/* * Copyright (c) 2016, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2016 SAP SE. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "c1/c1_CodeStubs.hpp" #include "c1/c1_FrameMap.hpp" #include "c1/c1_LIRAssembler.hpp" #include "c1/c1_MacroAssembler.hpp" #include "c1/c1_Runtime1.hpp" #include "nativeInst_s390.hpp" #include "runtime/sharedRuntime.hpp" #include "utilities/macros.hpp" #include "vmreg_s390.inline.hpp" #if INCLUDE_ALL_GCS #include "gc/g1/g1SATBCardTableModRefBS.hpp" #endif // INCLUDE_ALL_GCS #define __ ce->masm()-> #undef CHECK_BAILOUT #define CHECK_BAILOUT() { if (ce->compilation()->bailed_out()) return; } RangeCheckStub::RangeCheckStub(CodeEmitInfo* info, LIR_Opr index, bool throw_index_out_of_bounds_exception) : _throw_index_out_of_bounds_exception(throw_index_out_of_bounds_exception), _index(index) { assert(info != NULL, "must have info"); _info = new CodeEmitInfo(info); } void RangeCheckStub::emit_code(LIR_Assembler* ce) { __ bind(_entry); if (_info->deoptimize_on_exception()) { address a = Runtime1::entry_for (Runtime1::predicate_failed_trap_id); ce->emit_call_c(a); CHECK_BAILOUT(); ce->add_call_info_here(_info); ce->verify_oop_map(_info); debug_only(__ should_not_reach_here()); return; } // Pass the array index in Z_R1_scratch which is not managed by linear scan. if (_index->is_cpu_register()) { __ lgr_if_needed(Z_R1_scratch, _index->as_register()); } else { __ load_const_optimized(Z_R1_scratch, _index->as_jint()); } Runtime1::StubID stub_id; if (_throw_index_out_of_bounds_exception) { stub_id = Runtime1::throw_index_exception_id; } else { stub_id = Runtime1::throw_range_check_failed_id; } ce->emit_call_c(Runtime1::entry_for (stub_id)); CHECK_BAILOUT(); ce->add_call_info_here(_info); ce->verify_oop_map(_info); debug_only(__ should_not_reach_here()); } PredicateFailedStub::PredicateFailedStub(CodeEmitInfo* info) { _info = new CodeEmitInfo(info); } void PredicateFailedStub::emit_code(LIR_Assembler* ce) { __ bind(_entry); address a = Runtime1::entry_for (Runtime1::predicate_failed_trap_id); ce->emit_call_c(a); CHECK_BAILOUT(); ce->add_call_info_here(_info); ce->verify_oop_map(_info); debug_only(__ should_not_reach_here()); } void CounterOverflowStub::emit_code(LIR_Assembler* ce) { __ bind(_entry); Metadata *m = _method->as_constant_ptr()->as_metadata(); bool success = __ set_metadata_constant(m, Z_R1_scratch); if (!success) { ce->compilation()->bailout("const section overflow"); return; } ce->store_parameter(/*_method->as_register()*/ Z_R1_scratch, 1); ce->store_parameter(_bci, 0); ce->emit_call_c(Runtime1::entry_for (Runtime1::counter_overflow_id)); CHECK_BAILOUT(); ce->add_call_info_here(_info); ce->verify_oop_map(_info); __ branch_optimized(Assembler::bcondAlways, _continuation); } void DivByZeroStub::emit_code(LIR_Assembler* ce) { if (_offset != -1) { ce->compilation()->implicit_exception_table()->append(_offset, __ offset()); } __ bind(_entry); ce->emit_call_c(Runtime1::entry_for (Runtime1::throw_div0_exception_id)); CHECK_BAILOUT(); ce->add_call_info_here(_info); debug_only(__ should_not_reach_here()); } void ImplicitNullCheckStub::emit_code(LIR_Assembler* ce) { address a; if (_info->deoptimize_on_exception()) { // Deoptimize, do not throw the exception, because it is probably wrong to do it here. a = Runtime1::entry_for (Runtime1::predicate_failed_trap_id); } else { a = Runtime1::entry_for (Runtime1::throw_null_pointer_exception_id); } ce->compilation()->implicit_exception_table()->append(_offset, __ offset()); __ bind(_entry); ce->emit_call_c(a); CHECK_BAILOUT(); ce->add_call_info_here(_info); ce->verify_oop_map(_info); debug_only(__ should_not_reach_here()); } // Note: pass object in Z_R1_scratch void SimpleExceptionStub::emit_code(LIR_Assembler* ce) { __ bind(_entry); if (_obj->is_valid()) { __ z_lgr(Z_R1_scratch, _obj->as_register()); // _obj contains the optional argument to the stub } address a = Runtime1::entry_for (_stub); ce->emit_call_c(a); CHECK_BAILOUT(); ce->add_call_info_here(_info); debug_only(__ should_not_reach_here()); } NewInstanceStub::NewInstanceStub(LIR_Opr