/* * Copyright (c) 1998, 2023, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /** * A transliteration of the "Freely Distributable Math Library" * algorithms from C into Java. That is, this port of the algorithms * is as close to the C originals as possible while still being * readable legal Java. */ public class FdlibmTranslit { private FdlibmTranslit() { throw new UnsupportedOperationException("No FdLibmTranslit instances for you."); } /** * Return the low-order 32 bits of the double argument as an int. */ private static int __LO(double x) { long transducer = Double.doubleToRawLongBits(x); return (int)transducer; } /** * Return a double with its low-order bits of the second argument * and the high-order bits of the first argument.. */ private static double __LO(double x, int low) { long transX = Double.doubleToRawLongBits(x); return Double.longBitsToDouble((transX & 0xFFFF_FFFF_0000_0000L) | (low & 0x0000_0000_FFFF_FFFFL)); } /** * Return the high-order 32 bits of the double argument as an int. */ private static int __HI(double x) { long transducer = Double.doubleToRawLongBits(x); return (int)(transducer >> 32); } /** * Return a double with its high-order bits of the second argument * and the low-order bits of the first argument.. */ private static double __HI(double x, int high) { long transX = Double.doubleToRawLongBits(x); return Double.longBitsToDouble((transX & 0x0000_0000_FFFF_FFFFL) | ( ((long)high)) << 32 ); } public static double sin(double x) { return Sin.compute(x); } public static double cos(double x) { return Cos.compute(x); } public static double tan(double x) { return Tan.compute(x); } public static double asin(double x) { return Asin.compute(x); } public static double acos(double x) { return Acos.compute(x); } public static double atan(double x) { return Atan.compute(x); } public static double atan2(double y, double x) { return Atan2.compute(y, x); } public static double hypot(double x, double y) { return Hypot.compute(x, y); } public static double sqrt(double x) { return Sqrt.compute(x); } public static double cbrt(double x) { return Cbrt.compute(x); } public static double log(double x) { return Log.compute(x); } public static double log10(double x) { return Log10.compute(x); } public static double log1p(double x) { return Log1p.compute(x); } public static double exp(double x) { return Exp.compute(x); } public static double expm1(double x) { return Expm1.compute(x); } public static double sinh(double x) { return Sinh.compute(x); } public static double cosh(double x) { return Cosh.compute(x); } public static double tanh(double x) { return Tanh.compute(x); } public static double IEEEremainder(double f1, double f2) { return IEEEremainder.compute(f1, f2); } // ----------------------------------------------------------------------------------------- /** sin(x) * Return sine function of x. * * kernel function: * __kernel_sin ... sine function on [-pi/4,pi/4] * __kernel_cos ... cose function on [-pi/4,pi/4] * __ieee754_rem_pio2 ... argument reduction routine * * Method. * Let S,C and T denote the sin, cos and tan respectively on * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 * in [-pi/4 , +pi/4], and let n = k mod 4. * We have * * n sin(x) cos(x) tan(x) * ---------------------------------------------------------- * 0 S C T * 1 C -S -1/T * 2 -S -C T * 3 -C S -1/T * ---------------------------------------------------------- * * Special cases: * Let trig be any of sin, cos, or tan. * trig(+-INF) is NaN, with signals; * trig(NaN) is that NaN; * * Accuracy: * TRIG(x) returns trig(x) nearly rounded */ static class Sin { static double compute(double x) { double[] y = new double[2]; double z=0.0; int n, ix; /* High word of x. */ ix = __HI(x); /* |x| ~< pi/4 */ ix &= 0x7fffffff; if(ix <= 0x3fe921fb) return __kernel_sin(x,z,0); /* sin(Inf or NaN) is NaN */ else if (ix>=0x7ff00000) return x-x; /* argument reduction needed */ else { n = RemPio2.__ieee754_rem_pio2(x,y); switch(n&3) { case 0: return Sin.__kernel_sin(y[0],y[1],1); case 1: return Cos.__kernel_cos(y[0],y[1]); case 2: return -Sin.__kernel_sin(y[0],y[1],1); default: return -Cos.__kernel_cos(y[0],y[1]); } } } /** __kernel_sin( x, y, iy) * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854 * Input x is assumed to be bounded by ~pi/4 in magnitude. * Input y is the tail of x. * Input iy indicates whether y is 0. (if iy=0, y assume to be 0). * * Algorithm * 1. Since sin(-x) = -sin(x), we need only to consider positive x. * 2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0. * 3. sin(x) is approximated by a polynomial of degree 13 on * [0,pi/4] * 3 13 * sin(x) ~ x + S1*x + ... + S6*x * where * * |sin(x) 2 4 6 8 10 12 | -58 * |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2 * | x | * * 4. sin(x+y) = sin(x) + sin'(x')*y * ~ sin(x) + (1-x*x/2)*y * For better accuracy, let * 3 2 2 2 2 * r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6)))) * then 3 2 * sin(x) = x + (S1*x + (x *(r-y/2)+y)) */ private static final double half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ S1 = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */ S2 = 8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */ S3 = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */ S4 = 2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */ S5 = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */ S6 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */ static double __kernel_sin(double x, double y, int iy) { double z,r,v; int ix; ix = __HI(x)&0x7fffffff; /* high word of x */ if(ix<0x3e400000) /* |x| < 2**-27 */ {if((int)x==0) return x;} /* generate inexact */ z = x*x; v = z*x; r = S2+z*(S3+z*(S4+z*(S5+z*S6))); if(iy==0) return x+v*(S1+z*r); else return x-((z*(half*y-v*r)-y)-v*S1); } } /** cos(x) * Return cosine function of x. * * kernel function: * __kernel_sin ... sine function on [-pi/4,pi/4] * __kernel_cos ... cosine function on [-pi/4,pi/4] * __ieee754_rem_pio2 ... argument reduction routine * * Method. * Let S,C and T denote the sin, cos and tan respectively on * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 * in [-pi/4 , +pi/4], and let n = k mod 4. * We have * * n sin(x) cos(x) tan(x) * ---------------------------------------------------------- * 0 S C T * 1 C -S -1/T * 2 -S -C T * 3 -C S -1/T * ---------------------------------------------------------- * * Special cases: * Let trig be any of sin, cos, or tan. * trig(+-INF) is NaN, with signals; * trig(NaN) is that NaN; * * Accuracy: * TRIG(x) returns trig(x) nearly rounded */ static class Cos { static double compute(double x) { double[] y = new double[2]; double z=0.0; int n, ix; /* High word of x. */ ix = __HI(x); /* |x| ~< pi/4 */ ix &= 0x7fffffff; if(ix <= 0x3fe921fb) return __kernel_cos(x,z); /* cos(Inf or NaN) is NaN */ else if (ix>=0x7ff00000) return x-x; /* argument reduction needed */ else { n = RemPio2.__ieee754_rem_pio2(x,y); switch(n&3) { case 0: return Cos.__kernel_cos(y[0],y[1]); case 1: return -Sin.__kernel_sin(y[0],y[1],1); case 2: return -Cos.__kernel_cos(y[0],y[1]); default: return Sin.__kernel_sin(y[0],y[1],1); } } } /** * __kernel_cos( x, y ) * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164 * Input x is assumed to be bounded by ~pi/4 in magnitude. * Input y is the tail of x. * * Algorithm * 1. Since cos(-x) = cos(x), we need only to consider positive x. * 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0. * 3. cos(x) is approximated by a polynomial of degree 14 on * [0,pi/4] * 4 14 * cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x * where the remez error is * * | 2 4 6 8 10 12 14 | -58 * |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2 * | | * * 4 6 8 10 12 14 * 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then * cos(x) = 1 - x*x/2 + r * since cos(x+y) ~ cos(x) - sin(x)*y * ~ cos(x) - x*y, * a correction term is necessary in cos(x) and hence * cos(x+y) = 1 - (x*x/2 - (r - x*y)) * For better accuracy when x > 0.3, let qx = |x|/4 with * the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125. * Then * cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)). * Note that 1-qx and (x*x/2-qx) is EXACT here, and the * magnitude of the latter is at least a quarter of x*x/2, * thus, reducing the rounding error in the subtraction. */ private static final double one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */ C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */ C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */ C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */ C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */ C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */ static double __kernel_cos(double x, double y) { double a,hz,z,r,qx = 0.0; int ix; ix = __HI(x)&0x7fffffff; /* ix = |x|'s high word*/ if(ix<0x3e400000) { /* if x < 2**27 */ if(((int)x)==0) return one; /* generate inexact */ } z = x*x; r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6))))); if(ix < 0x3FD33333) /* if |x| < 0.3 */ return one - (0.5*z - (z*r - x*y)); else { if(ix > 0x3fe90000) { /* x > 0.78125 */ qx = 0.28125; } else { //__HI(qx) = ix-0x00200000; /* x/4 */ qx = __HI(qx, ix-0x00200000); // __LO(qx) = 0; qx = __LO(qx, 0); } hz = 0.5*z-qx; a = one-qx; return a - (hz - (z*r-x*y)); } } } /** tan(x) * Return tangent function of x. * * kernel function: * __kernel_tan ... tangent function on [-pi/4,pi/4] * __ieee754_rem_pio2 ... argument reduction routine * * Method. * Let S,C and T denote the sin, cos and tan respectively on * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 * in [-pi/4 , +pi/4], and let n = k mod 4. * We have * * n sin(x) cos(x) tan(x) * ---------------------------------------------------------- * 0 S C T * 1 C -S -1/T * 2 -S -C T * 3 -C S -1/T * ---------------------------------------------------------- * * Special cases: * Let trig be any of sin, cos, or tan. * trig(+-INF) is NaN, with signals; * trig(NaN) is that NaN; * * Accuracy: * TRIG(x) returns trig(x) nearly rounded */ static class Tan { static double compute(double x) { double[] y= new double[2]; double z=0.0; int n, ix; /* High word of x. */ ix = __HI(x); /* |x| ~< pi/4 */ ix &= 0x7fffffff; if(ix <= 0x3fe921fb) return __kernel_tan(x,z,1); /* tan(Inf or NaN) is NaN */ else if (ix>=0x7ff00000) return x-x; /* NaN */ /* argument reduction needed */ else { n = RemPio2.