/* * Copyright (c) 2002, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_GC_PARALLEL_PSPROMOTIONMANAGER_INLINE_HPP #define SHARE_VM_GC_PARALLEL_PSPROMOTIONMANAGER_INLINE_HPP #include "gc/parallel/parallelScavengeHeap.hpp" #include "gc/parallel/parMarkBitMap.inline.hpp" #include "gc/parallel/psOldGen.hpp" #include "gc/parallel/psPromotionLAB.inline.hpp" #include "gc/parallel/psPromotionManager.hpp" #include "gc/parallel/psScavenge.hpp" #include "gc/shared/taskqueue.inline.hpp" #include "logging/log.hpp" #include "oops/access.inline.hpp" #include "oops/oop.inline.hpp" inline PSPromotionManager* PSPromotionManager::manager_array(uint index) { assert(_manager_array != NULL, "access of NULL manager_array"); assert(index <= ParallelGCThreads, "out of range manager_array access"); return &_manager_array[index]; } template inline void PSPromotionManager::push_depth(T* p) { claimed_stack_depth()->push(p); } template inline void PSPromotionManager::claim_or_forward_internal_depth(T* p) { if (p != NULL) { // XXX: error if p != NULL here oop o = RawAccess::oop_load(p); if (o->is_forwarded()) { o = o->forwardee(); // Card mark if (PSScavenge::is_obj_in_young(o)) { PSScavenge::card_table()->inline_write_ref_field_gc(p, o); } RawAccess::oop_store(p, o); } else { push_depth(p); } } } template inline void PSPromotionManager::claim_or_forward_depth(T* p) { assert(should_scavenge(p, true), "revisiting object?"); assert(ParallelScavengeHeap::heap()->is_in(p), "pointer outside heap"); claim_or_forward_internal_depth(p); } inline void PSPromotionManager::promotion_trace_event(oop new_obj, oop old_obj, size_t obj_size, uint age, bool tenured, const PSPromotionLAB* lab) { // Skip if memory allocation failed if (new_obj != NULL) { const ParallelScavengeTracer* gc_tracer = PSScavenge::gc_tracer(); if (lab != NULL) { // Promotion of object through newly allocated PLAB if (gc_tracer->should_report_promotion_in_new_plab_event()) { size_t obj_bytes = obj_size * HeapWordSize; size_t lab_size = lab->capacity(); gc_tracer->report_promotion_in_new_plab_event(old_obj->klass(), obj_bytes, age, tenured, lab_size); } } else { // Promotion of object directly to heap if (gc_tracer->should_report_promotion_outside_plab_event()) { size_t obj_bytes = obj_size * HeapWordSize; gc_tracer->report_promotion_outside_plab_event(old_obj->klass(), obj_bytes, age, tenured); } } } } inline void PSPromotionManager::push_contents(oop obj) { obj->ps_push_contents(this); } // // This method is pretty bulky. It would be nice to split it up // into smaller submethods, but we need to be careful not to hurt // performance. // template inline oop PSPromotionManager::copy_to_survivor_space(oop o) { assert(should_scavenge(&o), "Sanity"); oop new_obj = NULL; // NOTE! We must be very careful with any methods that access the mark // in o. There may be multiple threads racing on it, and it may be forwarded // at any time. Do not use oop methods for accessing the mark! markOop test_mark = o->mark_raw(); // The same test as "o->is_forwarded()" if (!test_mark->is_marked()) { bool new_obj_is_tenured = false; size_t new_obj_size = o->size(); // Find the objects age, MT safe. uint age = (test_mark->has_displaced_mark_helper() /* o->has_displaced_mark() */) ? test_mark->displaced_mark_helper()->age() : test_mark->age(); if (!promote_immediately) { // Try allocating obj in to-space (unless too old) if (age < PSScavenge::tenuring_threshold()) { new_obj = (oop) _young_lab.allocate(new_obj_size); if (new_obj == NULL && !_young_gen_is_full) { // Do we allocate directly, or flush and refill? if (new_obj_size > (YoungPLABSize / 2)) { // Allocate this object directly new_obj = (oop)young_space()->cas_allocate(new_obj_size); promotion_trace_event(new_obj, o, new_obj_size, age, false, NULL); } else { // Flush and fill _young_lab.flush(); HeapWord* lab_base = young_space()->cas_allocate(YoungPLABSize); if (lab_base != NULL) { _young_lab.initialize(MemRegion(lab_base, YoungPLABSize)); // Try the young lab allocation again. new_obj = (oop) _young_lab.allocate(new_obj_size); promotion_trace_event(new_obj, o, new_obj_size, age, false, &_young_lab); } else { _young_gen_is_full = true; } } } } } // Otherwise try allocating obj tenured if (new_obj == NULL) { #ifndef PRODUCT if (ParallelScavengeHeap::heap()->promotion_should_fail()) { return oop_promotion_failed(o, test_mark); } #endif // #ifndef PRODUCT new_obj = (oop) _old_lab.allocate(new_obj_size); new_obj_is_tenured = true; if (new_obj == NULL) { if (!