/* * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/g1/g1BufferNodeList.hpp" #include "gc/g1/g1CardTableEntryClosure.hpp" #include "gc/g1/g1CollectedHeap.inline.hpp" #include "gc/g1/g1DirtyCardQueue.hpp" #include "gc/g1/g1FreeIdSet.hpp" #include "gc/g1/g1RedirtyCardsQueue.hpp" #include "gc/g1/g1RemSet.hpp" #include "gc/g1/g1ThreadLocalData.hpp" #include "gc/g1/heapRegionRemSet.hpp" #include "gc/shared/suspendibleThreadSet.hpp" #include "gc/shared/workgroup.hpp" #include "runtime/atomic.hpp" #include "runtime/flags/flagSetting.hpp" #include "runtime/mutexLocker.hpp" #include "runtime/safepoint.hpp" #include "runtime/thread.inline.hpp" #include "runtime/threadSMR.hpp" // Closure used for updating remembered sets and recording references that // point into the collection set while the mutator is running. // Assumed to be only executed concurrently with the mutator. Yields via // SuspendibleThreadSet after every card. class G1RefineCardConcurrentlyClosure: public G1CardTableEntryClosure { public: bool do_card_ptr(CardValue* card_ptr, uint worker_i) { G1CollectedHeap::heap()->rem_set()->refine_card_concurrently(card_ptr, worker_i); if (SuspendibleThreadSet::should_yield()) { // Caller will actually yield. return false; } // Otherwise, we finished successfully; return true. return true; } }; G1DirtyCardQueue::G1DirtyCardQueue(G1DirtyCardQueueSet* qset) : // Dirty card queues are always active, so we create them with their // active field set to true. PtrQueue(qset, true /* active */) { } G1DirtyCardQueue::~G1DirtyCardQueue() { flush(); } void G1DirtyCardQueue::handle_completed_buffer() { assert(_buf != NULL, "precondition"); BufferNode* node = BufferNode::make_node_from_buffer(_buf, index()); G1DirtyCardQueueSet* dcqs = dirty_card_qset(); if (dcqs->process_or_enqueue_completed_buffer(node)) { reset(); // Buffer fully processed, reset index. } else { allocate_buffer(); // Buffer enqueued, get a new one. } } G1DirtyCardQueueSet::G1DirtyCardQueueSet() : PtrQueueSet(), _cbl_mon(NULL), _completed_buffers_head(NULL), _completed_buffers_tail(NULL), _num_cards(0), _process_cards_threshold(ProcessCardsThresholdNever), _process_completed_buffers(false), _max_cards(MaxCardsUnlimited), _max_cards_padding(0), _free_ids(0, num_par_ids()), _processed_buffers_mut(0), _processed_buffers_rs_thread(0) { _all_active = true; } G1DirtyCardQueueSet::~G1DirtyCardQueueSet() { abandon_completed_buffers(); } // Determines how many mutator threads can process the buffers in parallel. uint G1DirtyCardQueueSet::num_par_ids() { return (uint)os::initial_active_processor_count(); } void G1DirtyCardQueueSet::initialize(Monitor* cbl_mon, BufferNode::Allocator* allocator) { PtrQueueSet::initialize(allocator); assert(_cbl_mon == NULL, "Init order issue?"); _cbl_mon = cbl_mon; } void G1DirtyCardQueueSet::handle_zero_index_for_thread(Thread* t) { G1ThreadLocalData::dirty_card_queue(t).handle_zero_index(); } void G1DirtyCardQueueSet::enqueue_completed_buffer(BufferNode* cbn) { MonitorLocker ml(_cbl_mon, Mutex::_no_safepoint_check_flag); cbn->set_next(NULL); if (_completed_buffers_tail == NULL) { assert(_completed_buffers_head == NULL, "Well-formedness"); _completed_buffers_head = cbn; _completed_buffers_tail = cbn; } else { _completed_buffers_tail->set_next(cbn); _completed_buffers_tail = cbn; } _num_cards += buffer_size() - cbn->index(); if (!process_completed_buffers() && (num_cards() > process_cards_threshold())) { set_process_completed_buffers(true); ml.notify_all(); } verify_num_cards(); } BufferNode* G1DirtyCardQueueSet::get_completed_buffer(size_t stop_at) { MutexLocker x(_cbl_mon, Mutex::_no_safepoint_check_flag); if (num_cards() <= stop_at) { return NULL; } assert(num_cards() > 0, "invariant"); assert(_completed_buffers_head != NULL, "invariant"); assert(_completed_buffers_tail != NULL, "invariant"); BufferNode* bn = _completed_buffers_head; _num_cards -= buffer_size() - bn->index(); _completed_buffers_head = bn->next(); if (_completed_buffers_head == NULL) { assert(num_cards() == 0, "invariant"); _completed_buffers_tail = NULL; set_process_completed_buffers(false); } verify_num_cards(); bn->set_next(NULL); return bn; } #ifdef ASSERT void G1DirtyCardQueueSet::verify_num_cards() const { size_t actual = 0; BufferNode* cur = _completed_buffers_head; while (cur != NULL) { actual += buffer_size() - cur->index(); cur = cur->next(); } assert(actual == _num_cards, "Num entries in completed buffers should be " SIZE_FORMAT " but are " SIZE_FORMAT, _num_cards, actual); } #endif void G1DirtyCardQueueSet::abandon_completed_buffers() { BufferNode* buffers_to_delete = NULL; { MutexLocker x(_cbl_mon, Mutex::_no_safepoint_check_flag); buffers_to_delete = _completed_buffers_head; _completed_buffers_head = NULL; _completed_buffers_tail = NULL; _num_cards = 0; set_process_completed_buffers(false); } while (buffers_to_delete != NULL) { BufferNode* bn = buffers_to_delete; buffers_to_delete = bn->next(); bn->set_next(NULL); deallocate_buffer(bn); } } void G1DirtyCardQueueSet::notify_if_necessary() { MonitorLocker ml(_cbl_mon, Mutex::_no_safepoint_check_flag); if (num_cards() > process_cards_threshold()) { set_process_completed_buffers(true); ml.notify_all(); } } // Merge lists of buffers. Notify the processing threads. // The source queue is emptied as a result. The queues // must share the monitor. void G1DirtyCardQueueSet::merge_bufferlists(G1RedirtyCardsQueueSet* src) { assert(allocator() == src->allocator(), "precondition"); const G1BufferNodeList from = src->take_all_completed_buffers(); if (from._head == NULL) return; MutexLocker x(_cbl_mon, Mutex::_no_safepoint_check_flag); if (_completed_buffers_tail == NULL) { assert(_completed_buffers_head == NULL, "Well-formedness"); _completed_buffers_head = from._head; _completed_buffers_tail = from._tail; } else { assert(_completed_buffers_head != NULL, "Well formedness"); _completed_buffers_tail->set_next(from._head); _completed_buffers_tail = from._tail; } _num_cards += from._entry_count; assert(_completed_buffers_head == NULL && _completed_buffers_tail == NULL || _completed_buffers_head != NULL && _completed_buffers_tail != NULL, "Sanity"); verify_num_cards(); } bool G1DirtyCardQueueSet::apply_closure_to_buffer(G1CardTableEntryClosure* cl, BufferNode* node, uint worker_i) { if (cl == NULL) return true; bool result = true; void** buf = BufferNode::make_buffer_from_node(node); size_t i = node->index(); size_t limit = buffer_size(); for ( ; i < limit; ++i) { CardTable::CardValue* card_ptr = static_cast(buf[i]); assert(card_ptr != NULL, "invariant"); if (!cl->do_card_ptr(card_ptr, worker_i)) { result = false; // Incomplete processing. break; } } assert(i <= buffer_size(), "invariant"); node->set_index(i); return result; } #ifndef ASSERT #define assert_fully_consumed(node, buffer_size) #else #define assert_fully_consumed(node, buffer_size) \ do { \ size_t _afc_index = (node)->index(); \ size_t _afc_size = (buffer_size); \ assert(_afc_index == _afc_size, \ "Buffer was not fully consumed as claimed: index: " \ SIZE_FORMAT ", size: " SIZE_FORMAT, \ _afc_index, _afc_size); \ } while (0) #endif // ASSERT bool G1DirtyCardQueueSet::process_or_enqueue_completed_buffer(BufferNode* node) { if (Thread::current()->is_Java_thread()) { // If the number of buffers exceeds the limit, make this Java // thread do the processing itself. We don't lock to access // buffer count or padding; it is fine to be imprecise here. The // add of padding could overflow, which is treated as unlimited. size_t limit = max_cards() + max_cards_padding(); if ((num_cards() > limit) && (limit >= max_cards())) { if (mut_process_buffer(node)) { return true; } } } enqueue_completed_buffer(node); return false; } bool G1DirtyCardQueueSet::mut_process_buffer(BufferNode* node) { uint worker_id = _free_ids.claim_par_id(); // temporarily claim an id G1RefineCardConcurrentlyClosure cl; bool result = apply_closure_to_buffer(&cl, node, worker_id); _free_ids.release_par_id(worker_id); // release the id if (result) { assert_fully_consumed(node, buffer_size()); Atomic::inc(&_processed_buffers_mut); } return result; } bool G1DirtyCardQueueSet::refine_completed_buffer_concurrently(uint worker_i, size_t stop_at) { G1RefineCardConcurrentlyClosure cl; return apply_closure_to_completed_buffer(&cl, worker_i, stop_at, false); } bool G1DirtyCardQueueSet::apply_closure_during_gc(G1CardTableEntryClosure* cl, uint worker_i) { assert_at_safepoint(); return apply_closure_to_completed_buffer(cl, worker_i, 0, true); } bool G1DirtyCardQueueSet::apply_closure_to_completed_buffer(G1CardTableEntryClosure* cl, uint worker_i, size_t stop_at, bool during_pause) { assert(!during_pause || stop_at == 0, "Should not leave any completed buffers during a pause"); BufferNode* nd = get_completed_buffer(stop_at); if (nd == NULL) { return false; } else { if (apply_closure_to_buffer(cl, nd, worker_i)) { assert_fully_consumed(nd, buffer_size()); // Done with fully processed buffer. deallocate_buffer(nd); Atomic::inc(&_processed_buffers_rs_thread); } else { // Return partially processed buffer to the queue. guarantee(!during_pause, "Should never stop early"); enqueue_completed_buffer(nd); } return true; } } void G1DirtyCardQueueSet::abandon_logs() { assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint."); abandon_completed_buffers(); // Since abandon is done only at safepoints, we can safely manipulate // these queues. struct AbandonThreadLogClosure : public ThreadClosure { virtual void do_thread(Thread* t) { G1ThreadLocalData::dirty_card_queue(t).reset(); } } closure; Threads::threads_do(&closure); G1BarrierSet::shared_dirty_card_queue().reset(); } void G1DirtyCardQueueSet::concatenate_logs() { // Iterate over all the threads, if we find a partial log add it to // the global list of logs. Temporarily turn off the limit on the number // of outstanding buffers. assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint."); size_t old_limit = max_cards(); set_max_cards(MaxCardsUnlimited); struct ConcatenateThreadLogClosure : public ThreadClosure { virtual void do_thread(Thread* t) { G1DirtyCardQueue& dcq = G1ThreadLocalData::dirty_card_queue(t); if (!dcq.is_empty()) { dcq.flush(); } } } closure; Threads::threads_do(&closure); G1BarrierSet::shared_dirty_card_queue().flush(); set_max_cards(old_limit); }