/* * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef CPU_X86_VM_MACROASSEMBLER_X86_HPP #define CPU_X86_VM_MACROASSEMBLER_X86_HPP #include "asm/assembler.hpp" #include "utilities/macros.hpp" #include "runtime/rtmLocking.hpp" // MacroAssembler extends Assembler by frequently used macros. // // Instructions for which a 'better' code sequence exists depending // on arguments should also go in here. class MacroAssembler: public Assembler { friend class LIR_Assembler; friend class Runtime1; // as_Address() protected: Address as_Address(AddressLiteral adr); Address as_Address(ArrayAddress adr); // Support for VM calls // // This is the base routine called by the different versions of call_VM_leaf. The interpreter // may customize this version by overriding it for its purposes (e.g., to save/restore // additional registers when doing a VM call). #ifdef CC_INTERP // c++ interpreter never wants to use interp_masm version of call_VM #define VIRTUAL #else #define VIRTUAL virtual #endif #define COMMA , VIRTUAL void call_VM_leaf_base( address entry_point, // the entry point int number_of_arguments // the number of arguments to pop after the call ); // This is the base routine called by the different versions of call_VM. The interpreter // may customize this version by overriding it for its purposes (e.g., to save/restore // additional registers when doing a VM call). // // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base // returns the register which contains the thread upon return. If a thread register has been // specified, the return value will correspond to that register. If no last_java_sp is specified // (noreg) than rsp will be used instead. VIRTUAL void call_VM_base( // returns the register containing the thread upon return Register oop_result, // where an oop-result ends up if any; use noreg otherwise Register java_thread, // the thread if computed before ; use noreg otherwise Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise address entry_point, // the entry point int number_of_arguments, // the number of arguments (w/o thread) to pop after the call bool check_exceptions // whether to check for pending exceptions after return ); // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code. // The implementation is only non-empty for the InterpreterMacroAssembler, // as only the interpreter handles PopFrame and ForceEarlyReturn requests. virtual void check_and_handle_popframe(Register java_thread); virtual void check_and_handle_earlyret(Register java_thread); void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true); // helpers for FPU flag access // tmp is a temporary register, if none is available use noreg void save_rax (Register tmp); void restore_rax(Register tmp); public: MacroAssembler(CodeBuffer* code) : Assembler(code) {} // Support for NULL-checks // // Generates code that causes a NULL OS exception if the content of reg is NULL. // If the accessed location is M[reg + offset] and the offset is known, provide the // offset. No explicit code generation is needed if the offset is within a certain // range (0 <= offset <= page_size). void null_check(Register reg, int offset = -1); static bool needs_explicit_null_check(intptr_t offset); // Required platform-specific helpers for Label::patch_instructions. // They _shadow_ the declarations in AbstractAssembler, which are undefined. void pd_patch_instruction(address branch, address target) { unsigned char op = branch[0]; assert(op == 0xE8 /* call */ || op == 0xE9 /* jmp */ || op == 0xEB /* short jmp */ || (op & 0xF0) == 0x70 /* short jcc */ || op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ || op == 0xC7 && branch[1] == 0xF8 /* xbegin */, "Invalid opcode at patch point"); if (op == 0xEB || (op & 0xF0) == 0x70) { // short offset operators (jmp and jcc) char* disp = (char*) &branch[1]; int imm8 = target - (address) &disp[1]; guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset"); *disp = imm8; } else { int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1]; int imm32 = target - (address) &disp[1]; *disp = imm32; } } // The following 4 methods return the offset of the appropriate move instruction // Support for fast byte/short loading with zero extension (depending on particular CPU) int load_unsigned_byte(Register dst, Address src); int load_unsigned_short(Register dst, Address src); // Support for fast byte/short loading with sign extension (depending on particular CPU) int load_signed_byte(Register dst, Address src); int load_signed_short(Register dst, Address src); // Support for sign-extension (hi:lo = extend_sign(lo)) void extend_sign(Register hi, Register lo); // Load and store values by size and signed-ness void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg); void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg); // Support for inc/dec with optimal instruction selection depending on value void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; } void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; } void decrementl(Address dst, int value = 1); void decrementl(Register reg, int value = 1); void decrementq(Register reg, int value = 1); void decrementq(Address dst, int value = 1); void incrementl(Address dst, int value = 1); void incrementl(Register reg, int value = 1); void incrementq(Register reg, int value = 1); void incrementq(Address dst, int value = 1); // Support optimal SSE move instructions. void movflt(XMMRegister dst, XMMRegister src) { if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; } else { movss (dst, src); return; } } void movflt(XMMRegister dst, Address src) { movss(dst, src); } void movflt(XMMRegister dst, AddressLiteral src); void movflt(Address dst, XMMRegister src) { movss(dst, src); } void movdbl(XMMRegister dst, XMMRegister src) { if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; } else { movsd (dst, src); return; } } void movdbl(XMMRegister dst, AddressLiteral