/* * Copyright (c) 2019, 2024, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ /* * @test * @run testng TestSegmentCopy */ import java.lang.foreign.Arena; import java.lang.foreign.MemorySegment; import java.lang.foreign.ValueLayout; import java.lang.invoke.VarHandle; import java.nio.ByteOrder; import java.util.ArrayList; import java.util.Arrays; import java.util.List; import java.util.function.IntFunction; import org.testng.SkipException; import org.testng.annotations.DataProvider; import org.testng.annotations.Test; import static java.lang.foreign.ValueLayout.JAVA_BYTE; import static org.testng.Assert.*; public class TestSegmentCopy { static final int TEST_BYTE_SIZE = 16; @Test(dataProvider = "segmentKinds") public void testByteCopy(SegmentKind kind1, SegmentKind kind2) { MemorySegment s1 = kind1.makeSegment(TEST_BYTE_SIZE); MemorySegment s2 = kind2.makeSegment(TEST_BYTE_SIZE); // for all offsets for (int s1Offset = 0; s1Offset < s1.byteSize(); s1Offset++) { for (int s2Offset = 0; s2Offset < s2.byteSize(); s2Offset++) { long slice1ByteSize = s1.byteSize() - s1Offset; long slice2ByteSize = s2.byteSize() - s2Offset; long copySize = Math.min(slice1ByteSize, slice2ByteSize); //prepare source slice for (int i = 0 ; i < copySize; i++) { Type.BYTE.set(s1, s1Offset, i, i); } //perform copy MemorySegment.copy(s1, Type.BYTE.layout, s1Offset, s2, Type.BYTE.layout, s2Offset, copySize); //check that copy actually worked for (int i = 0; i < copySize; i++) { Type.BYTE.check(s2, s2Offset, i, i); } } } } @Test(dataProvider = "conjunctSegments") public void testCopy5ArgInvariants(MemorySegment src, MemorySegment dst) { assertThrows(IndexOutOfBoundsException.class, () -> MemorySegment.copy(src, 0, dst, 0, -1)); assertThrows(IndexOutOfBoundsException.class, () -> MemorySegment.copy(src, -1, dst, 0, src.byteSize())); assertThrows(IndexOutOfBoundsException.class, () -> MemorySegment.copy(src, 0, dst, -1, src.byteSize())); assertThrows(IndexOutOfBoundsException.class, () -> MemorySegment.copy(src, 1, dst, 0, src.byteSize())); assertThrows(IndexOutOfBoundsException.class, () -> MemorySegment.copy(src, 0, dst, 1, src.byteSize())); } @Test(dataProvider = "conjunctSegments") public void testConjunctCopy7ArgRight(MemorySegment src, MemorySegment dst) { testConjunctCopy(src, 0, dst, 1, CopyOp.of7Arg()); } @Test(dataProvider = "conjunctSegments") public void testConjunctCopy5ArgRight(MemorySegment src, MemorySegment dst) { testConjunctCopy(src, 0, dst, 1, CopyOp.of5Arg()); } @Test(dataProvider = "conjunctSegments") public void testConjunctCopy7ArgLeft(MemorySegment src, MemorySegment dst) { testConjunctCopy(src, 1, dst, 0, CopyOp.of7Arg()); } @Test(dataProvider = "conjunctSegments") public void testConjunctCopy5ArgLeft(MemorySegment src, MemorySegment dst) { testConjunctCopy(src, 1, dst, 0, CopyOp.of5Arg()); } void testConjunctCopy(MemorySegment src, long srcOffset, MemorySegment dst, long dstOffset, CopyOp op) { if (src.byteSize() < 4 || src.address() != dst.address()) { // Only test larger segments where the skew is zero return; } try (var arena = Arena.ofConfined()) { // Create a disjoint segment for expected behavior MemorySegment disjoint = arena.allocate(dst.byteSize()); disjoint.copyFrom(src); op.copy(src, srcOffset, disjoint, dstOffset, 3); byte[] expected = disjoint.toArray(JAVA_BYTE); // Do a conjoint copy op.copy(src, srcOffset, dst, dstOffset, 3); byte[] actual = dst.toArray(JAVA_BYTE); assertEquals(actual, expected); } } @FunctionalInterface interface CopyOp { void copy(MemorySegment src, long srcOffset, MemorySegment dst, long dstOffset, long bytes); static CopyOp of5Arg() { return MemorySegment::copy; } static CopyOp of7Arg() { return (MemorySegment src, long srcOffset, MemorySegment dst, long dstOffset, long bytes) -> MemorySegment.copy(src, JAVA_BYTE, srcOffset, dst, JAVA_BYTE, dstOffset, bytes); } } @Test(dataProvider = "segmentKinds") public void testByteCopySizes(SegmentKind kind1, SegmentKind kind2) { record Offsets(int src, int dst){} for (Offsets offsets : List.of(new Offsets(3, 7), new Offsets(7, 3))) { for (int size = 0; size < 513; size++) { MemorySegment src = kind1.makeSegment(size + offsets.src()); MemorySegment dst = kind2.makeSegment(size + offsets.dst()); //prepare source slice for (int i = 0; i < size; i++) { src.set(JAVA_BYTE, i + offsets.src(), (byte) i); } //perform copy MemorySegment.copy(src, offsets.src(), dst, offsets.dst(), size); //check that copy actually worked for (int i = 0; i < size; i++) { assertEquals(dst.get(JAVA_BYTE, i + offsets.dst()), (byte) i); } } } } @Test(expectedExceptions = IllegalArgumentException.class, dataProvider = "segmentKinds") public void testReadOnlyCopy(SegmentKind kind1, SegmentKind kind2) { MemorySegment s1 = kind1.makeSegment(TEST_BYTE_SIZE); MemorySegment s2 = kind2.makeSegment(TEST_BYTE_SIZE); // check failure with read-only dest MemorySegment.copy(s1, Type.BYTE.layout, 0, s2.asReadOnly(), Type.BYTE.layout, 0, 0); } @Test(expectedExceptions = IllegalArgumentException.class, expectedExceptionsMessageRegExp = ".*Attempt to write a read-only segment.*") public void badCopy6Arg() { try (Arena scope = Arena.ofConfined()) { MemorySegment dest = scope.allocate(ValueLayout.JAVA_INT).asReadOnly(); MemorySegment.copy(new int[1],0, dest, ValueLayout.JAVA_INT, 0 ,1); // should throw } } @Test(expectedExceptions = IndexOutOfBoundsException.class, dataProvider = "types") public void testBadOverflow(Type type) { if (type.layout.byteSize() > 1) { MemorySegment segment = MemorySegment.ofArray(new byte[100]); MemorySegment.copy(segment, type.layout, 0, segment, type.layout, 0, Long.MAX_VALUE); } else { throw new SkipException("Byte layouts do not overflow"); } } @Test(dataProvider = "segmentKindsAndTypes") public void testElementCopy(SegmentKind kind1, SegmentKind kind2, Type type1, Type type2) { MemorySegment s1 = kind1.makeSegment(TEST_BYTE_SIZE); MemorySegment s2 = kind2.makeSegment(TEST_BYTE_SIZE); // for all offsets for (int s1Offset = 0; s1Offset < s1.byteSize(); s1Offset++) { for (int s2Offset = 0; s2Offset < s2.byteSize(); s2Offset++) { long slice1ByteSize = s1.byteSize() - s1Offset; long slice2ByteSize = s2.byteSize() - s2Offset; long slice1ElementSize = slice1ByteSize / type1.size(); long slice2ElementSize = slice2ByteSize / type2.size(); long copySize = Math.min(slice1ElementSize, slice2ElementSize); //prepare source slice for (int i = 0 ; i < copySize; i++) { type1.set(s1, s1Offset, i, i); } //perform