klass_reg, LIR_Opr result, ciInstanceKlass* klass, CodeEmitInfo* info, Runtime1::StubID stub_id) { _result = result; _klass = klass; _klass_reg = klass_reg; _info = new CodeEmitInfo(info); assert(stub_id == Runtime1::new_instance_id || stub_id == Runtime1::fast_new_instance_id || stub_id == Runtime1::fast_new_instance_init_check_id, "need new_instance id"); _stub_id = stub_id; } void NewInstanceStub::emit_code(LIR_Assembler* ce) { __ bind(_entry); assert(_klass_reg->as_register() == Z_R11, "call target expects klass in Z_R11"); address a = Runtime1::entry_for (_stub_id); ce->emit_call_c(a); CHECK_BAILOUT(); ce->add_call_info_here(_info); ce->verify_oop_map(_info); assert(_result->as_register() == Z_R2, "callee returns result in Z_R2,"); __ z_brul(_continuation); } NewTypeArrayStub::NewTypeArrayStub(LIR_Opr klass_reg, LIR_Opr length, LIR_Opr result, CodeEmitInfo* info) { _klass_reg = klass_reg; _length = length; _result = result; _info = new CodeEmitInfo(info); } void NewTypeArrayStub::emit_code(LIR_Assembler* ce) { __ bind(_entry); assert(_klass_reg->as_register() == Z_R11, "call target expects klass in Z_R11"); __ lgr_if_needed(Z_R13, _length->as_register()); address a = Runtime1::entry_for (Runtime1::new_type_array_id); ce->emit_call_c(a); CHECK_BAILOUT(); ce->add_call_info_here(_info); ce->verify_oop_map(_info); assert(_result->as_register() == Z_R2, "callee returns result in Z_R2,"); __ z_brul(_continuation); } NewObjectArrayStub::NewObjectArrayStub(LIR_Opr klass_reg, LIR_Opr length, LIR_Opr result, CodeEmitInfo* info) { _klass_reg = klass_reg; _length = length; _result = result; _info = new CodeEmitInfo(info); } void NewObjectArrayStub::emit_code(LIR_Assembler* ce) { __ bind(_entry); assert(_klass_reg->as_register() == Z_R11, "call target expects klass in Z_R11"); __ lgr_if_needed(Z_R13, _length->as_register()); address a = Runtime1::entry_for (Runtime1::new_object_array_id); ce->emit_call_c(a); CHECK_BAILOUT(); ce->add_call_info_here(_info); ce->verify_oop_map(_info); assert(_result->as_register() == Z_R2, "callee returns result in Z_R2,"); __ z_brul(_continuation); } MonitorEnterStub::MonitorEnterStub(LIR_Opr obj_reg, LIR_Opr lock_reg, CodeEmitInfo* info) : MonitorAccessStub(obj_reg, lock_reg) { _info = new CodeEmitInfo(info); } void MonitorEnterStub::emit_code(LIR_Assembler* ce) { __ bind(_entry); Runtime1::StubID enter_id; if (ce->compilation()->has_fpu_code()) { enter_id = Runtime1::monitorenter_id; } else { enter_id = Runtime1::monitorenter_nofpu_id; } __ lgr_if_needed(Z_R1_scratch, _obj_reg->as_register()); __ lgr_if_needed(Z_R13, _lock_reg->as_register()); // See LIRGenerator::syncTempOpr(). ce->emit_call_c(Runtime1::entry_for (enter_id)); CHECK_BAILOUT(); ce->add_call_info_here(_info); ce->verify_oop_map(_info); __ branch_optimized(Assembler::bcondAlways, _continuation); } void MonitorExitStub::emit_code(LIR_Assembler* ce) { __ bind(_entry); // Move address of the BasicObjectLock into Z_R1_scratch. if (_compute_lock) { // Lock_reg was destroyed by fast unlocking attempt => recompute it. ce->monitor_address(_monitor_ix, FrameMap::as_opr(Z_R1_scratch)); } else { __ lgr_if_needed(Z_R1_scratch, _lock_reg->as_register()); } // Note: non-blocking leaf routine => no call info needed. Runtime1::StubID exit_id; if (ce->compilation()->has_fpu_code()) { exit_id = Runtime1::monitorexit_id; } else { exit_id = Runtime1::monitorexit_nofpu_id; } ce->emit_call_c(Runtime1::entry_for (exit_id)); CHECK_BAILOUT(); __ branch_optimized(Assembler::bcondAlways, _continuation); } // Implementation of patching: // - Copy the code at given offset to an inlined buffer (first the bytes, then the number of bytes). // - Replace original code with a call to the stub. // At Runtime: // - call to stub, jump to runtime. // - in runtime: Preserve all registers (especially objects, i.e., source and destination object). // - in runtime: After initializing class, restore original code, reexecute instruction. int PatchingStub::_patch_info_offset = - (12 /* load const */ + 2 /*BASR*/); void