cpu_stepping(); if (cpu_family() > 4) { // it supports CPUID _features = feature_flags(); // Logical processors are only available on P4s and above, // and only if hyperthreading is available. _logical_processors_per_package = logical_processor_count(); _L1_data_cache_line_size = L1_line_size(); } _supports_cx8 = supports_cmpxchg8(); // xchg and xadd instructions _supports_atomic_getset4 = true; _supports_atomic_getadd4 = true; LP64_ONLY(_supports_atomic_getset8 = true); LP64_ONLY(_supports_atomic_getadd8 = true); #ifdef _LP64 // OS should support SSE for x64 and hardware should support at least SSE2. if (!VM_Version::supports_sse2()) { vm_exit_during_initialization("Unknown x64 processor: SSE2 not supported"); } // in 64 bit the use of SSE2 is the minimum if (UseSSE < 2) UseSSE = 2; #endif #ifdef AMD64 // flush_icache_stub have to be generated first. // That is why Icache line size is hard coded in ICache class, // see icache_x86.hpp. It is also the reason why we can't use // clflush instruction in 32-bit VM since it could be running // on CPU which does not support it. // // The only thing we can do is to verify that flushed // ICache::line_size has correct value. guarantee(_cpuid_info.std_cpuid1_edx.bits.clflush != 0, "clflush is not supported"); // clflush_size is size in quadwords (8 bytes). guarantee(_cpuid_info.std_cpuid1_ebx.bits.clflush_size == 8, "such clflush size is not supported"); #endif // If the OS doesn't support SSE, we can't use this feature even if the HW does if (!os::supports_sse()) _features &= ~(CPU_SSE|CPU_SSE2|CPU_SSE3|CPU_SSSE3|CPU_SSE4A|CPU_SSE4_1|CPU_SSE4_2); if (UseSSE < 4) { _features &= ~CPU_SSE4_1; _features &= ~CPU_SSE4_2; } if (UseSSE < 3) { _features &= ~CPU_SSE3; _features &= ~CPU_SSSE3; _features &= ~CPU_SSE4A; } if (UseSSE < 2) _features &= ~CPU_SSE2; if (UseSSE < 1) _features &= ~CPU_SSE; // first try initial setting and detect what we can support if (UseAVX > 0) { if (UseAVX > 2 && supports_evex()) { UseAVX = 3; } else if (UseAVX > 1 && supports_avx2()) { UseAVX = 2; } else if (UseAVX > 0 && supports_avx()) { UseAVX = 1; } else { UseAVX = 0; } } else if (UseAVX < 0) { UseAVX = 0; } if (UseAVX < 3) { _features &= ~CPU_AVX512F; _features &= ~CPU_AVX512DQ; _features &= ~CPU_AVX512CD; _features &= ~CPU_AVX512BW; _features &= ~CPU_AVX512VL; } if (UseAVX < 2) _features &= ~CPU_AVX2; if (UseAVX < 1) { _features &= ~CPU_AVX; _features &= ~CPU_VZEROUPPER; } if (!UseAES && !FLAG_IS_DEFAULT(UseAES)) _features &= ~CPU_AES; if (logical_processors_per_package() == 1) { // HT processor could be installed on a system which doesn't support HT. _features &= ~CPU_HT; } if( is_intel() ) { // Intel cpus specific settings if ((cpu_family() == 0x06) && ((extended_cpu_model() == 0x57) || // Xeon Phi 3200/5200/7200 (extended_cpu_model() == 0x85))) { // Future Xeon Phi _features &= ~CPU_VZEROUPPER; } } char buf[256]; jio_snprintf(buf, sizeof(buf), "(%u cores per cpu, %u threads per core) family %d model %d stepping %d%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s", cores_per_cpu(), threads_per_core(), cpu_family(), _model, _stepping, (supports_cmov() ? ", cmov" : ""), (supports_cmpxchg8() ? ", cx8" : ""), (supports_fxsr() ? ", fxsr" : ""), (supports_mmx() ? ", mmx" : ""), (supports_sse() ? ", sse" : ""), (supports_sse2() ? ", sse2" : ""), (supports_sse3() ? ", sse3" : ""), (supports_ssse3()? ", ssse3": ""), (supports_sse4_1() ? ", sse4.1" : ""), (supports_sse4_2() ? ", sse4.2" : ""), (supports_popcnt() ? ", popcnt" : ""), (supports_avx() ? ", avx" : ""), (supports_avx2() ? ", avx2" : ""), (supports_aes() ? ", aes" : ""), (supports_clmul() ? ", clmul" : ""), (supports_erms() ? ", erms" : ""), (supports_rtm() ? ", rtm" : ""), (supports_mmx_ext() ? ", mmxext" : ""), (supports_3dnow_prefetch() ? ", 