src); void movdbl(XMMRegister dst, Address src) { if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; } else { movlpd(dst, src); return; } } void movdbl(Address dst, XMMRegister src) { movsd(dst, src); } void incrementl(AddressLiteral dst); void incrementl(ArrayAddress dst); void incrementq(AddressLiteral dst); // Alignment void align(int modulus); void align(int modulus, int target); // A 5 byte nop that is safe for patching (see patch_verified_entry) void fat_nop(); // Stack frame creation/removal void enter(); void leave(); // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information) // The pointer will be loaded into the thread register. void get_thread(Register thread); // Support for VM calls // // It is imperative that all calls into the VM are handled via the call_VM macros. // They make sure that the stack linkage is setup correctly. call_VM's correspond // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points. void call_VM(Register oop_result, address entry_point, bool check_exceptions = true); void call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions = true); void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true); void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true); // Overloadings with last_Java_sp void call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true); void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true); void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true); void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true); void get_vm_result (Register oop_result, Register thread); void get_vm_result_2(Register metadata_result, Register thread); // These always tightly bind to MacroAssembler::call_VM_base // bypassing the virtual implementation void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true); void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true); void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true); void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true); void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true); void call_VM_leaf(address entry_point, int number_of_arguments = 0); void call_VM_leaf(address entry_point, Register arg_1); void call_VM_leaf(address entry_point, Register arg_1, Register arg_2); void call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3); // These always tightly bind to MacroAssembler::call_VM_leaf_base // bypassing the virtual implementation void super_call_VM_leaf(address entry_point); void super_call_VM_leaf(address entry_point, Register arg_1); void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2); void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3); void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4); // last Java Frame (fills frame anchor) void set_last_Java_frame(Register thread, Register last_java_sp, Register last_java_fp, address last_java_pc); // thread in the default location (r15_thread on 64bit) void set_last_Java_frame(Register last_java_sp, Register last_java_fp, address last_java_pc); void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc); // thread in the default location (r15_thread on 64bit) void reset_last_Java_frame(bool clear_fp, bool clear_pc); // Stores void store_check(Register obj); // store check for obj - register is destroyed afterwards void store_check(Register obj, Address dst); // same as above, dst is exact store location (reg. is destroyed) #if INCLUDE_ALL_GCS void g1_write_barrier_pre(Register obj, Register pre_val, Register thread, Register tmp, bool tosca_live, bool expand_call); void g1_write_barrier_post(Register store_addr, Register new_val, Register thread, Register tmp, Register tmp2); #endif // INCLUDE_ALL_GCS // C 'boolean' to Java boolean: x == 0 ? 0 : 1 void c2bool(Register x); // C++ bool manipulation void movbool(Register dst, Address src); void movbool(Address dst, bool boolconst); void movbool(Address dst, Register src); void testbool(Register dst); // oop manipulations void load_klass(Register dst, Register src); void store_klass(Register dst, Register src); void load_heap_oop(Register dst, Address src); void load_heap_oop_not_null(Register dst, Address src); void store_heap_oop(Address dst, Register src); void cmp_heap_oop(Register src1, Address src2, Register tmp = noreg); // Used for storing NULL. All other oop constants should be // stored using routines that take a jobject. void store_heap_oop_null(Address dst); void load_prototype_header(Register dst, Register src); #ifdef _LP64 void store_klass_gap(Register dst, Register src); // This dummy is to prevent a call to store_heap_oop from // converting a zero (like NULL) into a Register by giving // the compiler two choices it can't resolve void store_heap_oop(Address dst, void* dummy); void encode_heap_oop(Register r); void decode_heap_oop(Register r); void encode_heap_oop_not_null(Register r); void decode_heap_oop_not_null(Register r); void encode_heap_oop_not_null(Register dst, Register src); void decode_heap_oop_not_null(Register dst, Register src); void set_narrow_oop(Register dst, jobject obj); void set_narrow_oop(Address dst, jobject obj); void cmp_narrow_oop(Register dst, jobject obj); void cmp_narrow_oop(Address dst, jobject obj); void encode_klass_not_null(Register r); void decode_klass_not_null(Register r); void encode_klass_not_null(Register dst, Register src); void decode_klass_not_null(Register dst, Register src); void set_narrow_klass(Register dst, Klass* k); void set_narrow_klass(Address dst, Klass* k); void cmp_narrow_klass(Register dst, Klass* k); void cmp_narrow_klass(Address dst, Klass* k); // Returns the byte size of the instructions generated by decode_klass_not_null() // when compressed klass pointers are being used. static int instr_size_for_decode_klass_not_null(); // if heap base register is used - reinit it with the correct value void reinit_heapbase(); DEBUG_ONLY(void verify_heapbase(const