__ieee754_rem_pio2(x,y); return __kernel_tan(y[0],y[1],1-((n&1)<<1)); /* 1 -- n even -1 -- n odd */ } } /** __kernel_tan( x, y, k ) * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 * Input x is assumed to be bounded by ~pi/4 in magnitude. * Input y is the tail of x. * Input k indicates whether tan (if k=1) or * -1/tan (if k= -1) is returned. * * Algorithm * 1. Since tan(-x) = -tan(x), we need only to consider positive x. * 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0. * 3. tan(x) is approximated by a odd polynomial of degree 27 on * [0,0.67434] * 3 27 * tan(x) ~ x + T1*x + ... + T13*x * where * * |tan(x) 2 4 26 | -59.2 * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2 * | x | * * Note: tan(x+y) = tan(x) + tan'(x)*y * ~ tan(x) + (1+x*x)*y * Therefore, for better accuracy in computing tan(x+y), let * 3 2 2 2 2 * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) * then * 3 2 * tan(x+y) = x + (T1*x + (x *(r+y)+y)) * * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y)) * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y))) */ private static final double one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ pio4 = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */ pio4lo= 3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */ T[] = { 3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */ 1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */ 5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */ 2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */ 8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */ 3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */ 1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */ 5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */ 2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */ 7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */ 7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */ -1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */ 2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */ }; static double __kernel_tan(double x, double y, int iy) { double z,r,v,w,s; int ix,hx; hx = __HI(x); /* high word of x */ ix = hx&0x7fffffff; /* high word of |x| */ if(ix<0x3e300000) { /* x < 2**-28 */ if((int)x==0) { /* generate inexact */ if (((ix | __LO(x)) | (iy + 1)) == 0) return one / Math.abs(x); else { if (iy == 1) return x; else { /* compute -1 / (x+y) carefully */ double a, t; z = w = x + y; // __LO(z) = 0; z= __LO(z, 0); v = y - (z - x); t = a = -one / w; //__LO(t) = 0; t = __LO(t, 0); s = one + t * z; return t + a * (s + t * v); } } } } if(ix>=0x3FE59428) { /* |x|>=0.6744 */ if(hx<0) {x = -x; y = -y;} z = pio4-x; w = pio4lo-y; x = z+w; y = 0.0; } z = x*x; w = z*z; /* Break x^5*(T[1]+x^2*T[2]+...) into * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) + * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12])) */ r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11])))); v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12]))))); s = z*x; r = y + z*(s*(r+v)+y); r += T[0]*s; w = x+r; if(ix>=0x3FE59428) { v = (double)iy; return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r))); } if(iy==1) return w; else { /* if allow error up to 2 ulp, simply return -1.0/(x+r) here */ /* compute -1.0/(x+r) accurately */ double a,t; z = w; // __LO(z) = 0; z = __LO(z, 0); v = r-(z - x); /* z+v = r+x */ t = a = -1.0/w; /* a = -1.0/w */ // __LO(t) = 0; t = __LO(t, 0); s = 1.0+t*z; return t+a*(s+t*v); } } } /** __ieee754_rem_pio2(x,y) * * return the remainder of x rem pi/2 in y[0]+y[1] * use __kernel_rem_pio2() */ static class RemPio2 { /* * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi */ private static final int[] two_over_pi = { 0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62, 0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A, 0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129, 0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41, 0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8, 0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF, 0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5, 0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08, 0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3, 0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880, 0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B, }; private static final int[] npio2_hw = { 0x3FF921FB, 0x400921FB, 0x4012D97C, 0x401921FB, 0x401F6A7A, 0x4022D97C, 0x4025FDBB, 0x402921FB, 0x402C463A, 0x402F6A7A, 0x4031475C, 0x4032D97C, 0x40346B9C, 0x4035FDBB, 0x40378FDB, 0x403921FB, 0x403AB41B, 0x403C463A, 0x403DD85A, 0x403F6A7A, 0x40407E4C, 0x4041475C, 0x4042106C, 0x4042D97C, 0x4043A28C, 0x40446B9C, 0x404534AC, 0x4045FDBB, 0x4046C6CB, 0x40478FDB, 0x404858EB, 0x404921FB, }; /* * invpio2: 53 bits of 2/pi * pio2_1: first 33 bit of pi/2 * pio2_1t: pi/2 - pio2_1 * pio2_2: second 33 bit of pi/2 * pio2_2t: pi/2 - (pio2_1+pio2_2) * pio2_3: third 33 bit of pi/2 * pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3) */ private static final double zero = 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */ pio2_1 = 1.57079632673412561417e+00, /* 0x3FF921FB, 0x54400000 */ pio2_1t = 6.07710050650619224932e-11, /* 0x3DD0B461, 0x1A626331 */ pio2_2 = 6.07710050630396597660e-11, /* 0x3DD0B461, 0x1A600000 */ pio2_2t = 2.02226624879595063154e-21, /* 0x3BA3198A, 0x2E037073 */ pio2_3 = 2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */ pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */ static int __ieee754_rem_pio2(double x, double[] y) { double z = 0.0,w,t,r,fn; double[] tx = new double[3]; int e0,i,j,nx,n,ix,hx; hx = __HI(x); /* high word of x */ ix = hx&0x7fffffff; if(ix<=0x3fe921fb) /* |x| ~<= pi/4 , no need for reduction */ {y[0] = x; y[1] = 0; return 0;} if(ix<0x4002d97c) { /* |x| < 3pi/4, special case with n=+-1 */ if(hx>0) { z = x - pio2_1; if(ix!=0x3ff921fb) { /* 33+53 bit pi is good enough */ y[0] = z - pio2_1t; y[1] = (z-y[0])-pio2_1t; } else { /* near pi/2, use 33+33+53 bit pi */ z -= pio2_2; y[0] = z - pio2_2t; y[1] = (z-y[0])-pio2_2t; } return 1; } else { /* negative x */ z = x + pio2_1; if(ix!=0x3ff921fb) { /* 33+53 bit pi is good enough */ y[0] = z + pio2_1t; y[1] = (z-y[0])+pio2_1t; } else { /* near pi/2, use 33+33+53 bit pi */ z += pio2_2; y[0] = z + pio2_2t; y[1] = (z-y[0])+pio2_2t; } return -1; } } if(ix<=0x413921fb) { /* |x| ~<= 2^19*(pi/2), medium size */ t = Math.abs(x); n = (int) (t*invpio2+half); fn = (double)n; r = t-fn*pio2_1; w = fn*pio2_1t; /* 1st round good to 85 bit */ if(n<32&&ix!=npio2_hw[n-1]) { y[0] = r-w; /* quick check no cancellation */ } else { j = ix>>20; y[0] = r-w; i = j-(((__HI(y[0]))>>20)&0x7ff); if(i>16) { /* 2nd iteration needed, good to 118 */ t = r; w = fn*pio2_2; r = t-w; w = fn*pio2_2t-((t-r)-w); y[0] = r-w; i = j-(((__HI(y[0]))>>20)&0x7ff); if(i>49) { /* 3rd iteration need, 151 bits acc */ t = r; /* will cover all possible cases */ w = fn*pio2_3; r = t-w; w = fn*pio2_3t-((t-r)-w); y[0] = r-w; } } } y[1] = (r-y[0])-w; if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;} else return n; } /* * all other (large) arguments */ if(ix>=0x7ff00000) { /* x is inf or NaN */ y[0]=y[1]=x-x; return 0; } /* set z = scalbn(|x|,ilogb(x)-23) */ // __LO(z) = __LO(x); z = __LO(z, __LO(x)); e0 = (ix>>20)-1046; /* e0 = ilogb(z)-23; */ // __HI(z) = ix - (e0<<20); z = __HI(z, ix - (e0<<20)); for(i=0;i<2;i++) { tx[i] = (double)((int)(z)); z = (z-tx[i])*two24; } tx[2] = z; nx = 3; while(tx[nx-1]==zero) nx--; /* skip zero term */ n = KernelRemPio2.