3dnowpref" : ""), (supports_lzcnt() ? ", lzcnt": ""), (supports_sse4a() ? ", sse4a": ""), (supports_ht() ? ", ht": ""), (supports_tsc() ? ", tsc": ""), (supports_tscinv_bit() ? ", tscinvbit": ""), (supports_tscinv() ? ", tscinv": ""), (supports_bmi1() ? ", bmi1" : ""), (supports_bmi2() ? ", bmi2" : ""), (supports_adx() ? ", adx" : ""), (supports_evex() ? ", evex" : ""), (supports_sha() ? ", sha" : ""), (supports_fma() ? ", fma" : "")); _features_string = os::strdup(buf); // UseSSE is set to the smaller of what hardware supports and what // the command line requires. I.e., you cannot set UseSSE to 2 on // older Pentiums which do not support it. if (UseSSE > 4) UseSSE=4; if (UseSSE < 0) UseSSE=0; if (!supports_sse4_1()) // Drop to 3 if no SSE4 support UseSSE = MIN2((intx)3,UseSSE); if (!supports_sse3()) // Drop to 2 if no SSE3 support UseSSE = MIN2((intx)2,UseSSE); if (!supports_sse2()) // Drop to 1 if no SSE2 support UseSSE = MIN2((intx)1,UseSSE); if (!supports_sse ()) // Drop to 0 if no SSE support UseSSE = 0; // Use AES instructions if available. if (supports_aes()) { if (FLAG_IS_DEFAULT(UseAES)) { FLAG_SET_DEFAULT(UseAES, true); } if (!UseAES) { if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) { warning("AES intrinsics require UseAES flag to be enabled. Intrinsics will be disabled."); } FLAG_SET_DEFAULT(UseAESIntrinsics, false); } else { if (UseSSE > 2) { if (FLAG_IS_DEFAULT(UseAESIntrinsics)) { FLAG_SET_DEFAULT(UseAESIntrinsics, true); } } else { // The AES intrinsic stubs require AES instruction support (of course) // but also require sse3 mode or higher for instructions it use. if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) { warning("X86 AES intrinsics require SSE3 instructions or higher. Intrinsics will be disabled."); } FLAG_SET_DEFAULT(UseAESIntrinsics, false); } // --AES-CTR begins-- if (!UseAESIntrinsics) { if (UseAESCTRIntrinsics && !FLAG_IS_DEFAULT(UseAESCTRIntrinsics)) { warning("AES-CTR intrinsics require UseAESIntrinsics flag to be enabled. Intrinsics will be disabled."); FLAG_SET_DEFAULT(UseAESCTRIntrinsics, false); } } else { if(supports_sse4_1()) { if (FLAG_IS_DEFAULT(UseAESCTRIntrinsics)) { FLAG_SET_DEFAULT(UseAESCTRIntrinsics, true); } } else { // The AES-CTR intrinsic stubs require AES instruction support (of course) // but also require sse4.1 mode or higher for instructions it use. if (UseAESCTRIntrinsics && !FLAG_IS_DEFAULT(UseAESCTRIntrinsics)) { warning("X86 AES-CTR intrinsics require SSE4.1 instructions or higher. Intrinsics will be disabled."); } FLAG_SET_DEFAULT(UseAESCTRIntrinsics, false); } } // --AES-CTR ends-- } } else if (UseAES || UseAESIntrinsics || UseAESCTRIntrinsics) { if (UseAES && !FLAG_IS_DEFAULT(UseAES)) { warning("AES instructions are not available on this CPU"); FLAG_SET_DEFAULT(UseAES, false); } if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) { warning("AES intrinsics are not available on this CPU"); FLAG_SET_DEFAULT(UseAESIntrinsics, false); } if (UseAESCTRIntrinsics && !FLAG_IS_DEFAULT(UseAESCTRIntrinsics)) { warning("AES-CTR intrinsics are not available on this CPU"); FLAG_SET_DEFAULT(UseAESCTRIntrinsics, false); } } // Use