/* * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "asm/macroAssembler.inline.hpp" #include "logging/log.hpp" #include "memory/resourceArea.hpp" #include "runtime/java.hpp" #include "runtime/os.hpp" #include "runtime/stubCodeGenerator.hpp" #include "vm_version_sparc.hpp" unsigned int VM_Version::_L2_data_cache_line_size = 0; void VM_Version::initialize() { assert(_features != 0, "System pre-initialization is not complete."); guarantee(VM_Version::has_v9(), "only SPARC v9 is supported"); PrefetchCopyIntervalInBytes = prefetch_copy_interval_in_bytes(); PrefetchScanIntervalInBytes = prefetch_scan_interval_in_bytes(); PrefetchFieldsAhead = prefetch_fields_ahead(); // Allocation prefetch settings intx cache_line_size = prefetch_data_size(); if( cache_line_size > AllocatePrefetchStepSize ) AllocatePrefetchStepSize = cache_line_size; AllocatePrefetchDistance = allocate_prefetch_distance(); AllocatePrefetchStyle = allocate_prefetch_style(); if (!has_blk_init() || cache_line_size <= 0) { if (AllocatePrefetchInstr == 1) { warning("BIS instructions required for AllocatePrefetchInstr 1 unavailable"); FLAG_SET_DEFAULT(AllocatePrefetchInstr, 0); } } UseSSE = 0; // Only on x86 and x64 _supports_cx8 = has_v9(); _supports_atomic_getset4 = true; // swap instruction if (is_niagara()) { // Indirect branch is the same cost as direct if (FLAG_IS_DEFAULT(UseInlineCaches)) { FLAG_SET_DEFAULT(UseInlineCaches, false); } // Align loops on a single instruction boundary. if (FLAG_IS_DEFAULT(OptoLoopAlignment)) { FLAG_SET_DEFAULT(OptoLoopAlignment, 4); } #ifdef _LP64 // 32-bit oops don't make sense for the 64-bit VM on sparc // since the 32-bit VM has the same registers and smaller objects. Universe::set_narrow_oop_shift(LogMinObjAlignmentInBytes); Universe::set_narrow_klass_shift(LogKlassAlignmentInBytes); #endif // _LP64 #ifdef COMPILER2 // Indirect branch is the same cost as direct if (FLAG_IS_DEFAULT(UseJumpTables)) { FLAG_SET_DEFAULT(UseJumpTables, true); } // Single-issue, so entry and loop tops are // aligned on a single instruction boundary if (FLAG_IS_DEFAULT(InteriorEntryAlignment)) { FLAG_SET_DEFAULT(InteriorEntryAlignment, 4); } if (is_niagara_plus()) { if (has_blk_init() && (cache_line_size > 0) && UseTLAB && FLAG_IS_DEFAULT(AllocatePrefetchInstr)) { // Use BIS instruction for TLAB allocation prefetch. FLAG_SET_DEFAULT(AllocatePrefetchInstr, 1); } if (FLAG_IS_DEFAULT(AllocatePrefetchDistance)) { if (AllocatePrefetchInstr == 0) { // Use different prefetch distance without BIS FLAG_SET_DEFAULT(AllocatePrefetchDistance, 256); } else { // Use smaller prefetch distance with BIS FLAG_SET_DEFAULT(AllocatePrefetchDistance, 64); } } if (is_T4()) { // Double number of prefetched cache lines on T4 // since L2 cache line size is smaller (32 bytes). if (FLAG_IS_DEFAULT(AllocatePrefetchLines)) { FLAG_SET_ERGO(intx, AllocatePrefetchLines, AllocatePrefetchLines*2); } if (FLAG_IS_DEFAULT(AllocateInstancePrefetchLines)) { FLAG_SET_ERGO(intx, AllocateInstancePrefetchLines, AllocateInstancePrefetchLines*2); } } } if (AllocatePrefetchInstr == 1) { // Use allocation prefetch style 3 because BIS instructions // require aligned memory addresses. FLAG_SET_DEFAULT(AllocatePrefetchStyle, 3); } #endif /* COMPILER2 */ } // Use hardware population count instruction if available. if (has_hardware_popc()) { if (FLAG_IS_DEFAULT(UsePopCountInstruction)) { FLAG_SET_DEFAULT(UsePopCountInstruction, true); } } else if (UsePopCountInstruction) { warning("POPC instruction is not available on this CPU"); FLAG_SET_DEFAULT(UsePopCountInstruction, false); } // T4 and newer Sparc cpus have new compare and branch instruction. if (has_cbcond()) { if (FLAG_IS_DEFAULT(UseCBCond)) { FLAG_SET_DEFAULT(UseCBCond, true); } } else if (UseCBCond) { warning("CBCOND instruction is not