__kernel_rem_pio2(tx,y,e0,nx,2,two_over_pi); if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;} return n; } } /** * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) * double x[],y[]; int e0,nx,prec; int ipio2[]; * * __kernel_rem_pio2 return the last three digits of N with * y = x - N*pi/2 * so that |y| < pi/2. * * The method is to compute the integer (mod 8) and fraction parts of * (2/pi)*x without doing the full multiplication. In general we * skip the part of the product that are known to be a huge integer ( * more accurately, = 0 mod 8 ). Thus the number of operations are * independent of the exponent of the input. * * (2/pi) is represented by an array of 24-bit integers in ipio2[]. * * Input parameters: * x[] The input value (must be positive) is broken into nx * pieces of 24-bit integers in double precision format. * x[i] will be the i-th 24 bit of x. The scaled exponent * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0 * match x's up to 24 bits. * * Example of breaking a double positive z into x[0]+x[1]+x[2]: * e0 = ilogb(z)-23 * z = scalbn(z,-e0) * for i = 0,1,2 * x[i] = floor(z) * z = (z-x[i])*2**24 * * * y[] output result in an array of double precision numbers. * The dimension of y[] is: * 24-bit precision 1 * 53-bit precision 2 * 64-bit precision 2 * 113-bit precision 3 * The actual value is the sum of them. Thus for 113-bit * precision, one may have to do something like: * * long double t,w,r_head, r_tail; * t = (long double)y[2] + (long double)y[1]; * w = (long double)y[0]; * r_head = t+w; * r_tail = w - (r_head - t); * * e0 The exponent of x[0] * * nx dimension of x[] * * prec an integer indicating the precision: * 0 24 bits (single) * 1 53 bits (double) * 2 64 bits (extended) * 3 113 bits (quad) * * ipio2[] * integer array, contains the (24*i)-th to (24*i+23)-th * bit of 2/pi after binary point. The corresponding * floating value is * * ipio2[i] * 2^(-24(i+1)). * * External function: * double scalbn(), floor(); * * * Here is the description of some local variables: * * jk jk+1 is the initial number of terms of ipio2[] needed * in the computation. The recommended value is 2,3,4, * 6 for single, double, extended,and quad. * * jz local integer variable indicating the number of * terms of ipio2[] used. * * jx nx - 1 * * jv index for pointing to the suitable ipio2[] for the * computation. In general, we want * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8 * is an integer. Thus * e0-3-24*jv >= 0 or (e0-3)/24 >= jv * Hence jv = max(0,(e0-3)/24). * * jp jp+1 is the number of terms in PIo2[] needed, jp = jk. * * q[] double array with integral value, representing the * 24-bits chunk of the product of x and 2/pi. * * q0 the corresponding exponent of q[0]. Note that the * exponent for q[i] would be q0-24*i. * * PIo2[] double precision array, obtained by cutting pi/2 * into 24 bits chunks. * * f[] ipio2[] in floating point * * iq[] integer array by breaking up q[] in 24-bits chunk. * * fq[] final product of x*(2/pi) in fq[0],..,fq[jk] * * ih integer. If >0 it indicates q[] is >= 0.5, hence * it also indicates the *sign* of the result. * */ static class KernelRemPio2 { /* * Constants: * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */ private static final int[] init_jk = {2,3,4,6}; /* initial value for jk */ private static final double[] PIo2 = { 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */ 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */ 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */ 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */ 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */ 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */ 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */ 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */ }; static final double zero = 0.0, one = 1.0, two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */ static int __kernel_rem_pio2(double[] x, double[] y, int e0, int nx, int prec, final int[] ipio2) { int jz,jx,jv,jp,jk,carry,n,i,j,k,m,q0,ih; int[] iq = new int[20]; double z,fw; double [] f = new double[20]; double [] fq= new double[20]; double [] q = new double[20]; /* initialize jk*/ jk = init_jk[prec]; jp = jk; /* determine jx,jv,q0, note that 3>q0 */ jx = nx-1; jv = (e0-3)/24; if(jv<0) jv=0; q0 = e0-24*(jv+1); /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */ j = jv-jx; m = jx+jk; for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j]; /* compute q[0],q[1],...q[jk] */ for (i=0;i<=jk;i++) { for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw; } jz = jk; /* * Transliteration note: the FDLIBM C sources have a * "recompute:" label at this point and a "goto * recompute;" later on at the indicated point. This * structure was replaced by wrapping the code in the * while(true){...} loop below, replacing the goto with * the continue to re-execute the loop and by adding * breaks to exit the loop on the other control flow * paths. */ while(true) { /* distill q[] into iq[] reversingly */ for(i=0,j=jz,z=q[jz];j>0;i++,j--) { fw = (double)((int)(twon24* z)); iq[i] = (int)(z-two24*fw); z = q[j-1]+fw; } /* compute n */ z = Math.scalb(z,q0); /* actual value of z */ z -= 8.0*Math.floor(z*0.125); /* trim off integer >= 8 */ n = (int) z; z -= (double)n; ih = 0; if(q0>0) { /* need iq[jz-1] to determine n */ i = (iq[jz-1]>>(24-q0)); n += i; iq[jz-1] -= i<<(24-q0); ih = iq[jz-1]>>(23-q0); } else if(q0==0) ih = iq[jz-1]>>23; else if(z>=0.5) ih=2; if(ih>0) { /* q > 0.5 */ n += 1; carry = 0; for(i=0;i0) { /* rare case: chance is 1 in 12 */ switch(q0) { case 1: iq[jz-1] &= 0x7fffff; break; case 2: iq[jz-1] &= 0x3fffff; break; } } if(ih==2) { z = one - z; if(carry!=0) z -= Math.scalb(one,q0); } } /* check if recomputation is needed */ if(z==zero) { j = 0; for (i=jz-1;i>=jk;i--) j |= iq[i]; if(j==0) { /* need recomputation */ for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */ for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */ f[jx+i] = (double) ipio2[jv+i]; for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw; } jz += k; // At this point "goto recompute;" in the original C sources. continue; } else { break;} } else {break;} } /* chop off zero terms */ if(z==0.0) { jz -= 1; q0 -= 24; while(iq[jz]==0) { jz--; q0-=24;} } else { /* break z into 24-bit if necessary */ z = Math.scalb(z,-q0); if(z>=two24) { fw = (double)((int)(twon24*z)); iq[jz] = (int)(z-two24*fw); jz += 1; q0 += 24; iq[jz] = (int) fw; } else iq[jz] = (int) z ; } /* convert integer "bit" chunk to floating-point value */ fw = Math.scalb(one,q0); for(i=jz;i>=0;i--) { q[i] = fw*(double)iq[i]; fw*=twon24; } /* compute PIo2[0,...,jp]*q[jz,...,0] */ for(i=jz;i>=0;i--) { for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k]; fq[jz-i] = fw; } /* compress fq[] into y[] */ switch(prec) { case 0: fw = 0.0; for (i=jz;i>=0;i--) fw += fq[i]; y[0] = (ih==0)? fw: -fw; break; case 1: case 2: fw = 0.0; for (i=jz;i>=0;i--) fw += fq[i]; y[0] = (ih==0)? fw: -fw; fw = fq[0]-fw; for (i=1;i<=jz;i++) fw += fq[i]; y[1] = (ih==0)? fw: -fw; break; case 3: /* painful */ for (i=jz;i>0;i--) { fw = fq[i-1]+fq[i]; fq[i] += fq[i-1]-fw; fq[i-1] = fw; } for (i=jz;i>1;i--) { fw = fq[i-1]+fq[i]; fq[i] += fq[i-1]-fw; fq[i-1] = fw; } for (fw=0.0,i=jz;i>=2;i--) fw += fq[i]; if(ih==0) { y[0] = fq[0]; y[1] = fq[1]; y[2] = fw; } else { y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw; } } return n&7; } } /** Returns the arcsine of x. * * Method : * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ... * we approximate asin(x) on [0,0.5] by * asin(x) = x + x*x^2*R(x^2) * where * R(x^2) is a rational approximation of (asin(x)-x)/x^3 * and its remez error is bounded by * |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75) * * For x in [0.5,1] * asin(x) = pi/2-2*asin(sqrt((1-x)/2)) * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2; * then for x>0.98 * asin(x) = pi/2 - 2*(s+s*z*R(z)) * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo) * For x<=0.98, let pio4_hi = pio2_hi/2, then * f = hi part of s; * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z) * and * asin(x) = pi/2 - 2*(s+s*z*R(z)) * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo) * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c)) * * Special cases: * if x is NaN, return x itself; * if |x|>1, return NaN with invalid signal. * */ static class Asin { private static final double one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ huge = 1.000e+300, pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */ pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */ pio4_hi = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */ /* coefficient for R(x^2) */ pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */ pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */ pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */ pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */ pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */ pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */ qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */ qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */ qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */ qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */ static double compute(double x) { double t=0,w,p,q,c,r,s; int hx,ix; hx = __HI(x); ix = hx&0x7fffffff; if(ix>= 0x3ff00000) { /* |x|>= 1 */ if(((ix-0x3ff00000)|__LO(x))==0) /* asin(1)=+-pi/2 with inexact */ return x*pio2_hi+x*pio2_lo; return (x-x)/(x-x); /* asin(|x|>1) is NaN */ } else if (ix<0x3fe00000) { /* |x|<0.5 */ if(ix<0x3e400000) { /* if |x| < 2**-27 */ if(huge+x>one) return x;/* return x with inexact if x!