CLMUL instructions if available. if (supports_clmul()) { if (FLAG_IS_DEFAULT(UseCLMUL)) { UseCLMUL = true; } } else if (UseCLMUL) { if (!FLAG_IS_DEFAULT(UseCLMUL)) warning("CLMUL instructions not available on this CPU (AVX may also be required)"); FLAG_SET_DEFAULT(UseCLMUL, false); } if (UseCLMUL && (UseSSE > 2)) { if (FLAG_IS_DEFAULT(UseCRC32Intrinsics)) { UseCRC32Intrinsics = true; } } else if (UseCRC32Intrinsics) { if (!FLAG_IS_DEFAULT(UseCRC32Intrinsics)) warning("CRC32 Intrinsics requires CLMUL instructions (not available on this CPU)"); FLAG_SET_DEFAULT(UseCRC32Intrinsics, false); } if (supports_sse4_2() && supports_clmul()) { if (FLAG_IS_DEFAULT(UseCRC32CIntrinsics)) { UseCRC32CIntrinsics = true; } } else if (UseCRC32CIntrinsics) { if (!FLAG_IS_DEFAULT(UseCRC32CIntrinsics)) { warning("CRC32C intrinsics are not available on this CPU"); } FLAG_SET_DEFAULT(UseCRC32CIntrinsics, false); } // GHASH/GCM intrinsics if (UseCLMUL && (UseSSE > 2)) { if (FLAG_IS_DEFAULT(UseGHASHIntrinsics)) { UseGHASHIntrinsics = true; } } else if (UseGHASHIntrinsics) { if (!FLAG_IS_DEFAULT(UseGHASHIntrinsics)) warning("GHASH intrinsic requires CLMUL and SSE2 instructions on this CPU"); FLAG_SET_DEFAULT(UseGHASHIntrinsics, false); } if (supports_fma() && UseSSE >= 2) { if (FLAG_IS_DEFAULT(UseFMA)) { UseFMA = true; } } else if (UseFMA) { warning("FMA instructions are not available on this CPU"); FLAG_SET_DEFAULT(UseFMA, false); } if (supports_sha() LP64_ONLY(|| supports_avx2() && supports_bmi2())) { if (FLAG_IS_DEFAULT(UseSHA)) { UseSHA = true; } } else if (UseSHA) { warning("SHA instructions are not available on this CPU"); FLAG_SET_DEFAULT(UseSHA, false); } if (supports_sha() && UseSHA) { if (FLAG_IS_DEFAULT(UseSHA1Intrinsics)) { FLAG_SET_DEFAULT(UseSHA1Intrinsics, true); } } else if (UseSHA1Intrinsics) { warning("Intrinsics for SHA-1 crypto hash functions not available on this CPU."); FLAG_SET_DEFAULT(UseSHA1Intrinsics, false); } if (UseSHA) { if (FLAG_IS_DEFAULT(UseSHA256Intrinsics)) { FLAG_SET_DEFAULT(UseSHA256Intrinsics, true); } } else if (UseSHA256Intrinsics) { warning("Intrinsics for SHA-224 and SHA-256 crypto hash functions not available on this CPU."); FLAG_SET_DEFAULT(UseSHA256Intrinsics, false); } if (UseSHA) { if (FLAG_IS_DEFAULT(UseSHA512Intrinsics)) { FLAG_SET_DEFAULT(UseSHA512Intrinsics, true); } } else if (UseSHA512Intrinsics) { warning("Intrinsics for SHA-384 and SHA-512 crypto hash functions not available on this CPU."); FLAG_SET_DEFAULT(UseSHA512Intrinsics, false); } if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) { FLAG_SET_DEFAULT(UseSHA, false); } if (UseAdler32Intrinsics) { warning("Adler32Intrinsics not available on this CPU."); FLAG_SET_DEFAULT(UseAdler32Intrinsics, false); } if (!supports_rtm() && UseRTMLocking) { // Can't continue because UseRTMLocking affects UseBiasedLocking flag // setting during arguments processing. See use_biased_locking(). // VM_Version_init() is executed after UseBiasedLocking is used // in Thread::allocate(). vm_exit_during_initialization("RTM instructions are not available on this CPU"); } #if INCLUDE_RTM_OPT if (UseRTMLocking) { if (is_client_compilation_mode_vm()) { // Only C2 does RTM locking optimization. // Can't continue because UseRTMLocking affects UseBiasedLocking flag // setting during arguments processing. See use_biased_locking(). vm_exit_during_initialization("RTM locking optimization is not supported in emulated client VM"); } if (is_intel_family_core()) { if ((_model == CPU_MODEL_HASWELL_E3) || (_model == CPU_MODEL_HASWELL_E7 && _stepping < 3) || (_model == CPU_MODEL_BROADWELL && _stepping < 4)) { // currently a collision between SKL and HSW_E3 if (!UnlockExperimentalVMOptions && UseAVX < 3) { vm_exit_during_initialization("UseRTMLocking is only available as experimental option on this platform. It must be enabled via -XX:+UnlockExperimentalVMOptions flag."); } else { warning("UseRTMLocking is only available as experimental option on this platform."); } } } if (!FLAG_IS_CMDLINE(UseRTMLocking)) { // RTM locking should be used only for applications with // high lock contention. For now we do not use it by default. vm_exit_during_initialization("UseRTMLocking flag should be only set on command line"); } if (!is_power_of_2(RTMTotalCountIncrRate)) { warning("RTMTotalCountIncrRate must be a power of 2, resetting it to 64"); FLAG_SET_DEFAULT(RTMTotalCountIncrRate, 64); } if (RTMAbortRatio < 0 || RTMAbortRatio > 100) { warning("RTMAbortRatio must be in the range 0 to 100, resetting it to 50"); FLAG_SET_DEFAULT(RTMAbortRatio, 50); } } else { // !UseRTMLocking if (UseRTMForStackLocks) { if (!FLAG_IS_DEFAULT(UseRTMForStackLocks)) { warning("UseRTMForStackLocks flag should be off when UseRTMLocking flag is off"); } FLAG_SET_DEFAULT(UseRTMForStackLocks, false); } if (UseRTMDeopt) { FLAG_SET_DEFAULT(UseRTMDeopt, false); } if (PrintPreciseRTMLockingStatistics) { FLAG_SET_DEFAULT(PrintPreciseRTMLockingStatistics, false); } } #else if (UseRTMLocking) { // Only C2 does RTM locking optimization. // Can't continue because UseRTMLocking affects UseBiasedLocking flag // setting during arguments processing. See use_biased_locking(). vm_exit_during_initialization("RTM locking optimization is not supported in this VM"); } #endif #ifdef COMPILER2 if (UseFPUForSpilling) { if (UseSSE < 2) { // Only supported with SSE2+ FLAG_SET_DEFAULT(UseFPUForSpilling, false); } } #endif #if defined(COMPILER2) || INCLUDE_JVMCI if (MaxVectorSize > 0) { if (!is_power_of_2(MaxVectorSize)) { warning("MaxVectorSize must be a power of 2"); FLAG_SET_DEFAULT(MaxVectorSize, 64); } if (UseSSE < 2) { // Vectors (in XMM) are only supported with SSE2+ if (MaxVectorSize > 0) { if (!FLAG_IS_DEFAULT(MaxVectorSize)) warning("MaxVectorSize must be 0"); FLAG_SET_DEFAULT(MaxVectorSize, 0); } } else if (UseAVX == 0 || !os_supports_avx_vectors()) { // 32 bytes vectors (in YMM) are only supported with AVX+ if (MaxVectorSize > 16) { if (!FLAG_IS_DEFAULT(MaxVectorSize)) warning("MaxVectorSize must be <= 16"); FLAG_SET_DEFAULT(MaxVectorSize, 16); } } else if (UseAVX == 1 || UseAVX == 2) { // 64 bytes vectors (in ZMM) are only supported with AVX 3 if (MaxVectorSize > 32) { if (!FLAG_IS_DEFAULT(MaxVectorSize)) warning("MaxVectorSize must be <= 32"); FLAG_SET_DEFAULT(MaxVectorSize, 32); } } else if (UseAVX > 2 ) { if (MaxVectorSize > 64) { if (!FLAG_IS_DEFAULT(MaxVectorSize)) warning("MaxVectorSize must be <= 64"); FLAG_SET_DEFAULT(MaxVectorSize, 64); } } #if defined(COMPILER2) && defined(ASSERT) if (supports_avx() && PrintMiscellaneous && Verbose && TraceNewVectors) { tty->print_cr("State of YMM registers after signal handle:"); int nreg = 2 LP64_ONLY(+2); const char* ymm_name[4] = {"0", "7", "8", "15"}; for (int i = 0; i < nreg; i++) { tty->print("YMM%s:", ymm_name[i]); for (int j = 7; j >=0; j--) { tty->print(" %x", _cpuid_info.ymm_save[i*8 + j]); } tty->cr(); } } #endif // COMPILER2 && ASSERT } #endif // COMPILER2 || INCLUDE_JVMCI #ifdef COMPILER2 #ifdef _LP64 if (FLAG_IS_DEFAULT(UseMultiplyToLenIntrinsic)) { UseMultiplyToLenIntrinsic = true; } if (FLAG_IS_DEFAULT(UseSquareToLenIntrinsic)) { UseSquareToLenIntrinsic = true; } if (FLAG_IS_DEFAULT(UseMulAddIntrinsic)) { UseMulAddIntrinsic = true; } if (FLAG_IS_DEFAULT(UseMontgomeryMultiplyIntrinsic)) { UseMontgomeryMultiplyIntrinsic = true; } if (FLAG_IS_DEFAULT(UseMontgomerySquareIntrinsic)) { UseMontgomerySquareIntrinsic = true; } #else if (UseMultiplyToLenIntrinsic) { if (!FLAG_IS_DEFAULT(UseMultiplyToLenIntrinsic)) { warning("multiplyToLen intrinsic is not available in 32-bit VM"); } FLAG_SET_DEFAULT(UseMultiplyToLenIntrinsic, false); } if (UseMontgomeryMultiplyIntrinsic) { if (!FLAG_IS_DEFAULT(UseMontgomeryMultiplyIntrinsic)) { warning("montgomeryMultiply intrinsic is not available in 32-bit VM"); } FLAG_SET_DEFAULT(UseMontgomeryMultiplyIntrinsic, false); } if (UseMontgomerySquareIntrinsic) { if (!FLAG_IS_DEFAULT(UseMontgomerySquareIntrinsic)) { warning("montgomerySquare intrinsic is not available in 32-bit VM"); } FLAG_SET_DEFAULT(UseMontgomerySquareIntrinsic, false); } if (UseSquareToLenIntrinsic) { if (!FLAG_IS_DEFAULT(UseSquareToLenIntrinsic)) { warning("squareToLen intrinsic is not available in 32-bit VM"); } FLAG_SET_DEFAULT(UseSquareToLenIntrinsic, false); } if (UseMulAddIntrinsic) { if (!FLAG_IS_DEFAULT(UseMulAddIntrinsic)) { warning("mulAdd intrinsic is not available in 32-bit VM"); } FLAG_SET_DEFAULT(UseMulAddIntrinsic, false); } #endif #endif // COMPILER2 // On new cpus instructions which update whole XMM register should be used // to prevent partial register stall due to dependencies on high half. // // UseXmmLoadAndClearUpper == true --> movsd(xmm, mem) // UseXmmLoadAndClearUpper == false --> movlpd(xmm, mem) // UseXmmRegToRegMoveAll == true --> movaps(xmm, xmm), movapd(xmm, xmm). // UseXmmRegToRegMoveAll == false --> movss(xmm, xmm), movsd(xmm, xmm). if( is_amd() ) { // AMD cpus specific settings if( supports_sse2() && FLAG_IS_DEFAULT(UseAddressNop) ) { // Use it on new AMD cpus starting from Opteron. UseAddressNop = true; } if( supports_sse2() && FLAG_IS_DEFAULT(UseNewLongLShift) ) { // Use it on new AMD cpus starting from Opteron. UseNewLongLShift = true; } if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) { if (supports_sse4a()) { UseXmmLoadAndClearUpper = true; // use movsd only on '10h' Opteron } else { UseXmmLoadAndClearUpper = false; } } if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) { if( supports_sse4a() ) { UseXmmRegToRegMoveAll = true; // use movaps, movapd only on '10h' } else { UseXmmRegToRegMoveAll = false; } } if( FLAG_IS_DEFAULT(UseXmmI2F) ) { if( supports_sse4a() ) { UseXmmI2F = true; } else { UseXmmI2F = false; } } if( FLAG_IS_DEFAULT(UseXmmI2D) ) { if( supports_sse4a() ) { UseXmmI2D = true; } else { UseXmmI2D = false; } } if (supports_sse4_2()) { if (FLAG_IS_DEFAULT(UseSSE42Intrinsics)) { FLAG_SET_DEFAULT(UseSSE42Intrinsics, true); } } else { if (UseSSE42Intrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) { warning("SSE4.2 intrinsics require SSE4.2 instructions or higher. Intrinsics will be disabled."); } FLAG_SET_DEFAULT(UseSSE42Intrinsics, false); } // some defaults for AMD family 15h if ( cpu_family() == 0x15 ) { // On family 15h processors default is no sw prefetch if (FLAG_IS_DEFAULT(AllocatePrefetchStyle)) { AllocatePrefetchStyle = 0; } // Also, if some other prefetch style is