/* * Copyright 2015 Goldman Sachs. * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ import org.openjdk.jmh.annotations.Benchmark; import org.openjdk.jmh.annotations.BenchmarkMode; import org.openjdk.jmh.annotations.Measurement; import org.openjdk.jmh.annotations.Mode; import org.openjdk.jmh.annotations.OutputTimeUnit; import org.openjdk.jmh.annotations.Param; import org.openjdk.jmh.annotations.Scope; import org.openjdk.jmh.annotations.Setup; import org.openjdk.jmh.annotations.State; import org.openjdk.jmh.annotations.Warmup; import java.util.ArrayList; import java.util.Arrays; import java.util.HashSet; import java.util.List; import java.util.Random; import java.util.Set; import java.util.concurrent.TimeUnit; @State(Scope.Thread) @BenchmarkMode(Mode.Throughput) @OutputTimeUnit(TimeUnit.SECONDS) public class SortingLongBenchmarkTestJMH { private static final int QUICKSORT_THRESHOLD = 286; private static final int MAX_RUN_COUNT = 67; private static final int INSERTION_SORT_THRESHOLD = 47; public static final int MAX_VALUE = 1_000_000; @Param({"pairFlipZeroPairFlip", "descendingAscending", "zeroHi", "hiZeroLow", "hiFlatLow", "identical", "randomDups", "randomNoDups", "sortedReversedSorted", "pairFlip", "endLessThan"}) public String listType; private long[] array; private static final int LIST_SIZE = 10_000_000; public static final int NUMBER_OF_ITERATIONS = 10; @Setup public void setUp() { Random random = new Random(123456789012345L); this.array = new long[LIST_SIZE]; int threeQuarters = (int) (LIST_SIZE * 0.75); if ("zeroHi".equals(this.listType)) { for (int i = 0; i < threeQuarters; i++) { this.array[i] = 0; } int k = 1; for (int i = threeQuarters; i < LIST_SIZE; i++) { this.array[i] = k; k++; } } else if ("hiFlatLow".equals(this.listType)) { int oneThird = LIST_SIZE / 3; for (int i = 0; i < oneThird; i++) { this.array[i] = i; } int twoThirds = oneThird * 2; int constant = oneThird - 1; for (int i = oneThird; i < twoThirds; i++) { this.array[i] = constant; } for (int i = twoThirds; i < LIST_SIZE; i++) { this.array[i] = constant - i + twoThirds; } } else if ("hiZeroLow".equals(this.listType)) { int oneThird = LIST_SIZE / 3; for (int i = 0; i < oneThird; i++) { this.array[i] = i; } int twoThirds = oneThird * 2; for (int i = oneThird; i < twoThirds; i++) { this.array[i] = 0; } for (int i = twoThirds; i < LIST_SIZE; i++) { this.array[i] = oneThird - i + twoThirds; } } else if ("identical".equals(this.listType)) { for (int i = 0; i < LIST_SIZE; i++) { this.array[i] = 0; } } else if ("randomDups".equals(this.listType)) { for (int i = 0; i < LIST_SIZE; i++) { this.array[i] = random.nextInt(1000); } } else if ("randomNoDups".equals(this.listType)) { Set set = new HashSet<>(); while (set.size() < LIST_SIZE + 1) { set.add(random.nextInt()); } List list = new ArrayList<>(LIST_SIZE); list.addAll(set); for (int i = 0; i < LIST_SIZE; i++) { this.array[i] = list.get(i); } } else if ("sortedReversedSorted".equals(this.listType)) { for (int i = 0; i < LIST_SIZE / 2; i++) { this.array[i] = i; } int num = 0; for (int i = LIST_SIZE / 2; i < LIST_SIZE; i++) { this.array[i] = LIST_SIZE - num; num++; } } else if ("pairFlip".equals(this.listType)) { for (int i = 0; i < LIST_SIZE; i++) { this.array[i] = i; } for (int i = 0; i < LIST_SIZE; i += 2) { long temp = this.array[i]; this.array[i] = this.array[i + 1]; this.array[i + 1] = temp; } } else if ("endLessThan".equals(this.listType)) { for (int i = 0; i < LIST_SIZE - 1; i++) { this.array[i] = 3; } this.array[LIST_SIZE - 1] = 1; } else if ("pairFlipZeroPairFlip".equals(this.listType)) { //pairflip for (int i = 0; i < 64; i++) { this.array[i] = i; } for (int i = 0; i < 64; i += 2) { long temp = this.array[i]; this.array[i] = this.array[i + 1]; this.array[i + 1] = temp; } //zero for (int i = 64; i < this.array.length - 64; i++) { this.array[i] = 0; } //pairflip for (int i = this.array.length - 64; i < this.array.length; i++) { this.array[i] = i; } for (int