copy MemorySegment.copy(s1, type1.layout, s1Offset, s2, type2.layout, s2Offset, copySize); //check that copy actually worked for (int i = 0; i < copySize; i++) { type2.check(s2, s2Offset, i, i); } } } } @Test(expectedExceptions = IllegalArgumentException.class) public void testHyperAlignedSrc() { MemorySegment segment = MemorySegment.ofArray(new byte[] {1, 2, 3, 4}); MemorySegment.copy(segment, 0, segment, JAVA_BYTE.withByteAlignment(2), 0, 4); } @Test(expectedExceptions = IllegalArgumentException.class) public void testHyperAlignedDst() { MemorySegment segment = MemorySegment.ofArray(new byte[] {1, 2, 3, 4}); MemorySegment.copy(segment, JAVA_BYTE.withByteAlignment(2), 0, segment, 0, 4); } @Test public void testCopy5ArgWithNegativeValues() { MemorySegment src = MemorySegment.ofArray(new byte[] {1, 2, 3, 4}); MemorySegment dst = MemorySegment.ofArray(new byte[] {1, 2, 3, 4}); assertThrows(IndexOutOfBoundsException.class, () -> MemorySegment.copy(src, -1, dst, 0, 4) ); assertThrows(IndexOutOfBoundsException.class, () -> MemorySegment.copy(src, 0, dst, -1, 4) ); assertThrows(IndexOutOfBoundsException.class, () -> MemorySegment.copy(src, 0, dst, 0, -1) ); } @Test public void testCopy7ArgWithNegativeValues() { MemorySegment src = MemorySegment.ofArray(new byte[] {1, 2, 3, 4}); MemorySegment dst = MemorySegment.ofArray(new byte[] {1, 2, 3, 4}); assertThrows(IndexOutOfBoundsException.class, () -> MemorySegment.copy(src, JAVA_BYTE, -1, dst, JAVA_BYTE, 0, 4) ); assertThrows(IndexOutOfBoundsException.class, () -> MemorySegment.copy(src, JAVA_BYTE, 0, dst, JAVA_BYTE, -1, 4) ); assertThrows(IndexOutOfBoundsException.class, () -> MemorySegment.copy(src, JAVA_BYTE, 0, dst, JAVA_BYTE, 0, -1) ); } @Test public void testCopyFromArrayWithNegativeValues() { MemorySegment src = MemorySegment.ofArray(new byte[] {1, 2, 3, 4}); byte[] dst = new byte[] {1, 2, 3, 4}; assertThrows(IndexOutOfBoundsException.class, () -> MemorySegment.copy(src, JAVA_BYTE, -1, dst, 0, 4) ); assertThrows(IndexOutOfBoundsException.class, () -> MemorySegment.copy(src, JAVA_BYTE, 0, dst, -1, 4) ); assertThrows(IndexOutOfBoundsException.class, () -> MemorySegment.copy(src, JAVA_BYTE, 0, dst, 0, -1) ); } @Test public void testCopyToArrayWithNegativeValues() { byte[] src = new byte[] {1, 2, 3, 4}; MemorySegment dst = MemorySegment.ofArray(new byte[] {1, 2, 3, 4}); assertThrows(IndexOutOfBoundsException.class, () -> MemorySegment.copy(src, -1, dst, JAVA_BYTE, 0, 4) ); assertThrows(IndexOutOfBoundsException.class, () -> MemorySegment.copy(src, 0, dst, JAVA_BYTE, -1, 4) ); assertThrows(IndexOutOfBoundsException.class, () -> MemorySegment.copy(src, 0, dst, JAVA_BYTE, 0, -1) ); } enum Type { // Byte BYTE(byte.class, JAVA_BYTE, i -> (byte)i), //LE SHORT_LE(short.class, ValueLayout.JAVA_SHORT_UNALIGNED.withOrder(ByteOrder.LITTLE_ENDIAN), i -> (short)i), CHAR_LE(char.class, ValueLayout.JAVA_CHAR_UNALIGNED.withOrder(ByteOrder.LITTLE_ENDIAN), i -> (char)i), INT_LE(int.class, ValueLayout.JAVA_INT_UNALIGNED.withOrder(ByteOrder.LITTLE_ENDIAN), i -> i), FLOAT_LE(float.class, ValueLayout.JAVA_FLOAT_UNALIGNED.withOrder(ByteOrder.LITTLE_ENDIAN), i -> (float)i), LONG_LE(long.class, ValueLayout.JAVA_LONG_UNALIGNED.withOrder(ByteOrder.LITTLE_ENDIAN), i -> (long)i), DOUBLE_LE(double.class, ValueLayout.JAVA_DOUBLE_UNALIGNED.withOrder(ByteOrder.LITTLE_ENDIAN), i -> (double)i), //BE SHORT_BE(short.class, ValueLayout.JAVA_SHORT_UNALIGNED.withOrder(ByteOrder.BIG_ENDIAN), i -> (short)i), CHAR_BE(char.class, ValueLayout.JAVA_CHAR_UNALIGNED.withOrder(ByteOrder.BIG_ENDIAN), i -> (char)i), INT_BE(int.class, ValueLayout.JAVA_INT_UNALIGNED.withOrder(ByteOrder.BIG_ENDIAN), i -> i), FLOAT_BE(float.class, ValueLayout.JAVA_FLOAT_UNALIGNED.withOrder(ByteOrder.BIG_ENDIAN), i -> (float)i), LONG_BE(long.class, ValueLayout.JAVA_LONG_UNALIGNED.withOrder(ByteOrder.BIG_ENDIAN), i -> (long)i), DOUBLE_BE(double.class, ValueLayout.JAVA_DOUBLE_UNALIGNED.withOrder(ByteOrder.BIG_ENDIAN), i -> (double)i); final ValueLayout layout; final IntFunction valueConverter; final Class carrier; @SuppressWarnings("unchecked") Type(Class carrier, ValueLayout layout, IntFunction valueConverter) { this.carrier = carrier; this.layout = layout; this.valueConverter = (IntFunction)valueConverter; } long size() { return layout.byteSize(); } VarHandle handle() { return layout.varHandle(); } void set(MemorySegment segment, long offset, int index, int val) { handle().set(segment, offset + (index * size()), valueConverter.apply(val)); } void check(MemorySegment segment, long offset, int index, int val) { assertEquals(handle().get(segment, offset + (index * size())), valueConverter.apply(val)); } } enum SegmentKind { NATIVE(i -> Arena.ofAuto().allocate(i, 1)), ARRAY(i -> MemorySegment.ofArray(new byte[i])); final IntFunction segmentFactory; SegmentKind(IntFunction segmentFactory) { this.segmentFactory = segmentFactory; } MemorySegment makeSegment(int size) { return segmentFactory.apply(size); } } @DataProvider static Object[][] segmentKinds() { List cases = new ArrayList<>(); for (SegmentKind kind1 : SegmentKind.values()) { for (SegmentKind kind2 : SegmentKind.values()) { cases.add(new Object[] {kind1, kind2}); } } return cases.toArray(Object[][]::new); } @DataProvider static Object[][] conjunctSegments() { List cases = new ArrayList<>(); for (SegmentKind kind : SegmentKind.values()) { // Different paths might be taken in the implementation depending on the // size, type, and address of the underlying segments. for (int len : new int[]{0, 1, 7, 512}) { for (int offset : new int[]{-1, 0, 1}) { MemorySegment segment = kind.makeSegment(len + 2); MemorySegment src = segment.asSlice(1 + offset, len); MemorySegment dst = segment.asSlice(1, len); for (int i = 0; i < len; i++) { src.set(JAVA_BYTE, i, (byte) i); } // src = 0, 1, ... , len-1 cases.add(new Object[]{src, dst}); } } } return cases.toArray(Object[][]::new); } @DataProvider static Object[][] types() { return Arrays.stream(Type.values()) .map(t -> new Object[] { t }) .toArray(Object[][]::new); } @DataProvider static Object[][] segmentKindsAndTypes() { List cases = new ArrayList<>(); for (Object[] segmentKinds : segmentKinds()) { for (Type type1 : Type.values()) { for (Type type2 : Type.values()) { if (type1.layout.carrier() == type2.layout.carrier()) { cases.add(new Object[]{segmentKinds[0], segmentKinds[1], type1, type2}); } } } } return cases.toArray(Object[][]::new); } }