/* * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_GC_G1_HEAPREGIONMANAGER_HPP #define SHARE_GC_G1_HEAPREGIONMANAGER_HPP #include "gc/g1/g1BiasedArray.hpp" #include "gc/g1/g1CollectorPolicy.hpp" #include "gc/g1/g1RegionToSpaceMapper.hpp" #include "gc/g1/heapRegionSet.hpp" #include "gc/shared/collectorPolicy.hpp" #include "services/memoryUsage.hpp" class HeapRegion; class HeapRegionClosure; class HeapRegionClaimer; class FreeRegionList; class WorkGang; class G1HeapRegionTable : public G1BiasedMappedArray { protected: virtual HeapRegion* default_value() const { return NULL; } }; // This class keeps track of the actual heap memory, auxiliary data // and its metadata (i.e., HeapRegion instances) and the list of free regions. // // This allows maximum flexibility for deciding what to commit or uncommit given // a request from outside. // // HeapRegions are kept in the _regions array in address order. A region's // index in the array corresponds to its index in the heap (i.e., 0 is the // region at the bottom of the heap, 1 is the one after it, etc.). Two // regions that are consecutive in the array should also be adjacent in the // address space (i.e., region(i).end() == region(i+1).bottom(). // // We create a HeapRegion when we commit the region's address space // for the first time. When we uncommit the address space of a // region we retain the HeapRegion to be able to re-use it in the // future (in case we recommit it). // // We keep track of three lengths: // // * _num_committed (returned by length()) is the number of currently // committed regions. These may not be contiguous. // * _allocated_heapregions_length (not exposed outside this class) is the // number of regions+1 for which we have HeapRegions. // * max_length() returns the maximum number of regions the heap can have. // class HeapRegionManager: public CHeapObj { friend class VMStructs; friend class HeapRegionClaimer; G1RegionToSpaceMapper* _bot_mapper; G1RegionToSpaceMapper* _cardtable_mapper; G1RegionToSpaceMapper* _card_counts_mapper; // Each bit in this bitmap indicates that the corresponding region is available // for allocation. CHeapBitMap _available_map; // The number of regions committed in the heap. uint _num_committed; // Internal only. The highest heap region +1 we allocated a HeapRegion instance for. uint _allocated_heapregions_length; HeapWord* heap_bottom() const { return _regions.bottom_address_mapped(); } HeapWord* heap_end() const {return _regions.end_address_mapped(); } // Pass down commit calls to the VirtualSpace. void commit_regions(uint index, size_t num_regions = 1, WorkGang* pretouch_gang = NULL); // Notify other data structures about change in the heap layout. void update_committed_space(HeapWord* old_end, HeapWord* new_end); // Find a contiguous set of empty or uncommitted regions of length num and return // the index of the first region or G1_NO_HRM_INDEX if the search was unsuccessful. // If only_empty is true, only empty regions are considered. // Searches from bottom to top of the heap, doing a first-fit. uint find_contiguous(size_t num, bool only_empty); // Finds the next sequence of unavailable regions starting from start_idx. Returns the // length of the sequence found. If this result is zero, no such sequence could be found, // otherwise res_idx indicates the start index of these regions. uint find_unavailable_from_idx(uint start_idx, uint* res_idx) const; // Finds the next sequence of empty regions starting from start_idx, going backwards in // the heap. Returns the length of the sequence found. If this value is zero, no // sequence could be found, otherwise res_idx contains the start index of this range. uint find_empty_from_idx_reverse(uint start_idx, uint* res_idx) const; protected: G1HeapRegionTable _regions; G1RegionToSpaceMapper* _heap_mapper; G1RegionToSpaceMapper* _prev_bitmap_mapper; G1RegionToSpaceMapper* _next_bitmap_mapper; FreeRegionList _free_list; void make_regions_available(uint index, uint num_regions = 1, WorkGang* pretouch_gang = NULL); void uncommit_regions(uint index, size_t num_regions = 1); // Allocate a new HeapRegion for the given index. HeapRegion* new_heap_region(uint hrm_index); #ifdef ASSERT public: bool is_free(HeapRegion* hr) const; #endif public: // Empty constructor, we'll initialize it with the initialize() method. HeapRegionManager(); static HeapRegionManager* create_manager(G1CollectedHeap* heap, G1CollectorPolicy* policy); virtual void initialize(G1RegionToSpaceMapper* heap_storage, G1RegionToSpaceMapper* prev_bitmap, G1RegionToSpaceMapper* next_bitmap, G1RegionToSpaceMapper* bot, G1RegionToSpaceMapper* cardtable, G1RegionToSpaceMapper* card_counts); // Prepare heap regions before and after full collection. // Nothing to be done in this class. virtual void prepare_for_full_collection_start() {} virtual void prepare_for_full_collection_end() {} // Return the "dummy" region used for G1AllocRegion. This is currently a hardwired // new HeapRegion that owns HeapRegion at index 0. Since at the moment we commit // the heap from the lowest address, this region (and its associated data // structures) are available and we do not need to check further. virtual HeapRegion* get_dummy_region() { return new_heap_region(0); } // Return the HeapRegion at the given index. Assume that the index // is valid. inline HeapRegion* at(uint