/* * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ // Dictionaries - An Abstract Data Type #include "adlc.hpp" // #include "dict.hpp" //------------------------------data----------------------------------------- // String hash tables #define MAXID 20 static char initflag = 0; // True after 1st initialization static char shft[MAXID + 1] = {1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,4,5,6,7}; static short xsum[MAXID]; //------------------------------bucket--------------------------------------- class bucket { public: int _cnt, _max; // Size of bucket const void **_keyvals; // Array of keys and values }; //------------------------------Dict----------------------------------------- // The dictionary is kept has a hash table. The hash table is a even power // of two, for nice modulo operations. Each bucket in the hash table points // to a linear list of key-value pairs; each key & value is just a (void *). // The list starts with a count. A hash lookup finds the list head, then a // simple linear scan finds the key. If the table gets too full, it's // doubled in size; the total amount of EXTRA times all hash functions are // computed for the doubling is no more than the current size - thus the // doubling in size costs no more than a constant factor in speed. Dict::Dict(CmpKey initcmp, Hash inithash) : _hash(inithash), _cmp(initcmp), _arena(NULL) { init(); } Dict::Dict(CmpKey initcmp, Hash inithash, Arena *arena) : _hash(inithash), _cmp(initcmp), _arena(arena) { init(); } void Dict::init() { int i; // Precompute table of null character hashes if (!initflag) { // Not initializated yet? xsum[0] = (short) ((1 << shft[0]) + 1); // Initialize for( i = 1; i < MAXID; i++) { xsum[i] = (short) ((1 << shft[i]) + 1 + xsum[i-1]); } initflag = 1; // Never again } _size = 16; // Size is a power of 2 _cnt = 0; // Dictionary is empty _bin = (bucket*)_arena->Amalloc_4(sizeof(bucket) * _size); memset(_bin, 0, sizeof(bucket) * _size); } //------------------------------~Dict------------------------------------------ // Delete an existing dictionary. Dict::~Dict() { } //------------------------------Clear---------------------------------------- // Zap to empty; ready for re-use void Dict::Clear() { _cnt = 0; // Empty contents for( int i=0; i<_size; i++ ) _bin[i]._cnt = 0; // Empty buckets, but leave allocated // Leave _size & _bin alone, under the assumption that dictionary will // grow to this size again. } //------------------------------doubhash--------------------------------------- // Double hash table size. If can't do so, just suffer. If can, then run // thru old hash table, moving things to new table. Note that since hash // table doubled, exactly 1 new bit is exposed in the mask - so everything // in the old table ends up on 1 of two lists in the new table; a hi and a // lo list depending on the value of the bit. void Dict::doubhash(void) { int oldsize = _size; _size <<= 1; // Double in size _bin = (bucket*)_arena->Arealloc( _bin, sizeof(bucket)*oldsize, sizeof(bucket)*_size ); memset( &_bin[oldsize], 0, oldsize*sizeof(bucket) ); // Rehash things to spread into new table for( int i=0; i < oldsize; i++) { // For complete OLD table do bucket *b = &_bin[i]; // Handy shortcut for _bin[i] if( !b->_keyvals ) continue; // Skip empties fast bucket *nb = &_bin[i+oldsize]; // New bucket shortcut int j = b->_max; // Trim new bucket to nearest power of 2 while( j > b->_cnt ) j >>= 1; // above old bucket _cnt if( !j ) j = 1; // Handle zero-sized buckets nb->_max = j<<1; // Allocate worst case space for key-value pairs nb->_keyvals = (const void**)_arena->Amalloc_4( sizeof(void *)*nb->_max*2 ); int nbcnt = 0; for( j=0; j<b->_cnt; j++ ) { // Rehash all keys in this bucket const void *key = b->_keyvals[j+j]; if( (_hash( key ) & (_size-1)) != i ) { // Moving to hi bucket? nb->_keyvals[nbcnt+nbcnt] = key; nb->_keyvals[nbcnt+nbcnt+1] = b->_keyvals[j+j+1]; nb->_cnt = nbcnt = nbcnt+1; b->_cnt--; // Remove key/value from lo bucket b->_keyvals[j+j ] = b->_keyvals[b->_cnt+b->_cnt ]; b->_keyvals[j+j+1] = b->_keyvals[b->_cnt+b->_cnt+1]; j--; // Hash compacted element also } } // End of for all key-value pairs in bucket } // End of for all buckets } //------------------------------Dict----------------------------------------- // Deep copy a dictionary. Dict::Dict( const Dict &d ) : _size(d._size), _cnt(d._cnt), _hash(d._hash),_cmp(d._cmp), _arena(d._arena) { _bin = (bucket*)_arena->Amalloc_4(sizeof(bucket)*_size); memcpy( _bin, d._bin, sizeof(bucket)*_size ); for( int i=0; i<_size; i++ ) { if( !