char* msg);) #endif // _LP64 // Int division/remainder for Java // (as idivl, but checks for special case as described in JVM spec.) // returns idivl instruction offset for implicit exception handling int corrected_idivl(Register reg); // Long division/remainder for Java // (as idivq, but checks for special case as described in JVM spec.) // returns idivq instruction offset for implicit exception handling int corrected_idivq(Register reg); void int3(); // Long operation macros for a 32bit cpu // Long negation for Java void lneg(Register hi, Register lo); // Long multiplication for Java // (destroys contents of eax, ebx, ecx and edx) void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y // Long shifts for Java // (semantics as described in JVM spec.) void lshl(Register hi, Register lo); // hi:lo << (rcx & 0x3f) void lshr(Register hi, Register lo, bool sign_extension = false); // hi:lo >> (rcx & 0x3f) // Long compare for Java // (semantics as described in JVM spec.) void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y) // misc // Sign extension void sign_extend_short(Register reg); void sign_extend_byte(Register reg); // Division by power of 2, rounding towards 0 void division_with_shift(Register reg, int shift_value); // Compares the top-most stack entries on the FPU stack and sets the eflags as follows: // // CF (corresponds to C0) if x < y // PF (corresponds to C2) if unordered // ZF (corresponds to C3) if x = y // // The arguments are in reversed order on the stack (i.e., top of stack is first argument). // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code) void fcmp(Register tmp); // Variant of the above which allows y to be further down the stack // and which only pops x and y if specified. If pop_right is // specified then pop_left must also be specified. void fcmp(Register tmp, int index, bool pop_left, bool pop_right); // Floating-point comparison for Java // Compares the top-most stack entries on the FPU stack and stores the result in dst. // The arguments are in reversed order on the stack (i.e., top of stack is first argument). // (semantics as described in JVM spec.) void fcmp2int(Register dst, bool unordered_is_less); // Variant of the above which allows y to be further down the stack // and which only pops x and y if specified. If pop_right is // specified then pop_left must also be specified. void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right); // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards) // tmp is a temporary register, if none is available use noreg void fremr(Register tmp); // same as fcmp2int, but using SSE2 void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less); void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less); // Inlined sin/cos generator for Java; must not use CPU instruction // directly on Intel as it does not have high enough precision // outside of the range [-pi/4, pi/4]. Extra argument indicate the // number of FPU stack slots in use; all but the topmost will // require saving if a slow case is necessary. Assumes argument is // on FP TOS; result is on FP TOS. No cpu registers are changed by // this code. void trigfunc(char trig, int num_fpu_regs_in_use = 1); // branch to L if FPU flag C2 is set/not set // tmp is a temporary register, if none is available use noreg void jC2 (Register tmp, Label& L); void jnC2(Register tmp, Label& L); // Pop ST (ffree & fincstp combined) void fpop(); // Load float value from 'address'. If UseSSE >= 1, the value is loaded into // register xmm0. Otherwise, the value is loaded onto the FPU stack. void load_float(Address src); // Store float value to 'address'. If UseSSE >= 1, the value is stored // from register xmm0. Otherwise, the value is stored from the FPU stack. void store_float(Address dst); // Load double value from 'address'. If UseSSE >= 2, the value is loaded into // register xmm0. Otherwise, the value is loaded onto the FPU stack. void load_double(Address src); // Store double value to 'address'. If UseSSE >= 2, the value is stored // from register xmm0. Otherwise, the value is stored from the FPU stack. void store_double(Address dst); // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack void push_fTOS(); // pops double TOS element from CPU stack and pushes on FPU stack void pop_fTOS(); void empty_FPU_stack(); void push_IU_state(); void pop_IU_state(); void push_FPU_state(); void pop_FPU_state(); void push_CPU_state(); void pop_CPU_state(); // Round up to a power of two void round_to(Register reg, int modulus); // Callee saved registers handling void push_callee_saved_registers(); void pop_callee_saved_registers(); // allocation void eden_allocate( Register obj, // result: pointer to object after successful allocation Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise int con_size_in_bytes, // object size in bytes if known at compile time Register t1, // temp register Label& slow_case // continuation point if fast allocation fails ); void tlab_allocate( Register obj, // result: pointer to object after successful allocation Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise int con_size_in_bytes, // object size in bytes if known at compile time Register t1, // temp register Register t2, // temp register Label& slow_case // continuation point if fast allocation fails ); Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address void incr_allocated_bytes(Register thread, Register var_size_in_bytes, int con_size_in_bytes, Register t1 = noreg); // interface method calling void lookup_interface_method(Register recv_klass, Register intf_klass, RegisterOrConstant itable_index, Register method_result, Register scan_temp, Label& no_such_interface); // virtual method calling void lookup_virtual_method(Register recv_klass, RegisterOrConstant vtable_index, Register method_result); // Test sub_klass against super_klass, with fast and slow paths. // The fast path produces a