/* * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "classfile/altHashing.hpp" #include "classfile/compactHashtable.inline.hpp" #include "classfile/javaClasses.hpp" #include "classfile/symbolTable.hpp" #include "classfile/systemDictionary.hpp" #include "gc/shared/collectedHeap.inline.hpp" #include "gc/shared/gcLocker.inline.hpp" #include "memory/allocation.inline.hpp" #include "memory/filemap.hpp" #include "oops/oop.inline.hpp" #include "runtime/atomic.inline.hpp" #include "runtime/mutexLocker.hpp" #include "utilities/hashtable.inline.hpp" // -------------------------------------------------------------------------- // the number of buckets a thread claims const int ClaimChunkSize = 32; SymbolTable* SymbolTable::_the_table = NULL; // Static arena for symbols that are not deallocated Arena* SymbolTable::_arena = NULL; bool SymbolTable::_needs_rehashing = false; bool SymbolTable::_lookup_shared_first = false; CompactHashtable SymbolTable::_shared_table; Symbol* SymbolTable::allocate_symbol(const u1* name, int len, bool c_heap, TRAPS) { assert (len <= Symbol::max_length(), "should be checked by caller"); Symbol* sym; if (DumpSharedSpaces) { // Allocate all symbols to CLD shared metaspace sym = new (len, ClassLoaderData::the_null_class_loader_data(), THREAD) Symbol(name, len, PERM_REFCOUNT); } else if (c_heap) { // refcount starts as 1 sym = new (len, THREAD) Symbol(name, len, 1); assert(sym != NULL, "new should call vm_exit_out_of_memory if C_HEAP is exhausted"); } else { // Allocate to global arena sym = new (len, arena(), THREAD) Symbol(name, len, PERM_REFCOUNT); } return sym; } void SymbolTable::initialize_symbols(int arena_alloc_size) { // Initialize the arena for global symbols, size passed in depends on CDS. if (arena_alloc_size == 0) { _arena = new (mtSymbol) Arena(mtSymbol); } else { _arena = new (mtSymbol) Arena(mtSymbol, arena_alloc_size); } } // Call function for all symbols in the symbol table. void SymbolTable::symbols_do(SymbolClosure *cl) { // all symbols from shared table _shared_table.symbols_do(cl); // all symbols from the dynamic table const int n = the_table()->table_size(); for (int i = 0; i < n; i++) { for (HashtableEntry* p = the_table()->bucket(i); p != NULL; p = p->next()) { cl->do_symbol(p->literal_addr()); } } } int SymbolTable::_symbols_removed = 0; int SymbolTable::_symbols_counted = 0; volatile int SymbolTable::_parallel_claimed_idx = 0; void SymbolTable::buckets_unlink(int start_idx, int end_idx, int* processed, int* removed) { for (int i = start_idx; i < end_idx; ++i) { HashtableEntry** p = the_table()->bucket_addr(i); HashtableEntry* entry = the_table()->bucket(i); while (entry != NULL) { // Shared entries are normally at the end of the bucket and if we run into // a shared entry, then there is nothing more to remove. However, if we // have rehashed the table, then the shared entries are no longer at the // end of the bucket. if (entry->is_shared() && !use_alternate_hashcode()) { break; } Symbol* s = entry->literal(); (*processed)++; assert(s != NULL, "just checking"); // If reference count is zero, remove. if (s->refcount() == 0) { assert(!entry->is_shared(), "shared entries should be kept live"); delete s; (*removed)++; *p = entry->next(); the_table()->free_entry(entry); } else { p = entry->next_addr(); } // get next entry entry = (HashtableEntry*)HashtableEntry::make_ptr(*p); } } } // Remove unreferenced symbols from the symbol table // This is done late during GC. void SymbolTable::unlink(int* processed, int* removed) { size_t memory_total = 0; buckets_unlink(0, the_table()->table_size(), processed, removed); _symbols_removed += *removed; _symbols_counted += *processed; } void SymbolTable::possibly_parallel_unlink(int* processed, int* removed) { const int limit = the_table()->table_size(); size_t memory_total = 0; for (;;) { // Grab next set of buckets to scan int start_idx = Atomic::add(ClaimChunkSize, &_parallel_claimed_idx) - ClaimChunkSize; if (start_idx >= limit) { // End of table break; } int end_idx = MIN2(limit, start_idx + ClaimChunkSize); buckets_unlink(start_idx, end_idx, processed, removed); } Atomic::add(*processed, &_symbols_counted); Atomic::add(*removed, &_symbols_removed); } // Create a new table and using alternate hash code, populate the new table // with the existing strings. Set flag to use the alternate hash code afterwards. void SymbolTable::rehash_table() { assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint"); // This should never happen with -Xshare:dump but it might in testing mode. if (DumpSharedSpaces) return; // Create a new symbol table SymbolTable* new_table = new SymbolTable(); the_table()->move_to(new_table); // Delete the table and buckets (entries are reused in new table). delete _the_table; // Don't check if we need rehashing until the table gets unbalanced again. // Then rehash with a new global seed. _needs_rehashing = false; _the_table = new_table; } // Lookup a symbol in a bucket. Symbol* SymbolTable::lookup_dynamic(int index, const char* name, int len, unsigned int hash) { int count = 0; for (HashtableEntry* e = bucket(index); e != NULL; e = e->next()) { count++; // count all entries in this bucket, not just ones with same hash if (e->hash() == hash) { Symbol* sym = e->literal(); if (sym->equals(name, len)) { // something is referencing this symbol now. sym->increment_refcount(); return sym; } } } // If the bucket size is too deep check if this hash code is insufficient. if (count >= rehash_count && !needs_rehashing()) { _needs_rehashing = check_rehash_table(count); } return NULL; } Symbol* SymbolTable::lookup_shared(const char* name, int len, unsigned int hash) { return _shared_table.lookup(name, hash, len); } Symbol* SymbolTable::lookup(int index, const char* name, int len, unsigned int hash) { Symbol* sym; if (_lookup_shared_first) { sym = lookup_shared(name, len, hash); if (sym != NULL) { return sym; } _lookup_shared_first = false; return lookup_dynamic(index, name, len, hash); } else { sym = lookup_dynamic(index, name, len, hash); if (sym != NULL) { return sym; } sym = lookup_shared(name, len, hash); if (sym != NULL) { _lookup_shared_first = true; } return sym; } } // Pick hashing algorithm. unsigned int SymbolTable::hash_symbol(const char* s, int len) { return use_alternate_hashcode() ? AltHashing::murmur3_32(seed(), (const jbyte*)s, len) : java_lang_String::hash_code((const jbyte*)s, len); } // We take care not to be blocking while holding the // SymbolTable_lock. Otherwise, the system might deadlock, since the // symboltable is used during compilation (VM_thread) The lock free // synchronization is simplified by the fact that we do not delete // entries in the symbol table during normal execution (only during // safepoints). Symbol* SymbolTable::lookup(const char* name, int len, TRAPS) { unsigned int hashValue = hash_symbol(name, len); int index = the_table()->hash_to_index(hashValue); Symbol* s = the_table()->lookup(index, name, len, hashValue); // Found if (s != NULL) return s; // Grab SymbolTable_lock first. MutexLocker ml(SymbolTable_lock, THREAD); // Otherwise, add to symbol to table return the_table()->basic_add(index, (u1*)name, len, hashValue, true, THREAD); } Symbol* SymbolTable::lookup(const Symbol* sym, int begin, int end, TRAPS) { char* buffer; int index, len; unsigned int hashValue; char* name; { debug_only(NoSafepointVerifier nsv;) name = (char*)sym->base() + begin; len = end - begin; hashValue = hash_symbol(name, len); index = the_table()->hash_to_index(hashValue); Symbol* s = the_table()->lookup(index, name, len, hashValue); // Found if (s != NULL) return s; } // Otherwise, add to symbol to table. Copy to a C string first. char stack_buf[128]; ResourceMark rm(THREAD); if (len <= 128) { buffer = stack_buf; } else { buffer = NEW_RESOURCE_ARRAY_IN_THREAD(THREAD, char, len); } for (int i=0; ibasic_add(index, (u1*)buffer, len, hashValue, true, THREAD); } Symbol* SymbolTable::lookup_only(const char* name, int len, unsigned int& hash) { hash = hash_symbol(name, len); int index = the_table()->hash_to_index(hash); Symbol* s = the_table()->lookup(index, name, len, hash); return s; } // Look up the address of the literal in the SymbolTable for this Symbol* // Do not create any new symbols // Do not increment the reference count to keep this alive Symbol** SymbolTable::lookup_symbol_addr(Symbol* sym){ unsigned int hash = hash_symbol((char*)sym->bytes(), sym->utf8_length()); int index = the_table()->hash_to_index(hash); for (HashtableEntry* e = the_table()->bucket(index); e != NULL; e = e->next()) { if (e->hash() == hash) { Symbol* literal_sym = e->literal(); if (sym == literal_sym) { return e->literal_addr(); } } } return NULL; } // Suggestion: Push unicode-based lookup all the way into the hashing // and probing logic, so there is no need for convert_to_utf8 until // an actual new Symbol* is created. Symbol* SymbolTable::lookup_unicode(const jchar* name, int utf16_length, TRAPS) { int utf8_length = UNICODE::utf8_length((jchar*) name, utf16_length); char stack_buf[128]; if (utf8_length < (int) sizeof(stack_buf)) { char* chars = stack_buf; UNICODE::convert_to_utf8(name, utf16_length, chars); return lookup(chars, utf8_length, THREAD); } else { ResourceMark rm(THREAD); char* chars = NEW_RESOURCE_ARRAY(char, utf8_length + 1);; UNICODE::convert_to_utf8(name, utf16_length, chars); return lookup(chars, utf8_length, THREAD); } } Symbol* SymbolTable::lookup_only_unicode(const jchar* name, int utf16_length, unsigned int& hash) { int utf8_length = UNICODE::utf8_length((jchar*) name, utf16_length); char stack_buf[128]; if (utf8_length < (int) sizeof(stack_buf)) { char* chars = stack_buf; UNICODE::convert_to_utf8(name, utf16_length, chars); return lookup_only(chars, utf8_length, hash); } else { ResourceMark rm; char* chars = NEW_RESOURCE_ARRAY(char, utf8_length + 1);; UNICODE::convert_to_utf8(name, utf16_length, chars); return lookup_only(chars, utf8_length, hash); } } void SymbolTable::add(ClassLoaderData* loader_data, const constantPoolHandle& cp, int names_count, const char** names, int* lengths, int* cp_indices, unsigned int* hashValues, TRAPS) { // Grab SymbolTable_lock first. MutexLocker ml(SymbolTable_lock, THREAD); SymbolTable* table = the_table(); bool added = table->basic_add(loader_data, cp, names_count, names, lengths, cp_indices, hashValues, CHECK); if (!added) { // do it the hard way for (int i=0; ihash_to_index(hashValues[i]); bool c_heap = !loader_data->is_the_null_class_loader_data(); Symbol* sym = table->basic_add(index, (u1*)names[i], lengths[i], hashValues[i], c_heap, CHECK); cp->symbol_at_put(cp_indices[i], sym); } } } Symbol* SymbolTable::new_permanent_symbol(const char* name, TRAPS) { unsigned int hash; Symbol* result = SymbolTable::lookup_only((char*)name, (int)strlen(name), hash); if (result != NULL) { return result; } // Grab SymbolTable_lock first. MutexLocker ml(SymbolTable_lock, THREAD); SymbolTable* table = the_table(); int index = table->hash_to_index(hash); return table->basic_add(index, (u1*)name, (int)strlen(name), hash, false, THREAD); } Symbol* SymbolTable::basic_add(int index_arg, u1 *name, int len, unsigned int hashValue_arg, bool c_heap, TRAPS) { assert(!Universe::heap()->is_in_reserved(name), "proposed name of symbol must be stable"); // Don't allow symbols to be created which cannot fit in a Symbol*. if (len > Symbol::max_length()) { THROW_MSG_0(vmSymbols::java_lang_InternalError(), "name is too long to represent"); } // Cannot hit a safepoint in this function because the "this" pointer can move. NoSafepointVerifier nsv; // Check if the symbol table has been rehashed, if so, need to recalculate // the hash value and index. unsigned int hashValue; int index; if (use_alternate_hashcode()) { hashValue = hash_symbol((const char*)name, len); index = hash_to_index(hashValue); } else { hashValue = hashValue_arg; index = index_arg; } // Since look-up was done lock-free, we need to check if another // thread beat us in the race to insert the symbol. Symbol* test = lookup(index, (char*)name, len, hashValue); if (test != NULL) { // A race occurred and another thread introduced the symbol. assert(test->refcount() != 0, "lookup should have incremented the count"); return test; } // Create a new symbol. Symbol* sym = allocate_symbol(name, len, c_heap, CHECK_NULL); assert(sym->equals((char*)name, len), "symbol must be