=0*/ } else t = x*x; p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5))))); q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4))); w = p/q; return x+x*w; } /* 1> |x|>= 0.5 */ w = one-Math.abs(x); t = w*0.5; p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5))))); q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4))); s = Math.sqrt(t); if(ix>=0x3FEF3333) { /* if |x| > 0.975 */ w = p/q; t = pio2_hi-(2.0*(s+s*w)-pio2_lo); } else { w = s; // __LO(w) = 0; w = __LO(w, 0); c = (t-w*w)/(s+w); r = p/q; p = 2.0*s*r-(pio2_lo-2.0*c); q = pio4_hi-2.0*w; t = pio4_hi-(p-q); } if(hx>0) return t; else return -t; } } /** Returns the arccosine of x. * Method : * acos(x) = pi/2 - asin(x) * acos(-x) = pi/2 + asin(x) * For |x|<=0.5 * acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c) * For x>0.5 * acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2))) * = 2asin(sqrt((1-x)/2)) * = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z) * = 2f + (2c + 2s*z*R(z)) * where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term * for f so that f+c ~ sqrt(z). * For x<-0.5 * acos(x) = pi - 2asin(sqrt((1-|x|)/2)) * = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z) * * Special cases: * if x is NaN, return x itself; * if |x|>1, return NaN with invalid signal. * * Function needed: sqrt */ static class Acos { private static final double one= 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */ pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */ pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */ pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */ pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */ pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */ pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */ pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */ pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */ qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */ qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */ qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */ qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */ static double compute(double x) { double z,p,q,r,w,s,c,df; int hx,ix; hx = __HI(x); ix = hx&0x7fffffff; if(ix>=0x3ff00000) { /* |x| >= 1 */ if(((ix-0x3ff00000)|__LO(x))==0) { /* |x|==1 */ if(hx>0) return 0.0; /* acos(1) = 0 */ else return pi+2.0*pio2_lo; /* acos(-1)= pi */ } return (x-x)/(x-x); /* acos(|x|>1) is NaN */ } if(ix<0x3fe00000) { /* |x| < 0.5 */ if(ix<=0x3c600000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/ z = x*x; p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4))); r = p/q; return pio2_hi - (x - (pio2_lo-x*r)); } else if (hx<0) { /* x < -0.5 */ z = (one+x)*0.5; p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4))); s = Math.sqrt(z); r = p/q; w = r*s-pio2_lo; return pi - 2.0*(s+w); } else { /* x > 0.5 */ z = (one-x)*0.5; s = Math.sqrt(z); df = s; // __LO(df) = 0; df = __LO(df, 0); c = (z-df*df)/(s+df); p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4))); r = p/q; w = r*s+c; return 2.0*(df+w); } } } /* Returns the arctangent of x. * Method * 1. Reduce x to positive by atan(x) = -atan(-x). * 2. According to the integer k=4t+0.25 chopped, t=x, the argument * is further reduced to one of the following intervals and the * arctangent of t is evaluated by the corresponding formula: * * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...) * [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) ) * [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) ) * [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) ) * [39/16,INF] atan(x) = atan(INF) + atan( -1/t ) * * Constants: * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */ static class Atan { private static final double atanhi[] = { 4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */ 7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */ 9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */ 1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */ }; private static final double atanlo[] = { 2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */ 3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */ 1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */ 6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */ }; private static final double aT[] = { 3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */ -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */ 1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */ -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */ 9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */ -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */ 6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */ -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */ 4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */ -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */ 1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */ }; private static final double one = 1.0, huge = 1.0e300; static double compute(double x) { double w,s1,s2,z; int ix,hx,id; hx = __HI(x); ix = hx&0x7fffffff; if(ix>=0x44100000) { /* if |x| >= 2^66 */ if(ix>0x7ff00000|| (ix==0x7ff00000&&(__LO(x)!=0))) return x+x; /* NaN */ if(hx>0) return atanhi[3]+atanlo[3]; else return -atanhi[3]-atanlo[3]; } if (ix < 0x3fdc0000) { /* |x| < 0.4375 */ if (ix < 0x3e200000) { /* |x| < 2^-29 */ if(huge+x>one) return x; /* raise inexact */ } id = -1; } else { x = Math.abs(x); if (ix < 0x3ff30000) { /* |x| < 1.1875 */ if (ix < 0x3fe60000) { /* 7/16 <=|x|<11/16 */ id = 0; x = (2.0*x-one)/(2.0+x); } else { /* 11/16<=|x|< 19/16 */ id = 1; x = (x-one)/(x+one); } } else { if (ix < 0x40038000) { /* |x| < 2.4375 */ id = 2; x = (x-1.5)/(one+1.5*x); } else { /* 2.4375 <= |x| < 2^66 */ id = 3; x = -1.0/x; } }} /* end of argument reduction */ z = x*x; w = z*z; /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */ s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10]))))); s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9])))); if (id<0) return x - x*(s1+s2); else { z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x); return (hx<0)? -z:z; } } } /** * Returns the angle theta from the conversion of rectangular * coordinates (x, y) to polar coordinates (r, theta). * * Method : * 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x). * 2. Reduce x to positive by (if x and y are unexceptional): * ARG (x+iy) = arctan(y/x) ... if x > 0, * ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0, * * Special cases: * * ATAN2((anything), NaN ) is NaN; * ATAN2(NAN , (anything) ) is NaN; * ATAN2(+-0, +(anything but NaN)) is +-0 ; * ATAN2(+-0, -(anything but NaN)) is +-pi ; * ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2; * ATAN2(+-(anything but INF and NaN), +INF) is +-0 ; * ATAN2(+-(anything but INF and NaN), -INF) is +-pi; * ATAN2(+-INF,+INF ) is +-pi/4 ; * ATAN2(+-INF,-INF ) is +-3pi/4; * ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2; * * Constants: * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */ static class Atan2 { private static final double tiny = 1.0e-300, zero = 0.0, pi_o_4 = 7.8539816339744827900E-01, /* 0x3FE921FB, 0x54442D18 */ pi_o_2 = 1.5707963267948965580E+00, /* 0x3FF921FB, 0x54442D18 */ pi = 3.1415926535897931160E+00, /* 0x400921FB, 0x54442D18 */ pi_lo = 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */ static double compute(double y, double x) { double z; int k,m,hx,hy,ix,iy; /*unsigned*/ int lx,ly; hx = __HI(x); ix = hx&0x7fffffff; lx = __LO(x); hy = __HI(y); iy = hy&0x7fffffff; ly = __LO(y); if(((ix|((lx|-lx)>>>31))>0x7ff00000)|| // Note unsigned shifts ((iy|((ly|-ly)>>>31))>0x7ff00000)) /* x or y is NaN */ return x+y; if(((hx-0x3ff00000)|lx)==0) return atan(y); /* x=1.0 */ m = ((hy>>31)&1)|((hx>>30)&2); /* 2*sign(x)+sign(y) */ /* when y = 0 */ if((iy|ly)==0) { switch(m) { case 0: case 1: return y; /* atan(+-0,+anything)=+-0 */ case 2: return pi+tiny;/* atan(+0,-anything) = pi */ case 3: return -pi-tiny;/* atan(-0,-anything) =-pi */ } } /* when x = 0 */ if((ix|lx)==0) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny; /* when x is INF */ if(ix==0x7ff00000) { if(iy==0x7ff00000) { switch(m) { case 0: return pi_o_4+tiny;/* atan(+INF,+INF) */ case 1: return -pi_o_4-tiny;/* atan(-INF,+INF) */ case 2: return 3.0*pi_o_4+tiny;/*atan(+INF,-INF)*/ case 3: return -3.0*pi_o_4-tiny;/*atan(-INF,-INF)*/ } } else { switch(m) { case 0: return zero ; /* atan(+...,+INF) */ case 1: return -1.0*zero ; /* atan(-...,+INF) */ case 2: return pi+tiny ; /* atan(+...,-INF) */ case 3: return -pi-tiny ; /* atan(-...,-INF) */ } } } /* when y is INF */ if(iy==0x7ff00000) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny; /* compute y/x */ k = (iy-ix)>>20; if(k > 60) z=pi_o_2+0.5*pi_lo; /* |y/x| > 2**60 */ else if(hx<0&&k<-60) z=0.0; /* |y|/x < -2**60 */ else z=atan(Math.abs(y/x)); /* safe to do y/x */ switch (m) { case 0: return z ; /* atan(+,+) */ case 1: // original:__HI(z) ^= 0x80000000; z = __HI(z, __HI(z) ^ 0x80000000); return z ; /* atan(-,+) */ case 2: return pi-(z-pi_lo);/* atan(+,-) */ default: /* case 3 */ return (z-pi_lo)-pi;/* atan(-,-) */ } } } /** * Return correctly rounded sqrt. * ------------------------------------------ * | Use the hardware sqrt if you have one | * ------------------------------------------ * Method: * Bit by bit method using integer arithmetic. (Slow, but portable) * 1. Normalization * Scale x to y in [1,4) with even powers of 2: * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then * sqrt(x) = 2^k * sqrt(y) * 2. Bit by bit computation * Let q = sqrt(y) truncated to i bit after binary point (q = 1), * i 0 * i+1 2 * s = 2*q , and y = 2 * ( y - q ). (1) * i i i i * * To compute q from q , one checks whether * i+1 i * * -(i+1) 2 * (q + 2 ) <= y. (2) * i * -(i+1) * If (2) is false, then q = q ; otherwise q = q + 2 . * i+1 i i+1 i * * With some algebraic manipulation, it is not difficult to see * that (2) is equivalent to * -(i+1) * s + 2 <= y (3) * i i * * The advantage of (3) is that s and y can be computed by * i i * the following recurrence formula: * if (3) is false * * s = s , y = y ; (4) * i+1 i i+1 i * * otherwise, * -i -(i+1) * s = s + 2 , y = y - s - 2 (5) * i+1 i i+1 i i * * One may easily use induction to prove (4) and (5). * Note. Since the left hand side of (3) contain only i+2 bits, * it does not necessary to do a full (53-bit) comparison * in (3). * 3. Final rounding * After generating the 53 bits result, we compute one more bit. * Together with the remainder, we can decide whether the * result is exact, bigger than 1/2ulp, or less than 1/2ulp * (it will never equal to 1/2ulp). * The rounding mode can be detected by checking whether * huge + tiny is equal to huge, and whether huge - tiny is * equal to huge for some floating point number "huge" and "tiny". * * Special cases: * sqrt(+-0) = +-0 ... exact * sqrt(inf) = inf * sqrt(-ve) = NaN ... with invalid signal * sqrt(NaN) = NaN ... with invalid signal for signaling NaN * * Other methods : see the appended file at the end of the program below. *--------------- */ static class Sqrt { private static final double one = 1.0, tiny=1.0e-300; public static double compute(double x) { double z = 0.0; int sign = (int)0x80000000; /*unsigned*/ int r,t1,s1,ix1,q1; int ix0,s0,q,m,t,i; ix0 = __HI(x); /* high word of x */ ix1 = __LO(x); /* low word of x */ /* take care of Inf and NaN */ if((ix0&0x7ff00000)==0x7ff00000) { return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf sqrt(-inf)=sNaN */ } /* take care of zero */ if(ix0<=0) { if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */ else if(ix0<0) return (x-x)/(x-x); /* sqrt(-ve) = sNaN */ } /* normalize x */ m = (ix0>>20); if(m==0) { /* subnormal x */ while(ix0==0) { m -= 21; ix0 |= (ix1>>>11); ix1 <<= 21; // unsigned shift } for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1; m -= i-1; ix0 |= (ix1>>>(32-i)); // unsigned shift ix1 <<= i; } m -= 1023; /* unbias exponent */ ix0 = (ix0&0x000fffff)|0x00100000; if((m&1) != 0){ /* odd m, double x to make it even */ ix0 += ix0 + ((ix1&sign)>>>31); // unsigned shift ix1 += ix1; } m >>= 1; /* m = [m/2] */ /* generate sqrt(x) bit by bit */ ix0 += ix0 + ((ix1&sign)>>>31); // unsigned shift ix1 += ix1; q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */ r = 0x00200000; /* r = moving bit from right to left */ while(r!=0) { t = s0+r; if(t<=ix0) { s0 = t+r; ix0 -= t; q += r; } ix0 += ix0 + ((ix1&sign)>>>31); // unsigned shift ix1 += ix1; r>>>=1; // unsigned shift } r = sign; while(r!=0) { t1 = s1+r; t = s0; if((t>>31); // unsigned shift ix1 += ix1; r>>>=1; // unsigned shift } /* use floating add to find out rounding direction */ if((ix0|ix1)!=0) { z = one-tiny; /* trigger inexact flag */ if (z>=one) { z = one+tiny; if (q1==0xffffffff) { q1=0; q += 1;} else if (z>one) { if (q1==0xfffffffe) q+=1; q1+=2; } else q1 += (q1&1); } } ix0 = (q>>1)+0x3fe00000; ix1 = q1>>>1; // unsigned shift if ((q&1)==1) ix1 |= sign; ix0 += (m <<20); // __HI(z) = ix0; z = __HI(z, ix0); // __LO(z) = ix1; z = __LO(z, ix1); return z; } } /** * cbrt(x) * Return cube root of x */ public static class Cbrt { // unsigned private static final int B1 = 715094163; /* B1 = (682-0.03306235651)*2**20 */ private static final int B2 = 696219795; /* B2 = (664-0.03306235651)*2**20 */ private static final double C = 5.42857142857142815906e-01; /* 19/35 = 0x3FE15F15, 0xF15F15F1 */ private static final double D = -7.05306122448979611050e-01; /* -864/1225 = 0xBFE691DE, 0x2532C834 */ private static final double E = 1.41428571428571436819e+00; /* 99/70 = 0x3FF6A0EA, 0x0EA0EA0F */ private static final double F = 1.60714285714285720630e+00; /* 45/28 = 0x3FF9B6DB, 0x6DB6DB6E */ private static final double G = 3.57142857142857150787e-01; /* 5/14 = 0x3FD6DB6D, 0xB6DB6DB7 */ public static double compute(double x) { int hx; double r, s, t=0.0, w; int sign; // unsigned hx = __HI(x); // high word of x sign = hx & 0x80000000; // sign= sign(x) hx ^= sign; if (hx >= 0x7ff00000) return (x+x); // cbrt(NaN,INF) is itself if ((hx | __LO(x)) == 0) return(x); // cbrt(0) is itself x = __HI(x, hx); // x <- |x| // rough cbrt to 5 bits if (hx < 0x00100000) { // subnormal number t = __HI(t, 0x43500000); // set t= 2**54 t *= x; t = __HI(t, __HI(t)/3+B2); } else { t = __HI(t, hx/3+B1); } // new cbrt to 23 bits, may be implemented in single precision r = t * t/x; s = C + r*t; t *= G + F/(s + E + D/s); // chopped to 20 bits and make it larger than cbrt(x) t = __LO(t, 0); t = __HI(t, __HI(t)+0x00000001); // one step newton iteration to 53 bits with error less than 0.667 ulps s = t * t; // t*t is exact r = x / s; w = t + t; r= (r - t)/(w + r); // r-s is exact t= t + t*r; // retore the sign bit t = __HI(t, __HI(t) | sign); return(t); } } /** * hypot(x,y) * * Method : * If (assume round-to-nearest) z = x*x + y*y * has error less than sqrt(2)/2 ulp, than * sqrt(z) has error less than 1 ulp (exercise). * * So, compute sqrt(x*x + y*y) with some care as * follows to get the error below 1 ulp: * * Assume x > y > 0; * (if possible, set rounding to round-to-nearest) * 1. if x > 2y use * x1*x1 + (y*y + (x2*(x + x1))) for x*x + y*y * where x1 = x with lower 32 bits cleared, x2 = x - x1; else * 2. if x <= 2y use * t1*y1 + ((x-y) * (x-y) + (t1*y2 + t2*y)) * where t1 = 2x with lower 32 bits cleared, t2 = 2x - t1, * y1= y with lower 32 bits chopped, y2 = y - y1. * * NOTE: scaling may be necessary if some argument is too * large or too tiny * * Special cases: * hypot(x,y) is INF if x or y is +INF or -INF; else * hypot(x,y) is NAN if x or y is NAN. * * Accuracy: * hypot(x,y) returns sqrt(x^2 + y^2) with error less * than 1 ulps (units in the last place) */ static class Hypot { public static double compute(double x, double y) { double a = x; double b = y; double t1, t2, y1, y2, w; int j, k, ha, hb; ha = __HI(x) & 0x7fffffff; // high word of x hb = __HI(y) & 0x7fffffff; // high word of y if(hb > ha) { a = y; b = x; j = ha; ha = hb; hb = j; } else { a = x; b = y; } a = __HI(a, ha); // a <- |a| b = __HI(b, hb); // b <- |b| if ((ha - hb) > 0x3c00000) { return a + b; // x / y > 2**60 } k=0; if (ha > 0x5f300000) { // a>2**500 if (ha >= 0x7ff00000) { // Inf or NaN w = a + b; // for sNaN if (((ha & 0xfffff) | __LO(a)) == 0) w = a; if (((hb ^ 0x7ff00000) | __LO(b)) == 0) w = b; return w; } // scale a and b by 2**-600 ha -= 0x25800000; hb -= 0x25800000; k += 600; a = __HI(a, ha); b = __HI(b, hb); } if (hb < 0x20b00000) { // b < 2**-500 if (hb <= 0x000fffff) { // subnormal b or 0 */ if ((hb | (__LO(b))) == 0) return a; t1 = 0; t1 = __HI(t1, 0x7fd00000); // t1=2^1022 b *= t1; a *= t1; k -= 1022; } else { // scale a and b by 2^600 ha += 0x25800000; // a *= 2^600 hb += 0x25800000; // b *= 2^600 k -= 600; a = __HI(a, ha); b = __HI(b, hb); } } // medium size a and b w = a - b; if (w > b) { t1 = 0; t1 = __HI(t1, ha); t2 = a - t1; w = Math.sqrt(t1*t1 - (b*(-b) - t2 * (a + t1))); } else { a = a + a; y1 = 0; y1 = __HI(y1, hb); y2 = b - y1; t1 = 0; t1 = __HI(t1, ha + 0x00100000); t2 = a - t1; w = Math.sqrt(t1*y1 - (w*(-w) - (t1*y2 + t2*b))); } if (k != 0) { t1 = 1.0; int t1_hi = __HI(t1); t1_hi += (k << 20); t1 = __HI(t1, t1_hi); return t1 * w; } else return w; } } /** * Returns the exponential of x. * * Method * 1. Argument reduction: * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. * Given x, find r and integer k such that * * x = k*ln2 + r, |r| <= 0.5*ln2. * * Here r will be represented as r = hi-lo for better * accuracy. * * 2. Approximation of exp(r) by a special rational function on * the interval [0,0.34658]: * Write * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... * We use a special Reme algorithm on [0,0.34658] to generate * a polynomial of degree 5 to approximate R. The maximum error * of this polynomial approximation is bounded by 2**-59. In * other words, * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 * (where z=r*r, and the values of P1 to P5 are listed below) * and * | 5 | -59 * | 2.0+P1*z+...