specified, default instruction type is PREFETCHW if (FLAG_IS_DEFAULT(AllocatePrefetchInstr)) { AllocatePrefetchInstr = 3; } // On family 15h processors use XMM and UnalignedLoadStores for Array Copy if (supports_sse2() && FLAG_IS_DEFAULT(UseXMMForArrayCopy)) { UseXMMForArrayCopy = true; } if (supports_sse2() && FLAG_IS_DEFAULT(UseUnalignedLoadStores)) { UseUnalignedLoadStores = true; } } #ifdef COMPILER2 if (MaxVectorSize > 16) { // Limit vectors size to 16 bytes on current AMD cpus. FLAG_SET_DEFAULT(MaxVectorSize, 16); } #endif // COMPILER2 } if( is_intel() ) { // Intel cpus specific settings if( FLAG_IS_DEFAULT(UseStoreImmI16) ) { UseStoreImmI16 = false; // don't use it on Intel cpus } if( cpu_family() == 6 || cpu_family() == 15 ) { if( FLAG_IS_DEFAULT(UseAddressNop) ) { // Use it on all Intel cpus starting from PentiumPro UseAddressNop = true; } } if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) { UseXmmLoadAndClearUpper = true; // use movsd on all Intel cpus } if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) { if( supports_sse3() ) { UseXmmRegToRegMoveAll = true; // use movaps, movapd on new Intel cpus } else { UseXmmRegToRegMoveAll = false; } } if( cpu_family() == 6 && supports_sse3() ) { // New Intel cpus #ifdef COMPILER2 if( FLAG_IS_DEFAULT(MaxLoopPad) ) { // For new Intel cpus do the next optimization: // don't align the beginning of a loop if there are enough instructions // left (NumberOfLoopInstrToAlign defined in c2_globals.hpp) // in current fetch line (OptoLoopAlignment) or the padding // is big (> MaxLoopPad). // Set MaxLoopPad to 11 for new Intel cpus to reduce number of // generated NOP instructions. 11 is the largest size of one // address NOP instruction '0F 1F' (see Assembler::nop(i)). MaxLoopPad = 11; } #endif // COMPILER2 if (FLAG_IS_DEFAULT(UseXMMForArrayCopy)) { UseXMMForArrayCopy = true; // use SSE2 movq on new Intel cpus } if (supports_sse4_2() && supports_ht()) { // Newest Intel cpus if (FLAG_IS_DEFAULT(UseUnalignedLoadStores)) { UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus } } if (supports_sse4_2()) { if (FLAG_IS_DEFAULT(UseSSE42Intrinsics)) { FLAG_SET_DEFAULT(UseSSE42Intrinsics, true); } } else { if (UseSSE42Intrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) { warning("SSE4.2 intrinsics require SSE4.2 instructions or higher. Intrinsics will be disabled."); } FLAG_SET_DEFAULT(UseSSE42Intrinsics, false); } } if ((cpu_family() == 0x06) && ((extended_cpu_model() == 0x36) || // Centerton (extended_cpu_model() == 0x37) || // Silvermont (extended_cpu_model() == 0x4D))) { #ifdef COMPILER2 if (FLAG_IS_DEFAULT(OptoScheduling)) { OptoScheduling = true; } #endif if (supports_sse4_2()) { // Silvermont if (FLAG_IS_DEFAULT(UseUnalignedLoadStores)) { UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus } } } if(FLAG_IS_DEFAULT(AllocatePrefetchInstr) && supports_3dnow_prefetch()) { AllocatePrefetchInstr = 3; } } #ifdef _LP64 if (UseSSE42Intrinsics) { if (FLAG_IS_DEFAULT(UseVectorizedMismatchIntrinsic)) { UseVectorizedMismatchIntrinsic = true; } } else if (UseVectorizedMismatchIntrinsic) { if (!FLAG_IS_DEFAULT(UseVectorizedMismatchIntrinsic)) warning("vectorizedMismatch intrinsics are not available on this CPU"); FLAG_SET_DEFAULT(UseVectorizedMismatchIntrinsic, false); } #else if (UseVectorizedMismatchIntrinsic) { if (!FLAG_IS_DEFAULT(UseVectorizedMismatchIntrinsic)) { warning("vectorizedMismatch intrinsic is not available in 32-bit