index) const; // Return the HeapRegion at the given index, NULL if the index // is for an unavailable region. inline HeapRegion* at_or_null(uint index) const; // Returns whether the given region is available for allocation. bool is_available(uint region) const; // Return the next region (by index) that is part of the same // humongous object that hr is part of. inline HeapRegion* next_region_in_humongous(HeapRegion* hr) const; // If addr is within the committed space return its corresponding // HeapRegion, otherwise return NULL. inline HeapRegion* addr_to_region(HeapWord* addr) const; // Insert the given region into the free region list. inline void insert_into_free_list(HeapRegion* hr); // Insert the given region list into the global free region list. void insert_list_into_free_list(FreeRegionList* list) { _free_list.add_ordered(list); } virtual HeapRegion* allocate_free_region(HeapRegionType type) { HeapRegion* hr = _free_list.remove_region(!type.is_young()); if (hr != NULL) { assert(hr->next() == NULL, "Single region should not have next"); assert(is_available(hr->hrm_index()), "Must be committed"); } return hr; } inline void allocate_free_regions_starting_at(uint first, uint num_regions); // Remove all regions from the free list. void remove_all_free_regions() { _free_list.remove_all(); } // Return the number of committed free regions in the heap. uint num_free_regions() const { return _free_list.length(); } size_t total_free_bytes() const { return num_free_regions() * HeapRegion::GrainBytes; } // Return the number of available (uncommitted) regions. uint available() const { return max_length() - length(); } // Return the number of regions that have been committed in the heap. uint length() const { return _num_committed; } // Return the maximum number of regions in the heap. uint max_length() const { return (uint)_regions.length(); } // Return maximum number of regions that heap can expand to. virtual uint max_expandable_length() const { return (uint)_regions.length(); } MemoryUsage get_auxiliary_data_memory_usage() const; MemRegion reserved() const { return MemRegion(heap_bottom(), heap_end()); } // Expand the sequence to reflect that the heap has grown. Either create new // HeapRegions, or re-use existing ones. Returns the number of regions the // sequence was expanded by. If a HeapRegion allocation fails, the resulting // number of regions might be smaller than what's desired. virtual uint expand_by(uint num_regions, WorkGang* pretouch_workers); // Makes sure that the regions from start to start+num_regions-1 are available // for allocation. Returns the number of regions that were committed to achieve // this. virtual uint expand_at(uint start, uint num_regions, WorkGang* pretouch_workers); // Find a contiguous set of empty regions of length num. Returns the start index of // that set, or G1_NO_HRM_INDEX. virtual uint find_contiguous_only_empty(size_t num) { return find_contiguous(num, true); } // Find a contiguous set of empty or unavailable regions of length num. Returns the // start index of that set, or G1_NO_HRM_INDEX. virtual uint find_contiguous_empty_or_unavailable(size_t num) { return find_contiguous(num, false); } HeapRegion* next_region_in_heap(const HeapRegion* r) const; // Find the highest free or uncommitted region in the reserved heap, // and if uncommitted, commit it. If none are available, return G1_NO_HRM_INDEX. // Set the 'expanded' boolean true if a new region was committed. virtual uint find_highest_free(bool* expanded); // Allocate the regions that contain the address range specified, committing the // regions if necessary. Return false if any of the regions is already committed // and not free, and return the number of regions newly committed in commit_count. bool allocate_containing_regions(MemRegion range, size_t* commit_count, WorkGang* pretouch_workers); // Apply blk->do_heap_region() on all committed regions in address order, // terminating the iteration early if do_heap_region() returns true. void iterate(HeapRegionClosure* blk) const; void par_iterate(HeapRegionClosure* blk, HeapRegionClaimer* hrclaimer, const uint start_index) const; // Uncommit up to num_regions_to_remove regions that are completely free. // Return the actual number of uncommitted regions. virtual uint shrink_by(uint num_regions_to_remove); // Uncommit a number of regions starting at the specified index, which must be available, // empty, and free. void shrink_at(uint index, size_t num_regions); virtual void verify(); // Do some sanity checking. void verify_optional() PRODUCT_RETURN; }; // The HeapRegionClaimer is used during parallel iteration over heap regions, // allowing workers to claim heap regions, gaining exclusive rights to these regions. class HeapRegionClaimer : public StackObj { uint _n_workers; uint _n_regions; volatile uint* _claims; static const uint Unclaimed = 0; static const uint Claimed = 1; public: HeapRegionClaimer(uint n_workers); ~HeapRegionClaimer(); inline uint n_regions() const { return _n_regions; } // Return a start offset given a worker id. uint offset_for_worker(uint worker_id) const; // Check if region has been claimed with this HRClaimer. bool is_region_claimed(uint region_index) const; // Claim the given region, returns true if successfully claimed. bool claim_region(uint region_index); }; #endif // SHARE_GC_G1_HEAPREGIONMANAGER_HPP