+P5*z - R(z) | <= 2 * | | * The computation of exp(r) thus becomes * 2*r * exp(r) = 1 + ------- * R - r * r*R1(r) * = 1 + r + ----------- (for better accuracy) * 2 - R1(r) * where * 2 4 10 * R1(r) = r - (P1*r + P2*r + ... + P5*r ). * * 3. Scale back to obtain exp(x): * From step 1, we have * exp(x) = 2^k * exp(r) * * Special cases: * exp(INF) is INF, exp(NaN) is NaN; * exp(-INF) is 0, and * for finite argument, only exp(0)=1 is exact. * * Accuracy: * according to an error analysis, the error is always less than * 1 ulp (unit in the last place). * * Misc. info. * For IEEE double * if x > 7.09782712893383973096e+02 then exp(x) overflow * if x < -7.45133219101941108420e+02 then exp(x) underflow * * Constants: * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */ private static final class Exp { private static final double one = 1.0; private static final double[] halF = {0.5,-0.5,}; private static final double huge = 1.0e+300; private static final double twom1000= 9.33263618503218878990e-302; /* 2**-1000=0x01700000,0*/ private static final double o_threshold= 7.09782712893383973096e+02; /* 0x40862E42, 0xFEFA39EF */ private static final double u_threshold= -7.45133219101941108420e+02; /* 0xc0874910, 0xD52D3051 */ private static final double[] ln2HI ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */ -6.93147180369123816490e-01}; /* 0xbfe62e42, 0xfee00000 */ private static final double[] ln2LO ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */ -1.90821492927058770002e-10,}; /* 0xbdea39ef, 0x35793c76 */ private static final double invln2 = 1.44269504088896338700e+00; /* 0x3ff71547, 0x652b82fe */ private static final double P1 = 1.66666666666666019037e-01; /* 0x3FC55555, 0x5555553E */ private static final double P2 = -2.77777777770155933842e-03; /* 0xBF66C16C, 0x16BEBD93 */ private static final double P3 = 6.61375632143793436117e-05; /* 0x3F11566A, 0xAF25DE2C */ private static final double P4 = -1.65339022054652515390e-06; /* 0xBEBBBD41, 0xC5D26BF1 */ private static final double P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */ static double compute(double x) { double y,hi=0,lo=0,c,t; int k=0,xsb; /*unsigned*/ int hx; hx = __HI(x); /* high word of x */ xsb = (hx>>31)&1; /* sign bit of x */ hx &= 0x7fffffff; /* high word of |x| */ /* filter out non-finite argument */ if(hx >= 0x40862E42) { /* if |x|>=709.78... */ if(hx>=0x7ff00000) { if(((hx&0xfffff)|__LO(x))!=0) return x+x; /* NaN */ else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */ } if(x > o_threshold) return huge*huge; /* overflow */ if(x < u_threshold) return twom1000*twom1000; /* underflow */ } /* argument reduction */ if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb; } else { k = (int)(invln2*x+halF[xsb]); t = k; hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */ lo = t*ln2LO[0]; } x = hi - lo; } else if(hx < 0x3e300000) { /* when |x|<2**-28 */ if(huge+x>one) return one+x;/* trigger inexact */ } else k = 0; /* x is now in primary range */ t = x*x; c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); if(k==0) return one-((x*c)/(c-2.0)-x); else y = one-((lo-(x*c)/(2.0-c))-hi); if(k >= -1021) { y = __HI(y, __HI(y) + (k<<20)); /* add k to y's exponent */ return y; } else { y = __HI(y, __HI(y) + ((k+1000)<<20));/* add k to y's exponent */ return y*twom1000; } } } /** * Return the logarithm of x * * Method : * 1. Argument Reduction: find k and f such that * x = 2^k * (1+f), * where sqrt(2)/2 < 1+f < sqrt(2) . * * 2. Approximation of log(1+f). * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) * = 2s + 2/3 s**3 + 2/5 s**5 + ....., * = 2s + s*R * We use a special Reme algorithm on [0,0.1716] to generate * a polynomial of degree 14 to approximate R The maximum error * of this polynomial approximation is bounded by 2**-58.45. In * other words, * 2 4 6 8 10 12 14 * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s * (the values of Lg1 to Lg7 are listed in the program) * and * | 2 14 | -58.45 * | Lg1*s +...+Lg7*s - R(z) | <= 2 * | | * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. * In order to guarantee error in log below 1ulp, we compute log * by * log(1+f) = f - s*(f - R) (if f is not too large) * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) * * 3. Finally, log(x) = k*ln2 + log(1+f). * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) * Here ln2 is split into two floating point number: * ln2_hi + ln2_lo, * where n*ln2_hi is always exact for |n| < 2000. * * Special cases: * log(x) is NaN with signal if x < 0 (including -INF) ; * log(+INF) is +INF; log(0) is -INF with signal; * log(NaN) is that NaN with no signal. * * Accuracy: * according to an error analysis, the error is always less than * 1 ulp (unit in the last place). * * Constants: * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */ private static final class Log { private static final double ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */ ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */ two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */ Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ private static double zero = 0.0; static double compute(double x) { double hfsq,f,s,z,R,w,t1,t2,dk; int k,hx,i,j; /*unsigned*/ int lx; hx = __HI(x); /* high word of x */ lx = __LO(x); /* low word of x */ k=0; if (hx < 0x00100000) { /* x < 2**-1022 */ if (((hx&0x7fffffff)|lx)==0) return -two54/zero; /* log(+-0)=-inf */ if (hx<0) return (x-x)/zero; /* log(-#) = NaN */ k -= 54; x *= two54; /* subnormal number, scale up x */ hx = __HI(x); /* high word of x */ } if (hx >= 0x7ff00000) return x+x; k += (hx>>20)-1023; hx &= 0x000fffff; i = (hx+0x95f64)&0x100000; // __HI(x) = hx|(i^0x3ff00000); /* normalize x or x/2 */ x =__HI(x, hx|(i^0x3ff00000)); /* normalize x or x/2 */ k += (i>>20); f = x-1.0; if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */ if(f==zero) { if (k==0) return zero; else {dk=(double)k; return dk*ln2_hi+dk*ln2_lo;} } R = f*f*(0.5-0.33333333333333333*f); if(k==0) return f-R; else {dk=(double)k; return dk*ln2_hi-((R-dk*ln2_lo)-f);} } s = f/(2.0+f); dk = (double)k; z = s*s; i = hx-0x6147a; w = z*z; j = 0x6b851-hx; t1= w*(Lg2+w*(Lg4+w*Lg6)); t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); i |= j; R = t2+t1; if(i>0) { hfsq=0.5*f*f; if(k==0) return f-(hfsq-s*(hfsq+R)); else return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f); } else { if(k==0) return f-s*(f-R); else return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f); } } } /** * Return the base 10 logarithm of x * * Method : * Let log10_2hi = leading 40 bits of log10(2) and * log10_2lo = log10(2) - log10_2hi, * ivln10 = 1/log(10) rounded. * Then * n = ilogb(x), * if(n<0) n = n+1; * x = scalbn(x,-n); * log10(x) := n*log10_2hi + (n*log10_2lo + ivln10*log(x)) * * Note 1: * To guarantee log10(10**n)=n, where 10**n is normal, the rounding * mode must set to Round-to-Nearest. * Note 2: * [1/log(10)] rounded to 53 bits has error .198 ulps; * log10 is monotonic at all binary break points. * * Special cases: * log10(x) is NaN with signal if x < 0; * log10(+INF) is +INF with no signal; log10(0) is -INF with signal; * log10(NaN) is that NaN with no signal; * log10(10**N) = N for N=0,1,...,22. * * Constants: * The hexadecimal values are the intended ones for the following constants. * The decimal values may be used, provided that the compiler will convert * from decimal to binary accurately enough to produce the hexadecimal values * shown. */ static class Log10 { private static double two54 = 1.80143985094819840000e+16; /* 0x43500000, 0x00000000 */ private static double ivln10 = 4.34294481903251816668e-01; /* 0x3FDBCB7B, 0x1526E50E */ private static double log10_2hi = 3.01029995663611771306e-01; /* 0x3FD34413, 0x509F6000 */ private static double log10_2lo = 3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */ private static double zero = 0.0; public static double compute(double x) { double y,z; int i,k,hx; /*unsigned*/ int lx; hx = __HI(x); /* high word of x */ lx = __LO(x); /* low word of x */ k=0; if (hx < 0x00100000) { /* x < 2**-1022 */ if (((hx&0x7fffffff)|lx)==0) return -two54/zero; /* log(+-0)=-inf */ if (hx<0) return (x-x)/zero; /* log(-#) = NaN */ k -= 54; x *= two54; /* subnormal number, scale up x */ hx = __HI(x); /* high word of x */ } if (hx >= 0x7ff00000) return x+x; k += (hx>>20)-1023; i = (k&0x80000000)>>>31; // unsigned shift hx = (hx&0x000fffff)|((0x3ff-i)<<20); y = (double)(k+i); x = __HI(x, hx); //original: __HI(x) = hx; z = y*log10_2lo + ivln10*log(x); return z+y*log10_2hi; } } /** * Returns the natural logarithm of the sum of the argument and 1. * * Method : * 1. Argument Reduction: find k and f such that * 1+x = 2^k * (1+f), * where sqrt(2)/2 < 1+f < sqrt(2) . * * Note. If k=0, then f=x is exact. However, if k!=0, then f * may not be representable exactly. In that case, a correction * term is need. Let u=1+x rounded. Let c = (1+x)-u, then * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u), * and add back the correction term c/u. * (Note: when x > 2**53, one can simply return log(x)) * * 2. Approximation of log1p(f). * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) * = 2s + 2/3 s**3 + 2/5 s**5 + ....., * = 2s + s*R * We use a special Reme algorithm on [0,0.1716] to generate * a polynomial of degree 14 to approximate R The maximum error * of this polynomial approximation is bounded by 2**-58.45. In * other words, * 2 4 6 8 10 12 14 * R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s * (the values of Lp1 to Lp7 are listed in the program) * and * | 2 14 | -58.45 * | Lp1*s +...