tri-state answer: yes / no / maybe-slow. // One of the three labels can be NULL, meaning take the fall-through. // If super_check_offset is -1, the value is loaded up from super_klass. // No registers are killed, except temp_reg. void check_klass_subtype_fast_path(Register sub_klass, Register super_klass, Register temp_reg, Label* L_success, Label* L_failure, Label* L_slow_path, RegisterOrConstant super_check_offset = RegisterOrConstant(-1)); // The rest of the type check; must be wired to a corresponding fast path. // It does not repeat the fast path logic, so don't use it standalone. // The temp_reg and temp2_reg can be noreg, if no temps are available. // Updates the sub's secondary super cache as necessary. // If set_cond_codes, condition codes will be Z on success, NZ on failure. void check_klass_subtype_slow_path(Register sub_klass, Register super_klass, Register temp_reg, Register temp2_reg, Label* L_success, Label* L_failure, bool set_cond_codes = false); // Simplified, combined version, good for typical uses. // Falls through on failure. void check_klass_subtype(Register sub_klass, Register super_klass, Register temp_reg, Label& L_success); // method handles (JSR 292) Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0); //---- void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0 // Debugging // only if +VerifyOops // TODO: Make these macros with file and line like sparc version! void verify_oop(Register reg, const char* s = "broken oop"); void verify_oop_addr(Address addr, const char * s = "broken oop addr"); // TODO: verify method and klass metadata (compare against vptr?) void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {} void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){} #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__) #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__) // only if +VerifyFPU void verify_FPU(int stack_depth, const char* s = "illegal FPU state"); // Verify or restore cpu control state after JNI call void restore_cpu_control_state_after_jni(); // prints msg, dumps registers and stops execution void stop(const char* msg); // prints msg and continues void warn(const char* msg); // dumps registers and other state void print_state(); static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg); static void debug64(char* msg, int64_t pc, int64_t regs[]); static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip); static void print_state64(int64_t pc, int64_t regs[]); void os_breakpoint(); void untested() { stop("untested"); } void unimplemented(const char* what = "") { char* b = new char[1024]; jio_snprintf(b, 1024, "unimplemented: %s", what); stop(b); } void should_not_reach_here() { stop("should not reach here"); } void print_CPU_state(); // Stack overflow checking void bang_stack_with_offset(int offset) { // stack grows down, caller passes positive offset assert(offset > 0, "must bang with negative offset"); movl(Address(rsp, (-offset)), rax); } // Writes to stack successive pages until offset reached to check for // stack overflow + shadow pages. Also, clobbers tmp void bang_stack_size(Register size, Register tmp); virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr, Register tmp, int offset); // Support for serializing memory accesses between threads void serialize_memory(Register thread, Register tmp); void verify_tlab(); // Biased locking support // lock_reg and obj_reg must be loaded up with the appropriate values. // swap_reg must be rax, and is killed. // tmp_reg is optional. If it is supplied (i.e., != noreg) it will // be killed; if not supplied, push/pop will be used internally to // allocate a temporary (inefficient, avoid if possible). // Optional slow case is for implementations (interpreter and C1) which branch to // slow case directly. Leaves condition codes set for C2's Fast_Lock node. // Returns offset of first potentially-faulting instruction for null // check info (currently consumed only by C1). If // swap_reg_contains_mark is true then returns -1 as it is assumed // the calling code has already passed any potential faults. int biased_locking_enter(Register lock_reg, Register obj_reg, Register swap_reg, Register tmp_reg, bool swap_reg_contains_mark, Label& done, Label* slow_case = NULL, BiasedLockingCounters* counters = NULL); void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done); #ifdef COMPILER2 // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file. // See full desription in macroAssembler_x86.cpp. void fast_lock(Register obj, Register box, Register tmp, Register scr, Register cx1, Register cx2, BiasedLockingCounters* counters, RTMLockingCounters* rtm_counters, RTMLockingCounters* stack_rtm_counters, Metadata* method_data, bool use_rtm, bool profile_rtm); void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm); #if INCLUDE_RTM_OPT void rtm_counters_update(Register abort_status, Register rtm_counters); void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel); void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg, RTMLockingCounters* rtm_counters, Metadata* method_data); void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg, RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm); void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel); void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel); void rtm_stack_locking(Register obj, Register tmp, Register scr, Register retry_on_abort_count, RTMLockingCounters* stack_rtm_counters, Metadata* method_data, bool profile_rtm, Label& DONE_LABEL, Label& IsInflated); void rtm_inflated_locking(Register obj, Register box, Register tmp, Register scr, Register retry_on_busy_count, Register retry_on_abort_count, RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm, Label& DONE_LABEL); #endif #endif Condition negate_condition(Condition cond); // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit // operands. In general the names are