available on this CPU"); FLAG_SET_DEFAULT(UseCBCond, false); } assert(BlockZeroingLowLimit > 0, "invalid value"); if (has_block_zeroing() && cache_line_size > 0) { if (FLAG_IS_DEFAULT(UseBlockZeroing)) { FLAG_SET_DEFAULT(UseBlockZeroing, true); } } else if (UseBlockZeroing) { warning("BIS zeroing instructions are not available on this CPU"); FLAG_SET_DEFAULT(UseBlockZeroing, false); } assert(BlockCopyLowLimit > 0, "invalid value"); if (has_block_zeroing() && cache_line_size > 0) { // has_blk_init() && is_T4(): core's local L2 cache if (FLAG_IS_DEFAULT(UseBlockCopy)) { FLAG_SET_DEFAULT(UseBlockCopy, true); } } else if (UseBlockCopy) { warning("BIS instructions are not available or expensive on this CPU"); FLAG_SET_DEFAULT(UseBlockCopy, false); } #ifdef COMPILER2 // T4 and newer Sparc cpus have fast RDPC. if (has_fast_rdpc() && FLAG_IS_DEFAULT(UseRDPCForConstantTableBase)) { FLAG_SET_DEFAULT(UseRDPCForConstantTableBase, true); } // Currently not supported anywhere. FLAG_SET_DEFAULT(UseFPUForSpilling, false); MaxVectorSize = 8; assert((InteriorEntryAlignment % relocInfo::addr_unit()) == 0, "alignment is not a multiple of NOP size"); #endif assert((CodeEntryAlignment % relocInfo::addr_unit()) == 0, "alignment is not a multiple of NOP size"); assert((OptoLoopAlignment % relocInfo::addr_unit()) == 0, "alignment is not a multiple of NOP size"); char buf[512]; jio_snprintf(buf, sizeof(buf), "%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s", (has_v9() ? ", v9" : (has_v8() ? ", v8" : "")), (has_hardware_popc() ? ", popc" : ""), (has_vis1() ? ", vis1" : ""), (has_vis2() ? ", vis2" : ""), (has_vis3() ? ", vis3" : ""), (has_blk_init() ? ", blk_init" : ""), (has_cbcond() ? ", cbcond" : ""), (has_aes() ? ", aes" : ""), (has_sha1() ? ", sha1" : ""), (has_sha256() ? ", sha256" : ""), (has_sha512() ? ", sha512" : ""), (has_crc32c() ? ", crc32c" : ""), (is_ultra3() ? ", ultra3" : ""), (has_sparc5_instr() ? ", sparc5" : ""), (is_sun4v() ? ", sun4v" : ""), (is_niagara_plus() ? ", niagara_plus" : (is_niagara() ? ", niagara" : "")), (is_sparc64() ? ", sparc64" : ""), (!has_hardware_mul32() ? ", no-mul32" : ""), (!has_hardware_div32() ? ", no-div32" : ""), (!has_hardware_fsmuld() ? ", no-fsmuld" : "")); // buf is started with ", " or is empty _features_string = os::strdup(strlen(buf) > 2 ? buf + 2 : buf); // UseVIS is set to the smallest of what hardware supports and what // the command line requires. I.e., you cannot set UseVIS to 3 on // older UltraSparc which do not support it. if (UseVIS > 3) UseVIS=3; if (UseVIS < 0) UseVIS=0; if (!has_vis3()) // Drop to 2 if no VIS3 support UseVIS = MIN2((intx)2,UseVIS); if (!has_vis2()) // Drop to 1 if no VIS2 support UseVIS = MIN2((intx)1,UseVIS); if (!has_vis1()) // Drop to 0 if no VIS1 support UseVIS = 0; // SPARC T4 and above should have support for AES instructions if (has_aes()) { if (FLAG_IS_DEFAULT(UseAES)) { FLAG_SET_DEFAULT(UseAES, true); } if (!UseAES) { if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) { warning("AES intrinsics require UseAES flag to be enabled. Intrinsics will be disabled."); } FLAG_SET_DEFAULT(UseAESIntrinsics, false); } else { // The AES intrinsic stubs require AES instruction support (of course) // but also require VIS3 mode or higher for instructions it use. if (UseVIS > 2) { if (FLAG_IS_DEFAULT(UseAESIntrinsics)) { FLAG_SET_DEFAULT(UseAESIntrinsics, true); } } else { if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) { warning("SPARC AES intrinsics require VIS3 instructions. Intrinsics will be disabled."); } FLAG_SET_DEFAULT(UseAESIntrinsics, false); } } } else if (UseAES || UseAESIntrinsics) { if (UseAES && !FLAG_IS_DEFAULT(UseAES)) { warning("AES instructions are not available on this CPU"); FLAG_SET_DEFAULT(UseAES, false); } if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) { warning("AES