i = this.array.length - 64; i < this.array.length; i += 2) { long temp = this.array[i]; this.array[i] = this.array[i + 1]; this.array[i + 1] = temp; } } else if ("pairFlipOneHundredPairFlip".equals(this.listType)) { //10, 5 for (int i = 0; i < 64; i++) { if (i % 2 == 0) { this.array[i] = 10; } else { this.array[i] = 5; } } //100 for (int i = 64; i < this.array.length - 64; i++) { this.array[i] = 100; } //10, 5 for (int i = this.array.length - 64; i < this.array.length; i++) { if (i % 2 == 0) { this.array[i] = 10; } else { this.array[i] = 5; } } } } @Warmup(iterations = 20) @Measurement(iterations = 10) @Benchmark public void sortNewWay() { for (int i = 0; i < NUMBER_OF_ITERATIONS; i++) { SortingLongTestJMH.sort(this.array, 0, this.array.length - 1, null, 0, 0); } } @Warmup(iterations = 20) @Measurement(iterations = 10) @Benchmark public void sortOldWay() { for (int i = 0; i < NUMBER_OF_ITERATIONS; i++) { Arrays.sort(this.array); } } /** * Sorts the specified range of the array using the given * workspace array slice if possible for merging * * @param a the array to be sorted * @param left the index of the first element, inclusive, to be sorted * @param right the index of the last element, inclusive, to be sorted * @param work a workspace array (slice) * @param workBase origin of usable space in work array * @param workLen usable size of work array */ static void sort(long[] a, int left, int right, long[] work, int workBase, int workLen) { // Use Quicksort on small arrays if (right - left < QUICKSORT_THRESHOLD) { SortingLongTestJMH.sort(a, left, right, true); return; } /* * Index run[i] is the start of i-th run * (ascending or descending sequence). */ int[] run = new int[MAX_RUN_COUNT + 1]; int count = 0; run[0] = left; // Check if the array is nearly sorted for (int k = left; k < right; run[count] = k) { while (k < right && a[k] == a[k + 1]) k++; if (k == right) break; if (a[k] < a[k + 1]) { // ascending while (++k <= right && a[k - 1] <= a[k]) ; } else if (a[k] > a[k + 1]) { // descending while (++k <= right && a[k - 1] >= a[k]) ; for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) { long t = a[lo]; a[lo] = a[hi]; a[hi] = t; } } if (run[count] > left && a[run[count]] >= a[run[count] - 1]) { count--; } /* * The array is not highly structured, * use Quicksort instead of merge sort. */ if (++count == MAX_RUN_COUNT) { sort(a, left, right, true); return; } } // Check special cases // Implementation note: variable "right" is increased by 1. if (run[count] == right++) { run[++count] = right; } if (count <= 1) { // The array is already sorted return; } // Determine alternation base for merge byte odd = 0; for (int n = 1; (n <<= 1) < count; odd ^= 1) { } // Use or create temporary array b for merging long[] b; // temp array; alternates with a int ao, bo; // array offsets from 'left' int blen = right - left; // space needed for b if (work == null || workLen < blen || workBase + blen > work.length) { work = new long[blen]; workBase = 0; } if (odd == 0) { System.arraycopy(a, left, work, workBase, blen); b = a; bo = 0; a = work; ao = workBase - left; } else { b = work; ao = 0; bo = workBase - left; } // Merging for (int last; count > 1; count = last) { for (int k = (last = 0) + 2; k <= count; k += 2) { int hi = run[k], mi = run[k - 1]; for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) { if (q >= hi || p < mi && a[p + ao] <= a[q + ao]) { b[i + bo] = a[p++ + ao]; } else { b[i + bo] = a[q++ + ao]; } } run[++last] = hi; } if ((count & 1) != 0) { for (int i = right, lo = run[count - 1]; --i >= lo; b[i + bo] = a[i + ao] ) { } run[++last] = right; } long[] t = a; a = b; b = t; int o = ao; ao = bo; bo = o; } } /** * Sorts the specified range of the array by Dual-Pivot Quicksort. * * @param a the array to be sorted * @param left the index of the first element, inclusive, to be sorted * @param right the index of the last element, inclusive, to be sorted * @param leftmost indicates if this