modified to avoid hiding the instruction in Assembler // so that we don't need to implement all the varieties in the Assembler with trivial wrappers // here in MacroAssembler. The major exception to this rule is call // Arithmetics void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; } void addptr(Address dst, Register src); void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); } void addptr(Register dst, int32_t src); void addptr(Register dst, Register src); void addptr(Register dst, RegisterOrConstant src) { if (src.is_constant()) addptr(dst, (int) src.as_constant()); else addptr(dst, src.as_register()); } void andptr(Register dst, int32_t src); void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; } void cmp8(AddressLiteral src1, int imm); // renamed to drag out the casting of address to int32_t/intptr_t void cmp32(Register src1, int32_t imm); void cmp32(AddressLiteral src1, int32_t imm); // compare reg - mem, or reg - &mem void cmp32(Register src1, AddressLiteral src2); void cmp32(Register src1, Address src2); #ifndef _LP64 void cmpklass(Address dst, Metadata* obj); void cmpklass(Register dst, Metadata* obj); void cmpoop(Address dst, jobject obj); void cmpoop(Register dst, jobject obj); #endif // _LP64 // NOTE src2 must be the lval. This is NOT an mem-mem compare void cmpptr(Address src1, AddressLiteral src2); void cmpptr(Register src1, AddressLiteral src2); void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; } void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; } // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; } void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; } void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; } // cmp64 to avoild hiding cmpq void cmp64(Register src1, AddressLiteral src); void cmpxchgptr(Register reg, Address adr); void locked_cmpxchgptr(Register reg, AddressLiteral adr); void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); } void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); } void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); } void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); } void shlptr(Register dst, int32_t shift); void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); } void shrptr(Register dst, int32_t shift); void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); } void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); } void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); } void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); } void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); } void subptr(Register dst, int32_t src); // Force generation of a 4 byte immediate value even if it fits into 8bit void subptr_imm32(Register dst, int32_t src); void subptr(Register dst, Register src); void subptr(Register dst, RegisterOrConstant src) { if (src.is_constant()) subptr(dst, (int) src.as_constant()); else subptr(dst, src.as_register()); } void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); } void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); } void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; } void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; } void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; } // Helper functions for statistics gathering. // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes. void cond_inc32(Condition cond, AddressLiteral counter_addr); // Unconditional atomic increment. void atomic_incl(Address counter_addr); void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1); #ifdef _LP64 void atomic_incq(Address counter_addr); void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1); #endif void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; } void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; } void lea(Register dst, AddressLiteral adr); void lea(Address dst, AddressLiteral adr); void lea(Register dst, Address adr) { Assembler::lea(dst, adr); } void leal32(Register dst, Address src) { leal(dst, src); } // Import other testl() methods from the parent class or else // they will be hidden by the following overriding declaration. using Assembler::testl; void testl(Register dst, AddressLiteral src); void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); } void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); } void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); } void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); } void testptr(Register src, int32_t imm32) { LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); } void testptr(Register src1, Register src2); void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); } void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); } // Calls void call(Label& L, relocInfo::relocType rtype); void call(Register entry); // NOTE: this call tranfers to the effective address of entry NOT // the address contained by entry. This is because this is more natural // for jumps/calls. void call(AddressLiteral entry); // Emit the CompiledIC call idiom void ic_call(address entry); // Jumps // NOTE: these jumps tranfer to the effective address of dst NOT // the address contained by dst. This is because this is more natural // for jumps/calls. void jump(AddressLiteral dst); void jump_cc(Condition cc, AddressLiteral dst); // 32bit can do a case table jump in one instruction but we no longer allow the base // to be installed in the Address class. This jump will tranfers to the address // contained in the location described by entry (not the address of entry) void jump(ArrayAddress entry); // Floating void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); } void andpd(XMMRegister dst, AddressLiteral src); void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); } void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); } void andps(XMMRegister dst, AddressLiteral