properly initialized"); HashtableEntry* entry = new_entry(hashValue, sym); add_entry(index, entry); return sym; } // This version of basic_add adds symbols in batch from the constant pool // parsing. bool SymbolTable::basic_add(ClassLoaderData* loader_data, const constantPoolHandle& cp, int names_count, const char** names, int* lengths, int* cp_indices, unsigned int* hashValues, TRAPS) { // Check symbol names are not too long. If any are too long, don't add any. for (int i = 0; i< names_count; i++) { if (lengths[i] > Symbol::max_length()) { THROW_MSG_0(vmSymbols::java_lang_InternalError(), "name is too long to represent"); } } // Cannot hit a safepoint in this function because the "this" pointer can move. NoSafepointVerifier nsv; for (int i=0; isymbol_at_put(cp_indices[i], test); assert(test->refcount() != 0, "lookup should have incremented the count"); } else { // Create a new symbol. The null class loader is never unloaded so these // are allocated specially in a permanent arena. bool c_heap = !loader_data->is_the_null_class_loader_data(); Symbol* sym = allocate_symbol((const u1*)names[i], lengths[i], c_heap, CHECK_(false)); assert(sym->equals(names[i], lengths[i]), "symbol must be properly initialized"); // why wouldn't it be??? HashtableEntry* entry = new_entry(hashValue, sym); add_entry(index, entry); cp->symbol_at_put(cp_indices[i], sym); } } return true; } void SymbolTable::verify() { for (int i = 0; i < the_table()->table_size(); ++i) { HashtableEntry* p = the_table()->bucket(i); for ( ; p != NULL; p = p->next()) { Symbol* s = (Symbol*)(p->literal()); guarantee(s != NULL, "symbol is NULL"); unsigned int h = hash_symbol((char*)s->bytes(), s->utf8_length()); guarantee(p->hash() == h, "broken hash in symbol table entry"); guarantee(the_table()->hash_to_index(h) == i, "wrong index in symbol table"); } } } void SymbolTable::dump(outputStream* st, bool verbose) { if (!verbose) { the_table()->dump_table(st, "SymbolTable"); } else { st->print_cr("VERSION: 1.0"); for (int i = 0; i < the_table()->table_size(); ++i) { HashtableEntry* p = the_table()->bucket(i); for ( ; p != NULL; p = p->next()) { Symbol* s = (Symbol*)(p->literal()); const char* utf8_string = (const char*)s->bytes(); int utf8_length = s->utf8_length(); st->print("%d %d: ", utf8_length, s->refcount()); HashtableTextDump::put_utf8(st, utf8_string, utf8_length); st->cr(); } } } } bool SymbolTable::copy_compact_table(char** top, char*end) { #if INCLUDE_CDS CompactHashtableWriter ch_table(CompactHashtable::_symbol_table, the_table()->number_of_entries(), &MetaspaceShared::stats()->symbol); if (*top + ch_table.get_required_bytes() > end) { // not enough space left return false; } for (int i = 0; i < the_table()->table_size(); ++i) { HashtableEntry* p = the_table()->bucket(i); for ( ; p != NULL; p = p->next()) { Symbol* s = (Symbol*)(p->literal()); unsigned int fixed_hash = hash_symbol((char*)s->bytes(), s->utf8_length()); assert(fixed_hash == p->hash(), "must not rehash during dumping"); ch_table.add(fixed_hash, s); } } ch_table.dump(top, end); *top = (char*)align_ptr_up(*top, sizeof(void*)); #endif return true; } const char* SymbolTable::init_shared_table(const char* buffer) { const char* end = _shared_table.init( CompactHashtable::_symbol_table, buffer); return (const char*)align_ptr_up(end, sizeof(void*)); } //--------------------------------------------------------------------------- // Non-product code #ifndef PRODUCT void SymbolTable::print_histogram() { MutexLocker ml(SymbolTable_lock); const int results_length = 100; int counts[results_length]; int sizes[results_length]; int i,j; // initialize results to zero for (j = 0; j < results_length; j++) { counts[j] = 0; sizes[j] = 0; } int total_size = 0; int total_count = 0; int total_length = 0; int max_length = 0; int out_of_range_count = 0; int out_of_range_size = 0; for (i = 0; i < the_table()->table_size(); i++) { HashtableEntry* p = the_table()->bucket(i); for ( ; p != NULL; p = p->next()) { int size = p->literal()->size(); int len = p->literal()->utf8_length(); if (len < results_length) { counts[len]++; sizes[len] += size; } else { out_of_range_count++; out_of_range_size += size; } total_count++; total_size += size; total_length += len; max_length = MAX2(max_length, len); } } tty->print_cr("Symbol Table Histogram:"); tty->print_cr(" Total number of symbols %7d", total_count); tty->print_cr(" Total size in memory %7dK", (total_size*wordSize)/1024); tty->print_cr(" Total counted %7d", _symbols_counted); tty->print_cr(" Total removed %7d", _symbols_removed); if (_symbols_counted > 0) { tty->print_cr(" Percent removed %3.2f", ((float)_symbols_removed/(float)_symbols_counted)* 100); } tty->print_cr(" Reference counts %7d", Symbol::_total_count); tty->print_cr(" Symbol arena used " SIZE_FORMAT_W(7) "K", arena()->used()/1024); tty->print_cr(" Symbol arena size " SIZE_FORMAT_W(7) "K", arena()->size_in_bytes()/1024); tty->print_cr(" Total symbol length %7d", total_length); tty->print_cr(" Maximum symbol length %7d", max_length); tty->print_cr(" Average symbol length %7.2f", ((float) total_length / (float) total_count)); tty->print_cr(" Symbol length histogram:"); tty->print_cr(" %6s %10s %10s", "Length", "#Symbols", "Size"); for (i = 0; i < results_length; i++) { if (counts[i] > 0) { tty->print_cr(" %6d %10d %10dK", i, counts[i], (sizes[i]*wordSize)/1024); } } tty->print_cr(" >=%6d %10d %10dK\n", results_length, out_of_range_count, (out_of_range_size*wordSize)/1024); } void SymbolTable::print() { for (int i = 0; i < the_table()->table_size(); ++i) { HashtableEntry** p = the_table()->bucket_addr(i); HashtableEntry* entry = the_table()->bucket(i); if (entry != NULL) { while (entry != NULL) { tty->print(PTR_FORMAT " ", p2i(entry->literal())); entry->literal()->print(); tty->print(" %d", entry->literal()->refcount()); p = entry->next_addr(); entry = (HashtableEntry*)HashtableEntry::make_ptr(*p); } tty->cr(); } } } #endif // PRODUCT // Utility for dumping symbols SymboltableDCmd::SymboltableDCmd(outputStream* output, bool heap) : DCmdWithParser(output, heap), _verbose("-verbose", "Dump the content of each symbol in the table", "BOOLEAN", false, "false") { _dcmdparser.add_dcmd_option(&_verbose); } void SymboltableDCmd::execute(DCmdSource source, TRAPS) { VM_DumpHashtable dumper(output(), VM_DumpHashtable::DumpSymbols, _verbose.value()); VMThread::execute(&dumper); } int SymboltableDCmd::num_arguments() { ResourceMark rm; SymboltableDCmd* dcmd = new SymboltableDCmd(NULL, false); if (dcmd != NULL) { DCmdMark mark(dcmd); return dcmd->_dcmdparser.num_arguments(); } else { return 0; } } #ifndef PRODUCT // Internal test of TempNewSymbol void Test_TempNewSymbol() { // Assert messages assume these symbols are unique, and the refcounts start at // one, but code does not rely on this. Thread* THREAD = Thread::current(); Symbol* abc = SymbolTable::new_symbol("abc", CATCH); int abccount = abc->refcount(); TempNewSymbol ss = abc; assert(ss->refcount() == abccount, "only one abc"); assert(ss->refcount() == abc->refcount(), "should match TempNewSymbol"); Symbol* efg = SymbolTable::new_symbol("efg", CATCH); Symbol* hij = SymbolTable::new_symbol("hij", CATCH); int efgcount = efg->refcount(); int hijcount = hij->refcount(); TempNewSymbol s1 = efg; TempNewSymbol s2 = hij; assert(s1->refcount() == efgcount, "one efg"); assert(s2->refcount() == hijcount, "one hij"); // Assignment operator s1 = s2; assert(hij->refcount() == hijcount + 1, "should be two hij"); assert(efg->refcount() == efgcount - 1, "should be no efg"); s1 = ss; // s1 is abc assert(s1->refcount() == abccount + 1, "should be two abc (s1 and ss)"); assert(hij->refcount() == hijcount, "should only have one hij now (s2)"); s1 = s1; // self assignment assert(s1->refcount() == abccount + 1, "should still be two abc (s1 and ss)"); TempNewSymbol s3; Symbol* klm = SymbolTable::new_symbol("klm", CATCH); int klmcount = klm->refcount(); s3 = klm; // assignment assert(s3->refcount() == klmcount, "only one klm now"); Symbol* xyz = SymbolTable::new_symbol("xyz", CATCH); int xyzcount = xyz->refcount(); { // inner scope TempNewSymbol s_inner = xyz; } assert(xyz->refcount() == (xyzcount - 1), "Should have been decremented by dtor in inner scope"); } #endif // PRODUCT