part is the leftmost in the range */ private static void sort(long[] a, int left, int right, boolean leftmost) { int length = right - left + 1; // Use insertion sort on tiny arrays if (length < INSERTION_SORT_THRESHOLD) { if (leftmost) { /* * Traditional (without sentinel) insertion sort, * optimized for server VM, is used in case of * the leftmost part. */ for (int i = left, j = i; i < right; j = ++i) { long ai = a[i + 1]; while (ai < a[j]) { a[j + 1] = a[j]; if (j-- == left) { break; } } a[j + 1] = ai; } } else { /* * Skip the longest ascending sequence. */ do { if (left >= right) { return; } } while (a[++left] >= a[left - 1]); /* * Every element from adjoining part plays the role * of sentinel, therefore this allows us to avoid the * left range check on each iteration. Moreover, we use * the more optimized algorithm, so called pair insertion * sort, which is faster (in the context of Quicksort) * than traditional implementation of insertion sort. */ for (int k = left; ++left <= right; k = ++left) { long a1 = a[k], a2 = a[left]; if (a1 < a2) { a2 = a1; a1 = a[left]; } while (a1 < a[--k]) { a[k + 2] = a[k]; } a[++k + 1] = a1; while (a2 < a[--k]) { a[k + 1] = a[k]; } a[k + 1] = a2; } long last = a[right]; while (last < a[--right]) { a[right + 1] = a[right]; } a[right + 1] = last; } return; } // Inexpensive approximation of length / 7 int seventh = (length >> 3) + (length >> 6) + 1; /* * Sort five evenly spaced elements around (and including) the * center element in the range. These elements will be used for * pivot selection as described below. The choice for spacing * these elements was empirically determined to work well on * a wide variety of inputs. */ int e3 = (left + right) >>> 1; // The midpoint int e2 = e3 - seventh; int e1 = e2 - seventh; int e4 = e3 + seventh; int e5 = e4 + seventh; // Sort these elements using insertion sort if (a[e2] < a[e1]) { long t = a[e2]; a[e2] = a[e1]; a[e1] = t; } if (a[e3] < a[e2]) { long t = a[e3]; a[e3] = a[e2]; a[e2] = t; if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } } if (a[e4] < a[e3]) { long t = a[e4]; a[e4] = a[e3]; a[e3] = t; if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t; if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } } } if (a[e5] < a[e4]) { long t = a[e5]; a[e5] = a[e4]; a[e4] = t; if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t; if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t; if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } } } } // Pointers int less = left; // The index of the first element of center part int great = right; // The index before the first element of right part if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) { /* * Use the second and fourth of the five sorted elements as pivots. * These values are inexpensive approximations of the first and * second terciles of the array. Note that pivot1 <= pivot2. */ long pivot1 = a[e2]; long pivot2 = a[e4]; /* * The first and the last elements to be sorted are moved to the * locations formerly occupied by the pivots. When partitioning * is complete, the pivots are swapped back into their final * positions, and excluded from subsequent sorting. */ a[e2] = a[left]; a[e4] = a[right]; /* * Skip elements, which are less or greater than pivot values. */ while (a[++less] < pivot1) { } while (a[--great] > pivot2) { } /* * Partitioning: * * left part center part right part * +--------------------------------------------------------------+ * | < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 | * +--------------------------------------------------------------+ * ^ ^ ^ * | | | * less k great * * Invariants: * * all in (left, less) < pivot1 * pivot1 <= all in [less, k) <= pivot2 * all in (great, right) > pivot2 * * Pointer k is the first index of ?