+Lp7*s - R(z) | <= 2 * | | * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. * In order to guarantee error in log below 1ulp, we compute log * by * log1p(f) = f - (hfsq - s*(hfsq+R)). * * 3. Finally, log1p(x) = k*ln2 + log1p(f). * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) * Here ln2 is split into two floating point number: * ln2_hi + ln2_lo, * where n*ln2_hi is always exact for |n| < 2000. * * Special cases: * log1p(x) is NaN with signal if x < -1 (including -INF) ; * log1p(+INF) is +INF; log1p(-1) is -INF with signal; * log1p(NaN) is that NaN with no signal. * * Accuracy: * according to an error analysis, the error is always less than * 1 ulp (unit in the last place). * * Constants: * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. * * Note: Assuming log() return accurate answer, the following * algorithm can be used to compute log1p(x) to within a few ULP: * * u = 1+x; * if(u==1.0) return x ; else * return log(u)*(x/(u-1.0)); * * See HP-15C Advanced Functions Handbook, p.193. */ static class Log1p { private static double ln2_hi = 6.93147180369123816490e-01; /* 3fe62e42 fee00000 */ private static double ln2_lo = 1.90821492927058770002e-10; /* 3dea39ef 35793c76 */ private static double two54 = 1.80143985094819840000e+16; /* 43500000 00000000 */ private static double Lp1 = 6.666666666666735130e-01; /* 3FE55555 55555593 */ private static double Lp2 = 3.999999999940941908e-01; /* 3FD99999 9997FA04 */ private static double Lp3 = 2.857142874366239149e-01; /* 3FD24924 94229359 */ private static double Lp4 = 2.222219843214978396e-01; /* 3FCC71C5 1D8E78AF */ private static double Lp5 = 1.818357216161805012e-01; /* 3FC74664 96CB03DE */ private static double Lp6 = 1.531383769920937332e-01; /* 3FC39A09 D078C69F */ private static double Lp7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ private static double zero = 0.0; public static double compute(double x) { double hfsq,f=0,c=0,s,z,R,u; int k,hx,hu=0,ax; hx = __HI(x); /* high word of x */ ax = hx&0x7fffffff; k = 1; if (hx < 0x3FDA827A) { /* x < 0.41422 */ if(ax>=0x3ff00000) { /* x <= -1.0 */ /* * Added redundant test against hx to work around VC++ * code generation problem. */ if(x==-1.0 && (hx==0xbff00000)) /* log1p(-1)=-inf */ return -two54/zero; else return (x-x)/(x-x); /* log1p(x<-1)=NaN */ } if(ax<0x3e200000) { /* |x| < 2**-29 */ if(two54+x>zero /* raise inexact */ &&ax<0x3c900000) /* |x| < 2**-54 */ return x; else return x - x*x*0.5; } if(hx>0||hx<=((int)0xbfd2bec3)) { k=0;f=x;hu=1;} /* -0.2929= 0x7ff00000) return x+x; if(k!=0) { if(hx<0x43400000) { u = 1.0+x; hu = __HI(u); /* high word of u */ k = (hu>>20)-1023; c = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */ c /= u; } else { u = x; hu = __HI(u); /* high word of u */ k = (hu>>20)-1023; c = 0; } hu &= 0x000fffff; if(hu<0x6a09e) { u = __HI(u, hu|0x3ff00000); /* normalize u */ } else { k += 1; u = __HI(u, hu|0x3fe00000); /* normalize u/2 */ hu = (0x00100000-hu)>>2; } f = u-1.0; } hfsq=0.5*f*f; if(hu==0) { /* |f| < 2**-20 */ if(f==zero) { if(k==0) return zero; else {c += k*ln2_lo; return k*ln2_hi+c;}} R = hfsq*(1.0-0.66666666666666666*f); if(k==0) return f-R; else return k*ln2_hi-((R-(k*ln2_lo+c))-f); } s = f/(2.0+f); z = s*s; R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7)))))); if(k==0) return f-(hfsq-s*(hfsq+R)); else return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f); } } /* expm1(x) * Returns exp(x)-1, the exponential of x minus 1. * * Method * 1. Argument reduction: * Given x, find r and integer k such that * * x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658 * * Here a correction term c will be computed to compensate * the error in r when rounded to a floating-point number. * * 2. Approximating expm1(r) by a special rational function on * the interval [0,0.34658]: * Since * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ... * we define R1(r*r) by * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r) * That is, * R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r) * = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r)) * = 1 - r^2/60 + r^4/2520 - r^6/100800 + ... * We use a special Reme algorithm on [0,0.347] to generate * a polynomial of degree 5 in r*r to approximate R1. The * maximum error of this polynomial approximation is bounded * by 2**-61. In other words, * R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5 * where Q1 = -1.6666666666666567384E-2, * Q2 = 3.9682539681370365873E-4, * Q3 = -9.9206344733435987357E-6, * Q4 = 2.5051361420808517002E-7, * Q5 = -6.2843505682382617102E-9; * (where z=r*r, and the values of Q1 to Q5 are listed below) * with error bounded by * | 5 | -61 * | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2 * | | * * expm1(r) = exp(r)-1 is then computed by the following * specific way which minimize the accumulation rounding error: * 2 3 * r r [ 3 - (R1 + R1*r/2) ] * expm1(r) = r + --- + --- * [--------------------] * 2 2 [ 6 - r*(3 - R1*r/2) ] * * To compensate the error in the argument reduction, we use * expm1(r+c) = expm1(r) + c + expm1(r)*c * ~ expm1(r) + c + r*c * Thus c+r*c will be added in as the correction terms for * expm1(r+c). Now rearrange the term to avoid optimization * screw up: * ( 2 2 ) * ({ ( r [ R1 - (3 - R1*r/2) ] ) } r ) * expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- ) * ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 ) * ( ) * * = r - E * 3. Scale back to obtain expm1(x): * From step 1, we have * expm1(x) = either 2^k*[expm1(r)+1] - 1 * = or 2^k*[expm1(r) + (1-2^-k)] * 4. Implementation notes: * (A). To save one multiplication, we scale the coefficient Qi * to Qi*2^i, and replace z by (x^2)/2. * (B). To achieve maximum accuracy, we compute expm1(x) by * (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf) * (ii) if k=0, return r-E * (iii) if k=-1, return 0.5*(r-E)-0.5 * (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E) * else return 1.0+2.0*(r-E); * (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1) * (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else * (vii) return 2^k(1-((E+2^-k)-r)) * * Special cases: * expm1(INF) is INF, expm1(NaN) is NaN; * expm1(-INF) is -1, and * for finite argument, only expm1(0)=0 is exact. * * Accuracy: * according to an error analysis, the error is always less than * 1 ulp (unit in the last place). * * Misc. info. * For IEEE double * if x > 7.09782712893383973096e+02 then expm1(x) overflow * * Constants: * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */ static class Expm1 { private static final double one = 1.0; private static final double huge = 1.0e+300; private static final double tiny = 1.0e-300; private static final double o_threshold = 7.09782712893383973096e+02; /* 0x40862E42, 0xFEFA39EF */ private static final double ln2_hi = 6.93147180369123816490e-01; /* 0x3fe62e42, 0xfee00000 */ private static final double ln2_lo = 1.90821492927058770002e-10; /* 0x3dea39ef, 0x35793c76 */ private static final double invln2 = 1.44269504088896338700e+00; /* 0x3ff71547, 0x652b82fe */ /* scaled coefficients related to expm1 */ private static final double Q1 = -3.33333333333331316428e-02; /* BFA11111 111110F4 */ private static final double Q2 = 1.58730158725481460165e-03; /* 3F5A01A0 19FE5585 */ private static final double Q3 = -7.93650757867487942473e-05; /* BF14CE19 9EAADBB7 */ private static final double Q4 = 4.00821782732936239552e-06; /* 3ED0CFCA 86E65239 */ private static final double Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */ static double compute(double x) { double y,hi,lo,c=0,t,e,hxs,hfx,r1; int k,xsb; /*unsigned*/ int hx; hx = __HI(x); /* high word of x */ xsb = hx&0x80000000; /* sign bit of x */ if(xsb==0) y=x; else y= -x; /* y = |x| */ hx &= 0x7fffffff; /* high word of |x| */ /* filter out huge and non-finite argument */ if(hx >= 0x4043687A) { /* if |x|>=56*ln2 */ if(hx >= 0x40862E42) { /* if |x|>=709.78... */ if(hx>=0x7ff00000) { if(((hx&0xfffff)|__LO(x))!=0) return x+x; /* NaN */ else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */ } if(x > o_threshold) return huge*huge; /* overflow */ } if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */ if(x+tiny<0.0) /* raise inexact */ return tiny-one; /* return -1 */ } } /* argument reduction */ if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ if(xsb==0) {hi = x - ln2_hi; lo = ln2_lo; k = 1;} else {hi = x + ln2_hi; lo = -ln2_lo; k = -1;} } else { k = (int)(invln2*x+((xsb==0)?0.5:-0.5)); t = k; hi = x - t*ln2_hi; /* t*ln2_hi is exact here */ lo = t*ln2_lo; } x = hi - lo; c = (hi-x)-lo; } else if(hx < 0x3c900000) { /* when |x|<2**-54, return x */ t = huge+x; /* return x with inexact flags when x!