src); void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); } void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); } void comiss(XMMRegister dst, AddressLiteral src); void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); } void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); } void comisd(XMMRegister dst, AddressLiteral src); void fadd_s(Address src) { Assembler::fadd_s(src); } void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); } void fldcw(Address src) { Assembler::fldcw(src); } void fldcw(AddressLiteral src); void fld_s(int index) { Assembler::fld_s(index); } void fld_s(Address src) { Assembler::fld_s(src); } void fld_s(AddressLiteral src); void fld_d(Address src) { Assembler::fld_d(src); } void fld_d(AddressLiteral src); void fld_x(Address src) { Assembler::fld_x(src); } void fld_x(AddressLiteral src); void fmul_s(Address src) { Assembler::fmul_s(src); } void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); } void ldmxcsr(Address src) { Assembler::ldmxcsr(src); } void ldmxcsr(AddressLiteral src); // compute pow(x,y) and exp(x) with x86 instructions. Don't cover // all corner cases and may result in NaN and require fallback to a // runtime call. void fast_pow(); void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx, Register rdx, Register tmp); void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx, Register rdx, Register tmp1 LP64_ONLY(COMMA Register tmp2)); void increase_precision(); void restore_precision(); // computes pow(x,y). Fallback to runtime call included. void pow_with_fallback(int num_fpu_regs_in_use) { pow_or_exp(num_fpu_regs_in_use); } private: // call runtime as a fallback for trig functions and pow/exp. void fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use); // computes 2^(Ylog2X); Ylog2X in ST(0) void pow_exp_core_encoding(); // computes pow(x,y) or exp(x). Fallback to runtime call included. void pow_or_exp(int num_fpu_regs_in_use); // these are private because users should be doing movflt/movdbl void movss(Address dst, XMMRegister src) { Assembler::movss(dst, src); } void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); } void movss(XMMRegister dst, Address src) { Assembler::movss(dst, src); } void movss(XMMRegister dst, AddressLiteral src); void movlpd(XMMRegister dst, Address src) {Assembler::movlpd(dst, src); } void movlpd(XMMRegister dst, AddressLiteral src); public: void addsd(XMMRegister dst, XMMRegister src) { Assembler::addsd(dst, src); } void addsd(XMMRegister dst, Address src) { Assembler::addsd(dst, src); } void addsd(XMMRegister dst, AddressLiteral src); void addss(XMMRegister dst, XMMRegister src) { Assembler::addss(dst, src); } void addss(XMMRegister dst, Address src) { Assembler::addss(dst, src); } void addss(XMMRegister dst, AddressLiteral src); void divsd(XMMRegister dst, XMMRegister src) { Assembler::divsd(dst, src); } void divsd(XMMRegister dst, Address src) { Assembler::divsd(dst, src); } void divsd(XMMRegister dst, AddressLiteral src); void divss(XMMRegister dst, XMMRegister src) { Assembler::divss(dst, src); } void divss(XMMRegister dst, Address src) { Assembler::divss(dst, src); } void divss(XMMRegister dst, AddressLiteral src); // Move Unaligned Double Quadword void movdqu(Address dst, XMMRegister src) { Assembler::movdqu(dst, src); } void movdqu(XMMRegister dst, Address src) { Assembler::movdqu(dst, src); } void movdqu(XMMRegister dst, XMMRegister src) { Assembler::movdqu(dst, src); } void movdqu(XMMRegister dst, AddressLiteral src); // Move Aligned Double Quadword void movdqa(XMMRegister dst, Address src) { Assembler::movdqa(dst, src); } void movdqa(XMMRegister dst, XMMRegister src) { Assembler::movdqa(dst, src); } void movdqa(XMMRegister dst, AddressLiteral src); void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); } void movsd(Address dst, XMMRegister src) { Assembler::movsd(dst, src); } void movsd(XMMRegister dst, Address src) { Assembler::movsd(dst, src); } void movsd(XMMRegister dst, AddressLiteral src); void mulpd(XMMRegister dst, XMMRegister src) { Assembler::mulpd(dst, src); } void mulpd(XMMRegister dst, Address src) { Assembler::mulpd(dst, src); } void mulpd(XMMRegister dst, AddressLiteral src); void mulsd(XMMRegister dst, XMMRegister src) { Assembler::mulsd(dst, src); } void mulsd(XMMRegister dst, Address src) { Assembler::mulsd(dst, src); } void mulsd(XMMRegister dst, AddressLiteral src); void mulss(XMMRegister dst, XMMRegister src) { Assembler::mulss(dst, src); } void mulss(XMMRegister dst, Address src) { Assembler::mulss(dst, src); } void mulss(XMMRegister dst, AddressLiteral src); // Carry-Less Multiplication Quadword void pclmulldq(XMMRegister dst, XMMRegister src) { // 0x00 - multiply lower 64 bits [0:63] Assembler::pclmulqdq(dst, src, 0x00); } void pclmulhdq(XMMRegister dst, XMMRegister src) { // 0x11 - multiply upper 64 bits [64:127] Assembler::pclmulqdq(dst, src, 0x11); } void sqrtsd(XMMRegister dst, XMMRegister src) { Assembler::sqrtsd(dst, src); } void sqrtsd(XMMRegister dst, Address src) { Assembler::sqrtsd(dst, src); } void sqrtsd(XMMRegister dst, AddressLiteral src); void sqrtss(XMMRegister dst, XMMRegister src) { Assembler::sqrtss(dst, src); } void sqrtss(XMMRegister dst, Address src) { Assembler::sqrtss(dst, src); } void sqrtss(XMMRegister dst, AddressLiteral src); void subsd(XMMRegister dst, XMMRegister src) { Assembler::subsd(dst, src); } void subsd(XMMRegister dst, Address src) { Assembler::subsd(dst, src); } void subsd(XMMRegister dst, AddressLiteral src); void subss(XMMRegister dst, XMMRegister src) { Assembler::subss(dst, src); } void subss(XMMRegister dst, Address src) { Assembler::subss(dst, src); } void subss(XMMRegister dst, AddressLiteral src); void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); } void ucomiss(XMMRegister dst, Address src) { Assembler::ucomiss(dst, src); } void ucomiss(XMMRegister dst, AddressLiteral src); void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); } void ucomisd(XMMRegister