-part. */ outer: for (int k = less - 1; ++k <= great; ) { long ak = a[k]; if (ak < pivot1) { // Move a[k] to left part a[k] = a[less]; /* * Here and below we use "a[i] = b; i++;" instead * of "a[i++] = b;" due to performance issue. */ a[less] = ak; ++less; } else if (ak > pivot2) { // Move a[k] to right part while (a[great] > pivot2) { if (great-- == k) { break outer; } } if (a[great] < pivot1) { // a[great] <= pivot2 a[k] = a[less]; a[less] = a[great]; ++less; } else { // pivot1 <= a[great] <= pivot2 a[k] = a[great]; } /* * Here and below we use "a[i] = b; i--;" instead * of "a[i--] = b;" due to performance issue. */ a[great] = ak; --great; } } // Swap pivots into their final positions a[left] = a[less - 1]; a[less - 1] = pivot1; a[right] = a[great + 1]; a[great + 1] = pivot2; // Sort left and right parts recursively, excluding known pivots SortingLongTestJMH.sort(a, left, less - 2, leftmost); SortingLongTestJMH.sort(a, great + 2, right, false); /* * If center part is too large (comprises > 4/7 of the array), * swap internal pivot values to ends. */ if (less < e1 && e5 < great) { /* * Skip elements, which are equal to pivot values. */ while (a[less] == pivot1) { ++less; } while (a[great] == pivot2) { --great; } /* * Partitioning: * * left part center part right part * +----------------------------------------------------------+ * | == pivot1 | pivot1 < && < pivot2 | ? | == pivot2 | * +----------------------------------------------------------+ * ^ ^ ^ * | | | * less k great * * Invariants: * * all in (*, less) == pivot1 * pivot1 < all in [less, k) < pivot2 * all in (great, *) == pivot2 * * Pointer k is the first index of ?-part. */ outer: for (int k = less - 1; ++k <= great; ) { long ak = a[k]; if (ak == pivot1) { // Move a[k] to left part a[k] = a[less]; a[less] = ak; ++less; } else if (ak == pivot2) { // Move a[k] to right part while (a[great] == pivot2) { if (great-- == k) { break outer; } } if (a[great] == pivot1) { // a[great] < pivot2 a[k] = a[less]; /* * Even though a[great] equals to pivot1, the * assignment a[less] = pivot1 may be incorrect, * if a[great] and pivot1 are floating-point zeros * of different signs. Therefore in float and * double sorting methods we have to use more * accurate assignment a[less] = a[great]. */ a[less] = pivot1; ++less; } else { // pivot1 < a[great] < pivot2 a[k] = a[great]; } a[great] = ak; --great; } } } // Sort center part recursively SortingLongTestJMH.sort(a, less, great, false); } else { // Partitioning with one pivot /* * Use the third of the five sorted elements as pivot. * This value is inexpensive approximation of the median. */ long pivot = a[e3]; /* * Partitioning degenerates to the traditional 3-way * (or "Dutch National Flag") schema: * * left part center part right part * +-------------------------------------------------+ * | < pivot | == pivot | ? | > pivot | * +-------------------------------------------------+ * ^ ^ ^ * | | | * less k great * * Invariants: * * all in (left, less) < pivot * all in [less, k) == pivot * all in (great, right) > pivot * * Pointer k is the first index of ?-part. */ for (int k = less; k <= great; ++k) { if (a[k] == pivot) { continue; } long ak = a[k]; if (ak < pivot) { // Move a[k] to left part a[k] = a[less]; a[less] = ak; ++less; } else { // a[k] > pivot - Move a[k] to right part while (a[great] > pivot) { --great; } if (a[great] < pivot) { // a[great] <= pivot a[k] = a[less]; a[less] = a[great]; ++less; } else { // a[great] == pivot /* * Even though a[great] equals to pivot, the * assignment a[k] = pivot may be incorrect, * if a[great] and pivot are floating-point * zeros of different signs. Therefore in float * and double sorting methods we have to use * more accurate assignment a[k] = a[great]. */ a[k] = pivot; } a[great] = ak; --great; } } /* * Sort left and right parts recursively. * All elements from center part are equal * and, therefore, already sorted. */ SortingLongTestJMH.sort(a, left, less - 1, leftmost); SortingLongTestJMH.sort(a, great + 1, right, false); } } private static void swap(long[] arr, int i, int j) { long tmp = arr[i]; arr[i] = arr[j]; arr[j] = tmp; } }