VM"); } FLAG_SET_DEFAULT(UseVectorizedMismatchIntrinsic, false); } #endif // _LP64 // Use count leading zeros count instruction if available. if (supports_lzcnt()) { if (FLAG_IS_DEFAULT(UseCountLeadingZerosInstruction)) { UseCountLeadingZerosInstruction = true; } } else if (UseCountLeadingZerosInstruction) { warning("lzcnt instruction is not available on this CPU"); FLAG_SET_DEFAULT(UseCountLeadingZerosInstruction, false); } // Use count trailing zeros instruction if available if (supports_bmi1()) { // tzcnt does not require VEX prefix if (FLAG_IS_DEFAULT(UseCountTrailingZerosInstruction)) { if (!UseBMI1Instructions && !FLAG_IS_DEFAULT(UseBMI1Instructions)) { // Don't use tzcnt if BMI1 is switched off on command line. UseCountTrailingZerosInstruction = false; } else { UseCountTrailingZerosInstruction = true; } } } else if (UseCountTrailingZerosInstruction) { warning("tzcnt instruction is not available on this CPU"); FLAG_SET_DEFAULT(UseCountTrailingZerosInstruction, false); } // BMI instructions (except tzcnt) use an encoding with VEX prefix. // VEX prefix is generated only when AVX > 0. if (supports_bmi1() && supports_avx()) { if (FLAG_IS_DEFAULT(UseBMI1Instructions)) { UseBMI1Instructions = true; } } else if (UseBMI1Instructions) { warning("BMI1 instructions are not available on this CPU (AVX is also required)"); FLAG_SET_DEFAULT(UseBMI1Instructions, false); } if (supports_bmi2() && supports_avx()) { if (FLAG_IS_DEFAULT(UseBMI2Instructions)) { UseBMI2Instructions = true; } } else if (UseBMI2Instructions) { warning("BMI2 instructions are not available on this CPU (AVX is also required)"); FLAG_SET_DEFAULT(UseBMI2Instructions, false); } // Use population count instruction if available. if (supports_popcnt()) { if (FLAG_IS_DEFAULT(UsePopCountInstruction)) { UsePopCountInstruction = true; } } else if (UsePopCountInstruction) { warning("POPCNT instruction is not available on this CPU"); FLAG_SET_DEFAULT(UsePopCountInstruction, false); } // Use fast-string operations if available. if (supports_erms()) { if (FLAG_IS_DEFAULT(UseFastStosb)) { UseFastStosb = true; } } else if (UseFastStosb) { warning("fast-string operations are not available on this CPU"); FLAG_SET_DEFAULT(UseFastStosb, false); } #ifdef COMPILER2 if (FLAG_IS_DEFAULT(AlignVector)) { // Modern processors allow misaligned memory operations for vectors. AlignVector = !UseUnalignedLoadStores; } #endif // COMPILER2 if( AllocatePrefetchInstr == 3 && !supports_3dnow_prefetch() ) AllocatePrefetchInstr=0; if( !supports_sse() && supports_3dnow_prefetch() ) AllocatePrefetchInstr = 3; // Allocation prefetch settings intx cache_line_size = prefetch_data_size(); if( cache_line_size > AllocatePrefetchStepSize ) AllocatePrefetchStepSize = cache_line_size; AllocatePrefetchDistance = allocate_prefetch_distance(); AllocatePrefetchStyle = allocate_prefetch_style(); if (is_intel() && cpu_family() == 6 && supports_sse3()) { if (AllocatePrefetchStyle == 2) { // watermark prefetching on Core #ifdef _LP64 AllocatePrefetchDistance = 384; #else AllocatePrefetchDistance = 320; #endif } if (supports_sse4_2() && supports_ht()) { // Nehalem based cpus AllocatePrefetchDistance = 192; if (FLAG_IS_DEFAULT(AllocatePrefetchLines)) { FLAG_SET_DEFAULT(AllocatePrefetchLines, 4); } } #ifdef COMPILER2 if (supports_sse4_2()) { if (FLAG_IS_DEFAULT(UseFPUForSpilling)) { FLAG_SET_DEFAULT(UseFPUForSpilling, true); } } #endif } #ifdef _LP64 // Prefetch settings PrefetchCopyIntervalInBytes = prefetch_copy_interval_in_bytes(); PrefetchScanIntervalInBytes = prefetch_scan_interval_in_bytes(); PrefetchFieldsAhead = prefetch_fields_ahead(); #endif if (FLAG_IS_DEFAULT(ContendedPaddingWidth) && (cache_line_size > ContendedPaddingWidth)) ContendedPaddingWidth = cache_line_size; // This machine allows unaligned memory accesses if (FLAG_IS_DEFAULT(UseUnalignedAccesses)) { FLAG_SET_DEFAULT(UseUnalignedAccesses, true); } #ifndef PRODUCT if (log_is_enabled(Info, os, cpu)) { outputStream* log = Log(os, cpu)::info_stream(); log->print_cr("Logical CPUs per core: %u", logical_processors_per_package()); log->print_cr("L1 data cache line size: %u", L1_data_cache_line_size()); log->print("UseSSE=%d", (int) UseSSE); if (UseAVX > 0) { log->print(" UseAVX=%d", (int) UseAVX); } if (UseAES) { log->print(" UseAES=1"); } #ifdef COMPILER2 if (MaxVectorSize > 0) { log->print(" MaxVectorSize=%d", (int) MaxVectorSize); } #endif log->cr(); log->print("Allocation"); if (AllocatePrefetchStyle <= 0 || UseSSE == 0 && !supports_3dnow_prefetch()) { log->print_cr(": no prefetching"); } else { log->print(" prefetching: "); if (UseSSE == 0 && supports_3dnow_prefetch()) { log->print("PREFETCHW"); } else if (UseSSE >= 1) { if (AllocatePrefetchInstr == 0) { log->print("PREFETCHNTA"); } else if (AllocatePrefetchInstr == 1) { log->print("PREFETCHT0"); } else if (AllocatePrefetchInstr == 2) { log->print("PREFETCHT2"); } else if (AllocatePrefetchInstr == 3) { log->print("PREFETCHW"); } } if (AllocatePrefetchLines > 1) { log->print_cr(" at distance %d, %d lines of %d bytes", (int) AllocatePrefetchDistance, (int) AllocatePrefetchLines, (int) AllocatePrefetchStepSize); } else { log->print_cr(" at distance %d, one line of %d bytes", (int) AllocatePrefetchDistance, (int) AllocatePrefetchStepSize); } } if (PrefetchCopyIntervalInBytes > 0) { log->print_cr("PrefetchCopyIntervalInBytes %d", (int) PrefetchCopyIntervalInBytes); } if (PrefetchScanIntervalInBytes > 0) { log->print_cr("PrefetchScanIntervalInBytes %d", (int) PrefetchScanIntervalInBytes); } if (PrefetchFieldsAhead > 0) { log->print_cr("PrefetchFieldsAhead %d", (int) PrefetchFieldsAhead); } if (ContendedPaddingWidth > 0) { log->print_cr("ContendedPaddingWidth %d", (int) ContendedPaddingWidth); } } #endif // !PRODUCT } bool VM_Version::use_biased_locking() { #if INCLUDE_RTM_OPT // RTM locking is most useful when there is high lock contention and // low data contention. With high lock contention the lock is usually // inflated and biased locking is not suitable for that case. // RTM locking code requires that biased locking is off. // Note: we can't switch off UseBiasedLocking in get_processor_features() // because it is used by Thread::allocate() which is called before // VM_Version::initialize(). if (UseRTMLocking && UseBiasedLocking) { if (FLAG_IS_DEFAULT(UseBiasedLocking)) { FLAG_SET_DEFAULT(UseBiasedLocking, false); } else { warning("Biased locking is not supported with RTM locking; ignoring UseBiasedLocking flag." ); UseBiasedLocking = false; } } #endif return UseBiasedLocking; } void VM_Version::initialize() { ResourceMark rm; // Making this stub must be FIRST use of assembler stub_blob = BufferBlob::create("get_cpu_info_stub", stub_size); if (stub_blob == NULL) { vm_exit_during_initialization("Unable to allocate get_cpu_info_stub"); } CodeBuffer c(stub_blob); VM_Version_StubGenerator g(&c); get_cpu_info_stub = CAST_TO_FN_PTR(get_cpu_info_stub_t, g.generate_get_cpu_info()); get_processor_features(); }