dst, Address src) { Assembler::ucomisd(dst, src); } void ucomisd(XMMRegister dst, AddressLiteral src); // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); } void xorpd(XMMRegister dst, Address src) { Assembler::xorpd(dst, src); } void xorpd(XMMRegister dst, AddressLiteral src); // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); } void xorps(XMMRegister dst, Address src) { Assembler::xorps(dst, src); } void xorps(XMMRegister dst, AddressLiteral src); // Shuffle Bytes void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); } void pshufb(XMMRegister dst, Address src) { Assembler::pshufb(dst, src); } void pshufb(XMMRegister dst, AddressLiteral src); // AVX 3-operands instructions void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); } void vaddsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vaddsd(dst, nds, src); } void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src); void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); } void vaddss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vaddss(dst, nds, src); } void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src); void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); } void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); } void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len); void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); } void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); } void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len); void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); } void vdivsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vdivsd(dst, nds, src); } void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src); void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); } void vdivss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vdivss(dst, nds, src); } void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src); void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); } void vmulsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vmulsd(dst, nds, src); } void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src); void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); } void vmulss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vmulss(dst, nds, src); } void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src); void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); } void vsubsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vsubsd(dst, nds, src); } void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src); void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); } void vsubss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vsubss(dst, nds, src); } void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src); void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src); void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src); // AVX Vector instructions void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); } void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); } void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len); void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); } void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); } void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len); void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2 Assembler::vpxor(dst, nds, src, vector_len); else Assembler::vxorpd(dst, nds, src, vector_len); } void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2 Assembler::vpxor(dst, nds, src, vector_len); else Assembler::vxorpd(dst, nds, src, vector_len); } // Simple version for AVX2 256bit vectors void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); } void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); } // Move packed integer values from low 128 bit to hign 128 bit in 256 bit vector. void vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) { if (UseAVX > 1) // vinserti128h is available only in AVX2 Assembler::vinserti128h(dst, nds, src); else Assembler::vinsertf128h(dst, nds, src); } // Carry-Less Multiplication Quadword void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) { // 0x00 - multiply lower 64 bits [0:63] Assembler::vpclmulqdq(dst, nds, src, 0x00); } void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) { // 0x11 - multiply upper 64 bits [64:127] Assembler::vpclmulqdq(dst, nds, src, 0x11); } // Data void cmov32( Condition cc, Register dst, Address src); void cmov32( Condition cc, Register dst, Register src); void cmov( Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); } void cmovptr(Condition cc, Register dst, Address src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); } void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); } void movoop(Register dst, jobject obj); void movoop(Address dst, jobject obj); void mov_metadata(Register dst, Metadata* obj); void mov_metadata(Address dst, Metadata* obj); void movptr(ArrayAddress dst, Register src); // can this do an lea? void movptr(Register dst, ArrayAddress src); void movptr(Register dst, Address src); #ifdef _LP64 void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1); #else void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit #endif void movptr(Register dst, intptr_t src); void movptr(Register dst, Register src); void movptr(Address dst, intptr_t src); void movptr(Address dst, Register src); void movptr(Register dst, RegisterOrConstant src) { if (src.is_constant()) movptr(dst, src.as_constant()); else movptr(dst, src.as_register()); } #ifdef _LP64 // Generally the next two are only used for moving NULL // Although there are situations in initializing the mark word where // they could be used. They are dangerous. // They only exist on LP64 so that int32_t and intptr_t are not the same // and we have ambiguous declarations. void movptr(Address dst, int32_t imm32); void movptr(Register dst, int32_t