PatchingStub::align_patch_site(MacroAssembler* masm) { #ifndef PRODUCT const char* bc; switch (_id) { case access_field_id: bc = "patch site (access_field)"; break; case load_klass_id: bc = "patch site (load_klass)"; break; case load_mirror_id: bc = "patch site (load_mirror)"; break; case load_appendix_id: bc = "patch site (load_appendix)"; break; default: bc = "patch site (unknown patch id)"; break; } masm->block_comment(bc); #endif masm->align(round_to(NativeGeneralJump::instruction_size, wordSize)); } void PatchingStub::emit_code(LIR_Assembler* ce) { // Copy original code here. assert(NativeGeneralJump::instruction_size <= _bytes_to_copy && _bytes_to_copy <= 0xFF, "not enough room for call"); NearLabel call_patch; int being_initialized_entry = __ offset(); if (_id == load_klass_id) { // Produce a copy of the load klass instruction for use by the case being initialized. #ifdef ASSERT address start = __ pc(); #endif AddressLiteral addrlit((intptr_t)0, metadata_Relocation::spec(_index)); __ load_const(_obj, addrlit); #ifdef ASSERT for (int i = 0; i < _bytes_to_copy; i++) { address ptr = (address)(_pc_start + i); int a_byte = (*ptr) & 0xFF; assert(a_byte == *start++, "should be the same code"); } #endif } else if (_id == load_mirror_id || _id == load_appendix_id) { // Produce a copy of the load mirror instruction for use by the case being initialized. #ifdef ASSERT address start = __ pc(); #endif AddressLiteral addrlit((intptr_t)0, oop_Relocation::spec(_index)); __ load_const(_obj, addrlit); #ifdef ASSERT for (int i = 0; i < _bytes_to_copy; i++) { address ptr = (address)(_pc_start + i); int a_byte = (*ptr) & 0xFF; assert(a_byte == *start++, "should be the same code"); } #endif } else { // Make a copy the code which is going to be patched. for (int i = 0; i < _bytes_to_copy; i++) { address ptr = (address)(_pc_start + i); int a_byte = (*ptr) & 0xFF; __ emit_int8 (a_byte); } } address end_of_patch = __ pc(); int bytes_to_skip = 0; if (_id == load_mirror_id) { int offset = __ offset(); if (CommentedAssembly) { __ block_comment(" being_initialized check"); } // Static field accesses have special semantics while the class // initializer is being run, so we emit a test which can be used to // check that this code is being executed by the initializing // thread. assert(_obj != noreg, "must be a valid register"); assert(_index >= 0, "must have oop index"); __ z_lg(Z_R1_scratch, java_lang_Class::klass_offset_in_bytes(), _obj); __ z_cg(Z_thread, Address(Z_R1_scratch, InstanceKlass::init_thread_offset())); __ branch_optimized(Assembler::bcondNotEqual, call_patch); // Load_klass patches may execute the patched code before it's // copied back into place so we need to jump back into the main // code of the nmethod to continue execution. __ branch_optimized(Assembler::bcondAlways, _patch_site_continuation); // Make sure this extra code gets skipped. bytes_to_skip += __ offset() - offset; } // Now emit the patch record telling the runtime how to find the // pieces of the patch. We only need 3 bytes but to help the disassembler // we make the data look like a the following add instruction: // A R1, D2(X2, B2) // which requires 4 bytes. int sizeof_patch_record = 4; bytes_to_skip += sizeof_patch_record; // Emit the offsets needed to find the code to patch. int being_initialized_entry_offset = __ offset() - being_initialized_entry + sizeof_patch_record; // Emit the patch record: opcode of the add followed by 3 bytes patch record data. __ emit_int8((int8_t)(A_ZOPC>>24)); __ emit_int8(being_initialized_entry_offset); __ emit_int8(bytes_to_skip); __ emit_int8(_bytes_to_copy); address patch_info_pc = __ pc(); assert(patch_info_pc - end_of_patch == bytes_to_skip, "incorrect patch info"); address entry = __ pc(); NativeGeneralJump::insert_unconditional((address)_pc_start, entry); address target = NULL; relocInfo::relocType reloc_type = relocInfo::none; switch (_id) { case access_field_id: target = Runtime1::entry_for (Runtime1::access_field_patching_id); break; case load_klass_id: target = Runtime1::entry_for (Runtime1::load_klass_patching_id); reloc_type = relocInfo::metadata_type; break; case load_mirror_id: target = Runtime1::entry_for (Runtime1::load_mirror_patching_id); reloc_type = relocInfo::oop_type; break; case load_appendix_id: target = Runtime1::entry_for (Runtime1::load_appendix_patching_id); reloc_type = relocInfo::oop_type; break; default: ShouldNotReachHere(); } __ bind(call_patch); if (CommentedAssembly) { __ block_comment("patch entry point"); } // Cannot use call_c_opt() because its size is not constant. __ load_const(Z_R1_scratch, target); // Must not optimize in order to keep constant _patch_info_offset constant. __ z_basr(Z_R14, Z_R1_scratch); assert(_patch_info_offset == (patch_info_pc - __ pc()), "must not change"); ce->add_call_info_here(_info); __ z_brcl(Assembler::bcondAlways, _patch_site_entry); if (_id == load_klass_id || _id == load_mirror_id || _id == load_appendix_id) { CodeSection* cs = __ code_section(); address pc = (address)_pc_start; RelocIterator iter(cs, pc, pc + 1); relocInfo::change_reloc_info_for_address(&iter, (address) pc, reloc_type, relocInfo::none); } } void DeoptimizeStub::emit_code(LIR_Assembler* ce) { __ bind(_entry); __ load_const_optimized(Z_R1_scratch, _trap_request); // Pass trap request in Z_R1_scratch. ce->emit_call_c(Runtime1::entry_for (Runtime1::deoptimize_id)); CHECK_BAILOUT(); ce->add_call_info_here(_info); DEBUG_ONLY(__ should_not_reach_here()); } void ArrayCopyStub::emit_code(LIR_Assembler* ce) { // Slow case: call to native. __ bind(_entry); __ lgr_if_needed(Z_ARG1, src()->as_register()); __ lgr_if_needed(Z_ARG2, src_pos()->as_register()); __ lgr_if_needed(Z_ARG3, dst()->as_register()); __ lgr_if_needed(Z_ARG4, dst_pos()->as_register()); __ lgr_if_needed(Z_ARG5, length()->as_register()); // Must align calls sites, otherwise they can't be updated atomically on MP hardware. ce->align_call(lir_static_call); assert((__ offset() + NativeCall::call_far_pcrelative_displacement_offset) % NativeCall::call_far_pcrelative_displacement_alignment == 0, "must be aligned"); ce->emit_static_call_stub(); // Prepend each BRASL with a nop. __ relocate(relocInfo::static_call_type); __ z_nop(); __ z_brasl(Z_R14, SharedRuntime::get_resolve_static_call_stub()); ce->add_call_info_here(info()); ce->verify_oop_map(info()); #ifndef PRODUCT __ load_const_optimized(Z_R1_scratch, (address)&Runtime1::_arraycopy_slowcase_cnt); __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch); #endif __ branch_optimized(Assembler::bcondAlways, _continuation); } /////////////////////////////////////////////////////////////////////////////////// #if INCLUDE_ALL_GCS void G1PreBarrierStub::emit_code(LIR_Assembler* ce) { // At this point we know that marking is in progress. // If do_load() is true then we have to emit the // load of the previous value; otherwise it has already // been loaded into _pre_val. __ bind(_entry); ce->check_reserved_argument_area(16); // RT stub needs 2 spill slots. assert(pre_val()->is_register(), "Precondition."); Register pre_val_reg = pre_val()->as_register(); if (do_load()) { ce->mem2reg(addr(), pre_val(), T_OBJECT, patch_code(), info(), false /*wide*/, false /*unaligned*/); } __ z_ltgr(Z_R1_scratch, pre_val_reg); // Pass oop in Z_R1_scratch to Runtime1::g1_pre_barrier_slow_id. __ branch_optimized(Assembler::bcondZero, _continuation); ce->emit_call_c(Runtime1::entry_for (Runtime1::g1_pre_barrier_slow_id)); CHECK_BAILOUT(); __ branch_optimized(Assembler::bcondAlways, _continuation); } void G1PostBarrierStub::emit_code(LIR_Assembler* ce) { __ bind(_entry); ce->check_reserved_argument_area(16); // RT stub needs 2 spill slots. assert(addr()->is_register(), "Precondition."); assert(new_val()->is_register(), "Precondition."); Register new_val_reg = new_val()->as_register(); __ z_ltgr(new_val_reg, new_val_reg); __ branch_optimized(Assembler::bcondZero, _continuation); __ z_lgr(Z_R1_scratch, addr()->as_pointer_register()); ce->emit_call_c(Runtime1::entry_for (Runtime1::g1_post_barrier_slow_id)); CHECK_BAILOUT(); __ branch_optimized(Assembler::bcondAlways, _continuation); } #endif // INCLUDE_ALL_GCS #undef __