_bin[i]._keyvals ) continue; _bin[i]._keyvals=(const void**)_arena->Amalloc_4( sizeof(void *)*_bin[i]._max*2); memcpy( _bin[i]._keyvals, d._bin[i]._keyvals,_bin[i]._cnt*2*sizeof(void*)); } } //------------------------------Dict----------------------------------------- // Deep copy a dictionary. Dict &Dict::operator =( const Dict &d ) { if( _size < d._size ) { // If must have more buckets _arena = d._arena; _bin = (bucket*)_arena->Arealloc( _bin, sizeof(bucket)*_size, sizeof(bucket)*d._size ); memset( &_bin[_size], 0, (d._size-_size)*sizeof(bucket) ); _size = d._size; } for( int i=0; i<_size; i++ ) // All buckets are empty _bin[i]._cnt = 0; // But leave bucket allocations alone _cnt = d._cnt; *(Hash*)(&_hash) = d._hash; *(CmpKey*)(&_cmp) = d._cmp; for(int k=0; k<_size; k++ ) { bucket *b = &d._bin[k]; // Shortcut to source bucket for( int j=0; j<b->_cnt; j++ ) Insert( b->_keyvals[j+j], b->_keyvals[j+j+1] ); } return *this; } //------------------------------Insert--------------------------------------- // Insert or replace a key/value pair in the given dictionary. If the // dictionary is too full, it's size is doubled. The prior value being // replaced is returned (NULL if this is a 1st insertion of that key). If // an old value is found, it's swapped with the prior key-value pair on the // list. This moves a commonly searched-for value towards the list head. const void *Dict::Insert(const void *key, const void *val) { int hash = _hash( key ); // Get hash key int i = hash & (_size-1); // Get hash key, corrected for size bucket *b = &_bin[i]; // Handy shortcut for( int j=0; j<b->_cnt; j++ ) if( !_cmp(key,b->_keyvals[j+j]) ) { const void *prior = b->_keyvals[j+j+1]; b->_keyvals[j+j ] = key; // Insert current key-value b->_keyvals[j+j+1] = val; return prior; // Return prior } if( ++_cnt > _size ) { // Hash table is full doubhash(); // Grow whole table if too full i = hash & (_size-1); // Rehash b = &_bin[i]; // Handy shortcut } if( b->_cnt == b->_max ) { // Must grow bucket? if( !b->_keyvals ) { b->_max = 2; // Initial bucket size b->_keyvals = (const void**)_arena->Amalloc_4( sizeof(void *)*b->_max*2 ); } else { b->_keyvals = (const void**)_arena->Arealloc( b->_keyvals, sizeof(void *)*b->_max*2, sizeof(void *)*b->_max*4 ); b->_max <<= 1; // Double bucket } } b->_keyvals[b->_cnt+b->_cnt ] = key; b->_keyvals[b->_cnt+b->_cnt+1] = val; b->_cnt++; return NULL; // Nothing found prior } //------------------------------Delete--------------------------------------- // Find & remove a value from dictionary. Return old value. const void *Dict::Delete(void *key) { int i = _hash( key ) & (_size-1); // Get hash key, corrected for size bucket *b = &_bin[i]; // Handy shortcut for( int j=0; j<b->_cnt; j++ ) if( !_cmp(key,b->_keyvals[j+j]) ) { const void *prior = b->_keyvals[j+j+1]; b->_cnt--; // Remove key/value from lo bucket b->_keyvals[j+j ] = b->_keyvals[b->_cnt+b->_cnt ]; b->_keyvals[j+j+1] = b->_keyvals[b->_cnt+b->_cnt+1]; _cnt--; // One less thing in table return prior; } return NULL; } //------------------------------FindDict------------------------------------- // Find a key-value pair in the given dictionary. If not found, return NULL. // If found, move key-value pair towards head of list. const void *Dict::operator [](const void *key) const { int i = _hash( key ) & (_size-1); // Get hash key, corrected for size bucket *b = &_bin[i]; // Handy shortcut for( int j=0; j<b->_cnt; j++ ) if( !