imm32); #endif // _LP64 // to avoid hiding movl void mov32(AddressLiteral dst, Register src); void mov32(Register dst, AddressLiteral src); // to avoid hiding movb void movbyte(ArrayAddress dst, int src); // Import other mov() methods from the parent class or else // they will be hidden by the following overriding declaration. using Assembler::movdl; using Assembler::movq; void movdl(XMMRegister dst, AddressLiteral src); void movq(XMMRegister dst, AddressLiteral src); // Can push value or effective address void pushptr(AddressLiteral src); void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); } void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); } void pushoop(jobject obj); void pushklass(Metadata* obj); // sign extend as need a l to ptr sized element void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); } void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); } // C2 compiled method's prolog code. void verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b); // clear memory of size 'cnt' qwords, starting at 'base'. void clear_mem(Register base, Register cnt, Register rtmp); // IndexOf strings. // Small strings are loaded through stack if they cross page boundary. void string_indexof(Register str1, Register str2, Register cnt1, Register cnt2, int int_cnt2, Register result, XMMRegister vec, Register tmp); // IndexOf for constant substrings with size >= 8 elements // which don't need to be loaded through stack. void string_indexofC8(Register str1, Register str2, Register cnt1, Register cnt2, int int_cnt2, Register result, XMMRegister vec, Register tmp); // Smallest code: we don't need to load through stack, // check string tail. // Compare strings. void string_compare(Register str1, Register str2, Register cnt1, Register cnt2, Register result, XMMRegister vec1); // Compare char[] arrays. void char_arrays_equals(bool is_array_equ, Register ary1, Register ary2, Register limit, Register result, Register chr, XMMRegister vec1, XMMRegister vec2); // Fill primitive arrays void generate_fill(BasicType t, bool aligned, Register to, Register value, Register count, Register rtmp, XMMRegister xtmp); void encode_iso_array(Register src, Register dst, Register len, XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3, XMMRegister tmp4, Register tmp5, Register result); #ifdef _LP64 void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2); void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, Register y, Register y_idx, Register z, Register carry, Register product, Register idx, Register kdx); void multiply_add_128_x_128(Register x_xstart, Register y, Register z, Register yz_idx, Register idx, Register carry, Register product, int offset); void multiply_128_x_128_bmi2_loop(Register y, Register z, Register carry, Register carry2, Register idx, Register jdx, Register yz_idx1, Register yz_idx2, Register tmp, Register tmp3, Register tmp4); void multiply_128_x_128_loop(Register x_xstart, Register y, Register z, Register yz_idx, Register idx, Register jdx, Register carry, Register product, Register carry2); void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5); void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg); void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2); void multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg); void add_one_64(Register z, Register zlen, Register carry, Register tmp1); void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4); void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg); void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg); void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg); #endif // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic. void update_byte_crc32(Register crc, Register val, Register table); void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp); // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic // Note on a naming convention: // Prefix w = register only used on a Westmere+ architecture // Prefix n = register only used on a Nehalem architecture #ifdef _LP64 void crc32c_ipl_alg4(Register in_out, uint32_t n, Register tmp1, Register tmp2, Register tmp3); #else void crc32c_ipl_alg4(Register in_out, uint32_t n, Register tmp1, Register tmp2, Register tmp3, XMMRegister xtmp1, XMMRegister xtmp2); #endif void crc32c_pclmulqdq(XMMRegister w_xtmp1, Register in_out, uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported, XMMRegister w_xtmp2, Register tmp1, Register n_tmp2, Register n_tmp3); void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2, XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, Register tmp1, Register tmp2, Register n_tmp3); void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out1, Register in_out2, Register in_out3, Register tmp1, Register tmp2, Register tmp3, XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, Register tmp4, Register tmp5, Register n_tmp6); void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register tmp6, XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, bool is_pclmulqdq_supported); // Fold 128-bit data chunk void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset); void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf); // Fold 8-bit data void fold_8bit_crc32(Register crc, Register table, Register tmp); void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp); #undef VIRTUAL }; /** * class SkipIfEqual: * * Instantiating this class will result in assembly code being output that will * jump around any code emitted between the creation of the instance and it's * automatic destruction at the end of a scope block, depending on the value of * the flag passed to the constructor, which will be checked at run-time. */ class SkipIfEqual { private: MacroAssembler* _masm; Label _label; public: SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value); ~SkipIfEqual(); }; #endif // CPU_X86_VM_MACROASSEMBLER_X86_HPP