intrinsics are not available on this CPU"); FLAG_SET_DEFAULT(UseAESIntrinsics, false); } } if (UseAESCTRIntrinsics) { warning("AES/CTR intrinsics are not available on this CPU"); FLAG_SET_DEFAULT(UseAESCTRIntrinsics, false); } // GHASH/GCM intrinsics if (has_vis3() && (UseVIS > 2)) { if (FLAG_IS_DEFAULT(UseGHASHIntrinsics)) { UseGHASHIntrinsics = true; } } else if (UseGHASHIntrinsics) { if (!FLAG_IS_DEFAULT(UseGHASHIntrinsics)) warning("GHASH intrinsics require VIS3 instruction support. Intrinsics will be disabled"); FLAG_SET_DEFAULT(UseGHASHIntrinsics, false); } if (UseFMA) { warning("FMA instructions are not available on this CPU"); FLAG_SET_DEFAULT(UseFMA, false); } // SHA1, SHA256, and SHA512 instructions were added to SPARC T-series at different times if (has_sha1() || has_sha256() || has_sha512()) { if (UseVIS > 0) { // SHA intrinsics use VIS1 instructions if (FLAG_IS_DEFAULT(UseSHA)) { FLAG_SET_DEFAULT(UseSHA, true); } } else { if (UseSHA) { warning("SPARC SHA intrinsics require VIS1 instruction support. Intrinsics will be disabled."); FLAG_SET_DEFAULT(UseSHA, false); } } } else if (UseSHA) { warning("SHA instructions are not available on this CPU"); FLAG_SET_DEFAULT(UseSHA, false); } if (UseSHA && has_sha1()) { if (FLAG_IS_DEFAULT(UseSHA1Intrinsics)) { FLAG_SET_DEFAULT(UseSHA1Intrinsics, true); } } else if (UseSHA1Intrinsics) { warning("Intrinsics for SHA-1 crypto hash functions not available on this CPU."); FLAG_SET_DEFAULT(UseSHA1Intrinsics, false); } if (UseSHA && has_sha256()) { if (FLAG_IS_DEFAULT(UseSHA256Intrinsics)) { FLAG_SET_DEFAULT(UseSHA256Intrinsics, true); } } else if (UseSHA256Intrinsics) { warning("Intrinsics for SHA-224 and SHA-256 crypto hash functions not available on this CPU."); FLAG_SET_DEFAULT(UseSHA256Intrinsics, false); } if (UseSHA && has_sha512()) { if (FLAG_IS_DEFAULT(UseSHA512Intrinsics)) { FLAG_SET_DEFAULT(UseSHA512Intrinsics, true); } } else if (UseSHA512Intrinsics) { warning("Intrinsics for SHA-384 and SHA-512 crypto hash functions not available on this CPU."); FLAG_SET_DEFAULT(UseSHA512Intrinsics, false); } if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) { FLAG_SET_DEFAULT(UseSHA, false); } // SPARC T4 and above should have support for CRC32C instruction if (has_crc32c()) { if (UseVIS > 2) { // CRC32C intrinsics use VIS3 instructions if (FLAG_IS_DEFAULT(UseCRC32CIntrinsics)) { FLAG_SET_DEFAULT(UseCRC32CIntrinsics, true); } } else { if (UseCRC32CIntrinsics) { warning("SPARC CRC32C intrinsics require VIS3 instruction support. Intrinsics will be disabled."); FLAG_SET_DEFAULT(UseCRC32CIntrinsics, false); } } } else if (UseCRC32CIntrinsics) { warning("CRC32C instruction is not available on this CPU"); FLAG_SET_DEFAULT(UseCRC32CIntrinsics, false); } if (UseVIS > 2) { if (FLAG_IS_DEFAULT(UseAdler32Intrinsics)) { FLAG_SET_DEFAULT(UseAdler32Intrinsics, true); } } else if (UseAdler32Intrinsics) { warning("SPARC Adler32 intrinsics require VIS3 instruction support. Intrinsics will be disabled."); FLAG_SET_DEFAULT(UseAdler32Intrinsics, false); } if (UseVIS > 2) { if (FLAG_IS_DEFAULT(UseCRC32Intrinsics)) { FLAG_SET_DEFAULT(UseCRC32Intrinsics, true); } } else if (UseCRC32Intrinsics) { warning("SPARC CRC32 intrinsics require VIS3 insructions support. Intriniscs will be disabled"); FLAG_SET_DEFAULT(UseCRC32Intrinsics, false); } if (UseVectorizedMismatchIntrinsic) { warning("UseVectorizedMismatchIntrinsic specified, but not available on this CPU."); FLAG_SET_DEFAULT(UseVectorizedMismatchIntrinsic, false); } if (FLAG_IS_DEFAULT(ContendedPaddingWidth) && (cache_line_size > ContendedPaddingWidth)) ContendedPaddingWidth = cache_line_size; // This machine does not allow unaligned memory accesses if (UseUnalignedAccesses) { if (!FLAG_IS_DEFAULT(UseUnalignedAccesses)) warning("Unaligned memory access is not available on this CPU"); FLAG_SET_DEFAULT(UseUnalignedAccesses, false); } if (log_is_enabled(Info, os, cpu)) { ResourceMark rm; outputStream* log = Log(os, cpu)::info_stream(); log->print_cr("L1 data cache line size: %u", L1_data_cache_line_size()); log->print_cr("L2 data cache line size: %u", L2_data_cache_line_size()); log->print("Allocation"); if (AllocatePrefetchStyle <= 0) { log->print(": no prefetching"); } else { log->print(" prefetching: "); if (AllocatePrefetchInstr == 0) { log->print("PREFETCH"); } else if (AllocatePrefetchInstr == 1) { log->print("BIS"); } if (AllocatePrefetchLines > 1) { log->print_cr(" at distance %d, %d lines of %d bytes", (int) AllocatePrefetchDistance, (int) AllocatePrefetchLines, (int) AllocatePrefetchStepSize); } else { log->print_cr(" at distance %d, one line of %d bytes", (int) AllocatePrefetchDistance, (int) AllocatePrefetchStepSize); } } if (PrefetchCopyIntervalInBytes > 0) { log->print_cr("PrefetchCopyIntervalInBytes %d", (int) PrefetchCopyIntervalInBytes); } if (PrefetchScanIntervalInBytes > 0) { log->print_cr("PrefetchScanIntervalInBytes %d", (int) PrefetchScanIntervalInBytes); } if (PrefetchFieldsAhead > 0) { log->print_cr("PrefetchFieldsAhead %d", (int) PrefetchFieldsAhead); } if (ContendedPaddingWidth > 0) { log->print_cr("ContendedPaddingWidth %d", (int) ContendedPaddingWidth); } } } void VM_Version::print_features() { tty->print_cr("Version:%s", _features); } int VM_Version::determine_features() { if (UseV8InstrsOnly) { log_info(os, cpu)("Version is Forced-V8"); return generic_v8_m; } int features = platform_features(unknown_m); // platform_features() is os_arch specific if (features == unknown_m) { features = generic_v9_m; log_info(os)("Cannot recognize SPARC version. Default to V9"); } assert(is_T_family(features) == is_niagara(features), "Niagara should be T series"); if (UseNiagaraInstrs) { // Force code generation for Niagara if (is_T_family(features)) { // Happy to accomodate... } else { log_info(os, cpu)("Version is Forced-Niagara"); features |= T_family_m; } } else { if (is_T_family(features) && !FLAG_IS_DEFAULT(UseNiagaraInstrs)) { log_info(os, cpu)("Version is Forced-Not-Niagara"); features &= ~(T_family_m | T1_model_m); } else { // Happy to accomodate... } } return features; } static uint64_t saved_features = 0; void VM_Version::allow_all() { saved_features = _features; _features = all_features_m; } void VM_Version::revert() { _features = saved_features; } unsigned int VM_Version::calc_parallel_worker_threads() { unsigned int result; if (is_M_series()) { // for now, use same gc thread calculation for M-series as for niagara-plus // in future, we may want to tweak parameters for nof_parallel_worker_thread result = nof_parallel_worker_threads(5, 16, 8); } else if (is_niagara_plus()) { result = nof_parallel_worker_threads(5, 16, 8); } else { result = nof_parallel_worker_threads(5, 8, 8); } return result; } int VM_Version::parse_features(const char* implementation) { int features = unknown_m; // Convert to UPPER case before compare. char* impl = os::strdup_check_oom(implementation); for (int i = 0; impl[i] != 0; i++) impl[i] = (char)toupper((uint)impl[i]); if (strstr(impl, "SPARC64") != NULL) { features |= sparc64_family_m; } else if (strstr(impl, "SPARC-M") != NULL) { // M-series SPARC is based on T-series. features |= (M_family_m | T_family_m); } else if (strstr(impl, "SPARC-T") != NULL) { features |= T_family_m; if (strstr(impl, "SPARC-T1") != NULL) { features |= T1_model_m; } } else if (strstr(impl, "SUN4V-CPU") != NULL) { // Generic or migration class LDOM features |= T_family_m; } else { log_info(os, cpu)("Failed to parse CPU implementation = '%s'", impl); } os::free((void*)impl); return features; }