_cmp(key,b->_keyvals[j+j]) ) return b->_keyvals[j+j+1]; return NULL; } //------------------------------CmpDict-------------------------------------- // CmpDict compares two dictionaries; they must have the same keys (their // keys must match using CmpKey) and they must have the same values (pointer // comparison). If so 1 is returned, if not 0 is returned. int Dict::operator ==(const Dict &d2) const { if( _cnt != d2._cnt ) return 0; if( _hash != d2._hash ) return 0; if( _cmp != d2._cmp ) return 0; for( int i=0; i < _size; i++) { // For complete hash table do bucket *b = &_bin[i]; // Handy shortcut if( b->_cnt != d2._bin[i]._cnt ) return 0; if( memcmp(b->_keyvals, d2._bin[i]._keyvals, b->_cnt*2*sizeof(void*) ) ) return 0; // Key-value pairs must match } return 1; // All match, is OK } //------------------------------print---------------------------------------- static void printvoid(const void* x) { printf("%p", x); } void Dict::print() { print(printvoid, printvoid); } void Dict::print(PrintKeyOrValue print_key, PrintKeyOrValue print_value) { for( int i=0; i < _size; i++) { // For complete hash table do bucket *b = &_bin[i]; // Handy shortcut for( int j=0; j<b->_cnt; j++ ) { print_key( b->_keyvals[j+j ]); printf(" -> "); print_value(b->_keyvals[j+j+1]); printf("\n"); } } } //------------------------------Hashing Functions---------------------------- // Convert string to hash key. This algorithm implements a universal hash // function with the multipliers frozen (ok, so it's not universal). The // multipliers (and allowable characters) are all odd, so the resultant sum // is odd - guaranteed not divisible by any power of two, so the hash tables // can be any power of two with good results. Also, I choose multipliers // that have only 2 bits set (the low is always set to be odd) so // multiplication requires only shifts and adds. Characters are required to // be in the range 0-127 (I double & add 1 to force oddness). Keys are // limited to MAXID characters in length. Experimental evidence on 150K of // C text shows excellent spreading of values for any size hash table. int hashstr(const void *t) { register char c, k = 0; register int sum = 0; register const char *s = (const char *)t; while (((c = s[k]) != '\0') && (k < MAXID-1)) { // Get characters till nul c = (char) ((c << 1) + 1); // Characters are always odd! sum += c + (c << shft[k++]); // Universal hash function } assert(k < (MAXID), "Exceeded maximum name length"); return (int)((sum+xsum[k]) >> 1); // Hash key, un-modulo'd table size } //------------------------------hashptr-------------------------------------- // Slimey cheap hash function; no guaranteed performance. Better than the // default for pointers, especially on MS-DOS machines. int hashptr(const void *key) { #ifdef __TURBOC__ return (int)((intptr_t)key >> 16); #else // __TURBOC__ return (int)((intptr_t)key >> 2); #endif } // Slimey cheap hash function; no guaranteed performance. int hashkey(const void *key) { return (int)((intptr_t)key); } //------------------------------Key Comparator Functions--------------------- int cmpstr(const void *k1, const void *k2) { return strcmp((const char *)k1,(const char *)k2); } // Cheap key comparator. int cmpkey(const void *key1, const void *key2) { if (key1 == key2) return 0; intptr_t delta = (intptr_t)key1 - (intptr_t)key2; if (delta > 0) return 1; return -1; } //============================================================================= //------------------------------reset------------------------------------------ // Create an iterator and initialize the first variables. void DictI::reset( const Dict *dict ) { _d = dict; // The dictionary _i = (int)-1; // Before the first bin _j = 0; // Nothing left in the current bin ++(*this); // Step to first real value } //------------------------------next------------------------------------------- // Find the next key-value pair in the dictionary, or return a NULL key and // value. void DictI::operator ++(void) { if( _j-- ) { // Still working in current bin? _key = _d->_bin[_i]._keyvals[_j+_j]; _value = _d->_bin[_i]._keyvals[_j+_j+1]; return; } while( ++_i < _d->_size ) { // Else scan for non-zero bucket _j = _d->_bin[_i]._cnt; if( !_j ) continue; _j--; _key = _d->_bin[_i]._keyvals[_j+_j]; _value = _d->_bin[_i]._keyvals[_j+_j+1]; return; } _key = _value = NULL; }