/* * Copyright (c) 2003, 2022, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * @test * @bug 8136874 * @summary Tests for StrictMath.pow */ /** * The tests in ../Math/PowTests.java test properties that should * hold for any pow implementation, including the FDLIBM-based one * required for StrictMath.pow. Therefore, the test cases in * ../Math/PowTests.java are run against both the Math and * StrictMath versions of pow. The role of this test is to verify * that the FDLIBM pow algorithm is being used by running golden * file tests on values that may vary from one conforming pow * implementation to another. */ public class PowTests { private PowTests(){} private static final double INFINITY = Double.POSITIVE_INFINITY; public static void main(String... args) { int failures = 0; failures += testPow(); if (failures > 0) { System.err.println("Testing pow incurred " + failures + " failures."); throw new RuntimeException(); } } private static int testPow() { int failures = 0; double [][] testCases = { // Probe near decision points of the fdlibm algorithm {0x1.00000_0000_0001p1, // |x| > 1.0 INFINITY, // infinity INFINITY // 0 }, {0x1.fffffp-1, // |x| = 0.9999995231628418 0x1.0p31, // 2^31 0.0 // 0 }, {0x1.ffffe_ffffffffp-1, // |x| < 0.9999995231628418 0x1.0p31, // 2^31 0.0 // 0 }, {-0x1.ffffe_ffffffffp-1, // |x| < 0.9999995231628418 0x1.0p31, // 2^31 0.0 // 0 }, {0x1.fffffp-1, // |x| = 0.9999995231628418 0x1.0000000000001p31, // nextUp(2^31) 0.0 // 0 }, {0x1.fffffp-1, // |x| = 0.9999995231628418 0x1.0p31 + 1.0, // 2^31 + 1, odd integer 0.0 // 0 }, {0x1.fffffp-1, // |x| = 0.9999995231628418 0x1.0p31 + 2.0, // 2^31 + 2, even integer 0.0 // 0 }, {0x1.ffffe_ffffffffp-1, // |x| < 0.9999995231628418 0x1.0000000000001p31, // nextUp(2^31) 0.0 // 0 }, {-0x1.ffffe_ffffffffp-1, // |x| < 0.9999995231628418 0x1.0000000000001p31, // nextUp(2^31) Double.NaN // 0 }, {-0x1.ffffe_ffffffffp-1, // |x| < 0.9999995231628418 0x1.0p31 + 1.0, // 2^31 + 1, odd integer -0.0 // 0 }, {-0x1.ffffe_ffffffffp-1, // |x| < 0.9999995231628418 0x1.0p31 + 2.0, // 2^31 + 2, even integer 0.0 // 0 }, {0x1.0000000000001p0, // nextUp(1) 0x1.0000000000001p31, // nextUp(2^31) 0x1.00000800002p0 }, {0x1.0000000000001p0, // nextUp(1) -0x1.0000000000001p31, // -nextUp(2^31) 0x1.fffff000004p-1 }, {-0x1.0000000000001p0, // -nextUp(1) -0x1.0000000000001p31, // -nextUp(2^31) Double.NaN }, {-0x1.0000000000001p0, // -nextUp(1) 0x1.0p31 + 1.0, // 2^31 + 1, odd integer -0x1.0000080000201p0 }, {-0x1.0000000000001p0, // -nextUp(1) 0x1.0p31 + 2.0, // 2^31 + 2, even integer 0x1.0000080000202p0 }, {0x1.00000_ffff_ffffp0, 0x1.00001_0000_0000p31, INFINITY }, // Huge y, |y| > 0x1.00000_ffff_ffffp31 ~2**31 is a decision point // First y = 0x1.00001_0000_0000p31 {0x1.fffff_ffff_ffffp-1, 0x1.00001_0000_0000p31, 0x1.fffff7ffff9p-1 }, {0x1.fffff_ffff_fffep-1, 0x1.00001_0000_0000p31, 0x1.ffffefffff4p-1 }, {0x1.fffff_0000_0000p-1, 0x1.00001_0000_0000p31, 0.0 }, // Cycle through decision points on x values {0x1.fffff_0000_0000p-1, 0x1.00001_0000_0000p31, 0.0 }, {-0x1.fffff_0000_0000p-1, 0x1.00001_0000_0000p31, 0.0 }, {0x1.ffffe_ffff_ffffp-1, 0x1.00001_0000_0000p31, 0.0 }, {-0x1.ffffe_ffff_ffffp-1, 0x1.00001_0000_0000p31, 0.0 }, {0x1.00000_ffff_ffffp0, 0x1.00001_0000_0000p31, INFINITY }, {0x1.00001_0000_0000p0, 0x1.00001_0000_0000p31, INFINITY }, {-0x1.00000_ffff_ffffp0, 0x1.00001_0000_0000p31, INFINITY }, {-0x1.00001_0000_0000p0, 0x1.00001_0000_0000p31, INFINITY }, // Now y = -0x1.00001_0000_0000p31 {0x1.fffff_0000_0000p-1, -0x1.00001_0000_0000p31, INFINITY }, {-0x1.fffff_0000_0000p-1, 0x1.00001_0000_0000p31, 0.0 }, {0x1.ffffe_ffff_ffffp-1, -0x1.00001_0000_0000p31, INFINITY }, {-0x1.ffffe_ffff_ffffp-1, -0x1.00001_0000_0000p31, INFINITY }, {0x1.00000_ffff_ffffp0, -0x1.00001_0000_0000p31, 0.0 }, {0x1.00001_0000_0000p0, -0x1.00001_0000_0000p31, 0.0 }, {-0x1.00000_ffff_ffffp0, -0x1.00001_0000_0000p31, 0.0 }, {-0x1.00001_0000_0000p0, -0x1.00001_0000_0000p31, 0.0 }, //----------------------- {0x1.ffffe_ffff_ffffp-1, -0x1.00001_0000_0000p31, INFINITY }, {0x1.00001_0000_0000p0, -0x1.00001_0000_0000p31, 0.0 }, {0x1.0000000000002p0, // 1.0000000000000004 0x1.f4add4p30, // 2.1E9 0x1.00000fa56f1a6p0 // 1.0000009325877754 }, // Verify no early overflow {0x1.0000000000002p0, // 1.0000000000000004 0x1.0642acp31, // 2.2E9 0x1.000010642b465p0, // 1.0000009769967388 }, // Verify proper overflow {0x1.0000000000002p0, // 1.0000000000000004 0x1.62e42fefa39fp60, // 1.59828858065033216E18 0x1.ffffffffffd9fp1023, // 1.7976931348621944E308 }, }; for (double[] testCase: testCases) failures += testPowCase(testCase[0], testCase[1], testCase[2]); return failures; } private static int testPowCase(double input1, double input2, double expected) { int failures = 0; failures += Tests.test("StrictMath.pow(double)", input1, input2, StrictMath::pow, expected); return failures; } }