=0 */ return x - (t-(huge+x)); } else k = 0; /* x is now in primary range */ hfx = 0.5*x; hxs = x*hfx; r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5)))); t = 3.0-r1*hfx; e = hxs*((r1-t)/(6.0 - x*t)); if(k==0) return x - (x*e-hxs); /* c is 0 */ else { e = (x*(e-c)-c); e -= hxs; if(k== -1) return 0.5*(x-e)-0.5; if(k==1) { if(x < -0.25) return -2.0*(e-(x+0.5)); else return one+2.0*(x-e); } if (k <= -2 || k>56) { /* suffice to return exp(x)-1 */ y = one-(e-x); y = __HI(y, __HI(y) + (k<<20)); /* add k to y's exponent */ return y-one; } t = one; if(k<20) { t = __HI(t, 0x3ff00000 - (0x200000>>k)); /* t=1-2^-k */ y = t-(e-x); y = __HI(y, __HI(y) + (k<<20)); /* add k to y's exponent */ } else { t = __HI(t, ((0x3ff-k)<<20)); /* 2^-k */ y = x-(e+t); y += one; y = __HI(y, __HI(y) + (k<<20)); /* add k to y's exponent */ } } return y; } } /** * Method : * mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2 * 1. Replace x by |x| (sinh(-x) = -sinh(x)). * 2. * E + E/(E+1) * 0 <= x <= 22 : sinh(x) := --------------, E=expm1(x) * 2 * * 22 <= x <= lnovft : sinh(x) := exp(x)/2 * lnovft <= x <= ln2ovft: sinh(x) := exp(x/2)/2 * exp(x/2) * ln2ovft < x : sinh(x) := x*shuge (overflow) * * Special cases: * sinh(x) is |x| if x is +INF, -INF, or NaN. * only sinh(0)=0 is exact for finite x. */ private static final class Sinh { private static final double one = 1.0, shuge = 1.0e307; static double compute(double x) { double t,w,h; int ix,jx; /* unsigned */ int lx; /* High word of |x|. */ jx = __HI(x); ix = jx&0x7fffffff; /* x is INF or NaN */ if(ix>=0x7ff00000) return x+x; h = 0.5; if (jx<0) h = -h; /* |x| in [0,22], return sign(x)*0.5*(E+E/(E+1))) */ if (ix < 0x40360000) { /* |x|<22 */ if (ix<0x3e300000) /* |x|<2**-28 */ if(shuge+x>one) return x;/* sinh(tiny) = tiny with inexact */ t = FdlibmTranslit.expm1(Math.abs(x)); if(ix<0x3ff00000) return h*(2.0*t-t*t/(t+one)); return h*(t+t/(t+one)); } /* |x| in [22, log(maxdouble)] return 0.5*exp(|x|) */ if (ix < 0x40862E42) return h*FdlibmTranslit.exp(Math.abs(x)); /* |x| in [log(maxdouble), overflowthresold] */ // Note: the original FDLIBM sources use // lx = *( (((*(unsigned*)&one)>>29)) + (unsigned*)&x); // to set lx to the low-order 32 bits of x. The expression // in question is an alternate way to implement the // functionality of the C FDLIBM __LO macro and the // expression is coded to work on both big-edian and // little-endian machines. However, this port will instead // use the __LO method call to represent this // functionality. lx = __LO(x); if (ix<0x408633CE || ((ix==0x408633ce)&&(Long.compareUnsigned(lx, 0x8fb9f87d) <= 0 ))) { w = exp(0.5*Math.abs(x)); t = h*w; return t*w; } /* |x| > overflowthresold, sinh(x) overflow */ return x*shuge; } } /** * Method : * mathematically cosh(x) if defined to be (exp(x)+exp(-x))/2 * 1. Replace x by |x| (cosh(x) = cosh(-x)). * 2. * [ exp(x) - 1 ]^2 * 0 <= x <= ln2/2 : cosh(x) := 1 + ------------------- * 2*exp(x) * * exp(x) + 1/exp(x) * ln2/2 <= x <= 22 : cosh(x) := ------------------- * 2 * 22 <= x <= lnovft : cosh(x) := exp(x)/2 * lnovft <= x <= ln2ovft: cosh(x) := exp(x/2)/2 * exp(x/2) * ln2ovft < x : cosh(x) := huge*huge (overflow) * * Special cases: * cosh(x) is |x| if x is +INF, -INF, or NaN. * only cosh(0)=1 is exact for finite x. */ private static final class Cosh { private static final double one = 1.0, half=0.5, huge = 1.0e300; static double compute(double x) { double t,w; int ix; /*unsigned*/ int lx; /* High word of |x|. */ ix = __HI(x); ix &= 0x7fffffff; /* x is INF or NaN */ if(ix>=0x7ff00000) return x*x; /* |x| in [0,0.5*ln2], return 1+expm1(|x|)^2/(2*exp(|x|)) */ if(ix<0x3fd62e43) { t = expm1(Math.abs(x)); w = one+t; if (ix<0x3c800000) return w; /* cosh(tiny) = 1 */ return one+(t*t)/(w+w); } /* |x| in [0.5*ln2,22], return (exp(|x|)+1/exp(|x|)/2; */ if (ix < 0x40360000) { t = exp(Math.abs(x)); return half*t+half/t; } /* |x| in [22, log(maxdouble)] return half*exp(|x|) */ if (ix < 0x40862E42) return half*exp(Math.abs(x)); /* |x| in [log(maxdouble), overflowthresold] */ // See note above in the sinh implementation for how this // transliteration port uses __LO(x) in the line below // that differs from the idiom used in the original FDLIBM. lx = __LO(x); if (ix<0x408633CE || ((ix==0x408633ce)&&(Integer.compareUnsigned(lx, 0x8fb9f87d) <= 0))) { w = exp(half*Math.abs(x)); t = half*w; return t*w; } /* |x| > overflowthresold, cosh(x) overflow */ return huge*huge; } } /** * Return the Hyperbolic Tangent of x * * Method : * x -x * e - e * 0. tanh(x) is defined to be ----------- * x -x * e + e * 1. reduce x to non-negative by tanh(-x) = -tanh(x). * 2. 0 <= x <= 2**-55 : tanh(x) := x*(one+x) * -t * 2**-55 < x <= 1 : tanh(x) := -----; t = expm1(-2x) * t + 2 * 2 * 1 <= x <= 22.0 : tanh(x) := 1- ----- ; t=expm1(2x) * t + 2 * 22.0 < x <= INF : tanh(x) := 1. * * Special cases: * tanh(NaN) is NaN; * only tanh(0)=0 is exact for finite argument. */ private static final class Tanh { private static final double one=1.0, two=2.0, tiny = 1.0e-300; static double compute(double x) { double t,z; int jx,ix; /* High word of |x|. */ jx = __HI(x); ix = jx&0x7fffffff; /* x is INF or NaN */ if(ix>=0x7ff00000) { if (jx>=0) return one/x+one; /* tanh(+-inf)=+-1 */ else return one/x-one; /* tanh(NaN) = NaN */ } /* |x| < 22 */ if (ix < 0x40360000) { /* |x|<22 */ if (ix<0x3c800000) /* |x|<2**-55 */ return x*(one+x); /* tanh(small) = small */ if (ix>=0x3ff00000) { /* |x|>=1 */ t = expm1(two*Math.abs(x)); z = one - two/(t+two); } else { t = expm1(-two*Math.abs(x)); z= -t/(t+two); } /* |x| > 22, return +-1 */ } else { z = one - tiny; /* raised inexact flag */ } return (jx>=0)? z: -z; } } private static final class IEEEremainder { private static final double zero = 0.0; private static double one = 1.0; private static double[] Zero = {0.0, -0.0,}; static double compute(double x, double p) { int hx,hp; /*unsigned*/ int sx,lx,lp; double p_half; hx = __HI(x); /* high word of x */ lx = __LO(x); /* low word of x */ hp = __HI(p); /* high word of p */ lp = __LO(p); /* low word of p */ sx = hx&0x80000000; hp &= 0x7fffffff; hx &= 0x7fffffff; /* purge off exception values */ if((hp|lp)==0) return (x*p)/(x*p); /* p = 0 */ if((hx>=0x7ff00000)|| /* x not finite */ ((hp>=0x7ff00000)&& /* p is NaN */ (((hp-0x7ff00000)|lp)!=0))) return (x*p)/(x*p); if (hp<=0x7fdfffff) x = __ieee754_fmod(x,p+p); /* now x < 2p */ if (((hx-hp)|(lx-lp))==0) return zero*x; x = Math.abs(x); p = Math.abs(p); if (hp<0x00200000) { if(x+x>p) { x-=p; if(x+x>=p) x -= p; } } else { p_half = 0.5*p; if(x>p_half) { x-=p; if(x>=p_half) x -= p; } } // __HI(x) ^= sx; x = __HI(x, __HI(x)^sx); return x; } private static double __ieee754_fmod(double x, double y) { int n,hx,hy,hz,ix,iy,sx,i; /*unsigned*/ int lx,ly,lz; hx = __HI(x); /* high word of x */ lx = __LO(x); /* low word of x */ hy = __HI(y); /* high word of y */ ly = __LO(y); /* low word of y */ sx = hx&0x80000000; /* sign of x */ hx ^=sx; /* |x| */ hy &= 0x7fffffff; /* |y| */ /* purge off exception values */ if((hy|ly)==0||(hx>=0x7ff00000)|| /* y=0,or x not finite */ ((hy|((ly|-ly)>>>31))>0x7ff00000)) /* or y is NaN */ // unsigned shift return (x*y)/(x*y); if(hx<=hy) { // if((hx>>31]; /* |x|=|y| return x*0*/ // unsigned shift } /* determine ix = ilogb(x) */ if(hx<0x00100000) { /* subnormal x */ if(hx==0) { for (ix = -1043, i=lx; i>0; i<<=1) ix -=1; } else { for (ix = -1022,i=(hx<<11); i>0; i<<=1) ix -=1; } } else ix = (hx>>20)-1023; /* determine iy = ilogb(y) */ if(hy<0x00100000) { /* subnormal y */ if(hy==0) { for (iy = -1043, i=ly; i>0; i<<=1) iy -=1; } else { for (iy = -1022,i=(hy<<11); i>0; i<<=1) iy -=1; } } else iy = (hy>>20)-1023; /* set up {hx,lx}, {hy,ly} and align y to x */ if(ix >= -1022) hx = 0x00100000|(0x000fffff&hx); else { /* subnormal x, shift x to normal */ n = -1022-ix; if(n<=31) { hx = (hx<>> (32-n)); // unsigned shift lx <<= n; } else { hx = lx<<(n-32); lx = 0; } } if(iy >= -1022) hy = 0x00100000|(0x000fffff&hy); else { /* subnormal y, shift y to normal */ n = -1022-iy; if(n<=31) { hy = (hy<>> (32-n)); // unsigned shift ly <<= n; } else { hy = ly<<(n-32); ly = 0; } } /* fix point fmod */ n = ix - iy; while(n-- != 0) { hz=hx-hy;lz=lx-ly; // if(lx>> 31); lx = lx+lx;} // unsigned shift else { if((hz|lz)==0) /* return sign(x)*0 */ return Zero[/*(unsigned)*/sx>>>31]; // unsigned shift hx = hz+hz+(lz >>> 31); // unsigned shift lx = lz+lz; } } hz=hx-hy;lz=lx-ly; // if(lx=0) {hx=hz;lx=lz;} /* convert back to floating value and restore the sign */ if((hx|lx)==0) /* return sign(x)*0 */ return Zero[/*(unsigned)*/sx >>> 31]; // unsigned shift while(hx<0x00100000) { /* normalize x */ hx = hx+hx+(lx >>> 31); lx = lx+lx; // unsigned shift iy -= 1; } if(iy>= -1022) { /* normalize output */ hx = ((hx-0x00100000)|((iy+1023)<<20)); // __HI(x) = hx|sx; x = __HI(x, hx|sx); // __LO(x) = lx; x = __LO(x, lx); } else { /* subnormal output */ n = -1022 - iy; if(n<=20) { lx = (lx >>> n)|(/*(unsigned)*/hx<<(32-n)); // unsigned shift hx >>= n; } else if (n<=31) { lx = (hx<<(32-n))|(lx >>> n); // unsigned shift hx = sx; } else { lx = hx>>(n-32); hx = sx; } // __HI(x) = hx|sx; x = __HI(x, hx|sx); // __LO(x) = lx; x = __LO(x, lx); x *= one; /* create necessary signal */ } return x; /* exact output */ } } }