_old_gen_is_full) { // Do we allocate directly, or flush and refill? if (new_obj_size > (OldPLABSize / 2)) { // Allocate this object directly new_obj = (oop)old_gen()->cas_allocate(new_obj_size); promotion_trace_event(new_obj, o, new_obj_size, age, true, NULL); } else { // Flush and fill _old_lab.flush(); HeapWord* lab_base = old_gen()->cas_allocate(OldPLABSize); if(lab_base != NULL) { #ifdef ASSERT // Delay the initialization of the promotion lab (plab). // This exposes uninitialized plabs to card table processing. if (GCWorkerDelayMillis > 0) { os::sleep(Thread::current(), GCWorkerDelayMillis, false); } #endif _old_lab.initialize(MemRegion(lab_base, OldPLABSize)); // Try the old lab allocation again. new_obj = (oop) _old_lab.allocate(new_obj_size); promotion_trace_event(new_obj, o, new_obj_size, age, true, &_old_lab); } } } // This is the promotion failed test, and code handling. // The code belongs here for two reasons. It is slightly // different than the code below, and cannot share the // CAS testing code. Keeping the code here also minimizes // the impact on the common case fast path code. if (new_obj == NULL) { _old_gen_is_full = true; return oop_promotion_failed(o, test_mark); } } } assert(new_obj != NULL, "allocation should have succeeded"); // Copy obj Copy::aligned_disjoint_words((HeapWord*)o, (HeapWord*)new_obj, new_obj_size); // Now we have to CAS in the header. // Make copy visible to threads reading the forwardee. if (o->cas_forward_to(new_obj, test_mark, memory_order_release)) { // We won any races, we "own" this object. assert(new_obj == o->forwardee(), "Sanity"); // Increment age if obj still in new generation. Now that // we're dealing with a markOop that cannot change, it is // okay to use the non mt safe oop methods. if (!new_obj_is_tenured) { new_obj->incr_age(); assert(young_space()->contains(new_obj), "Attempt to push non-promoted obj"); } // Do the size comparison first with new_obj_size, which we // already have. Hopefully, only a few objects are larger than // _min_array_size_for_chunking, and most of them will be arrays. // So, the is->objArray() test would be very infrequent. if (new_obj_size > _min_array_size_for_chunking && new_obj->is_objArray() && PSChunkLargeArrays) { // we'll chunk it oop* const masked_o = mask_chunked_array_oop(o); push_depth(masked_o); TASKQUEUE_STATS_ONLY(++_arrays_chunked; ++_masked_pushes); } else { // we'll just push its contents push_contents(new_obj); } } else { // We lost, someone else "owns" this object guarantee(o->is_forwarded(), "Object must be forwarded if the cas failed."); // Try to deallocate the space. If it was directly allocated we cannot // deallocate it, so we have to test. If the deallocation fails, // overwrite with a filler object. if (new_obj_is_tenured) { if (!_old_lab.unallocate_object((HeapWord*) new_obj, new_obj_size)) { CollectedHeap::fill_with_object((HeapWord*) new_obj, new_obj_size); } } else if (!_young_lab.unallocate_object((HeapWord*) new_obj, new_obj_size)) { CollectedHeap::fill_with_object((HeapWord*) new_obj, new_obj_size); } // don't update this before the unallocation! // Using acquire though consume would be accurate for accessing new_obj. new_obj = o->forwardee_acquire(); } } else { assert(o->is_forwarded(), "Sanity"); new_obj = o->forwardee_acquire(); } // This code must come after the CAS test, or it will print incorrect // information. log_develop_trace(gc, scavenge)("{%s %s " PTR_FORMAT " -> " PTR_FORMAT " (%d)}", should_scavenge(&new_obj) ? "copying" : "tenuring", new_obj->klass()->internal_name(), p2i((void *)o), p2i((void *)new_obj), new_obj->size()); return new_obj; } // Attempt to "claim" oop at p via CAS, push the new obj if successful // This version tests the oop* to make sure it is within the heap before // attempting marking. template inline void PSPromotionManager::copy_and_push_safe_barrier(T* p) { assert(should_scavenge(p, true), "revisiting object?"); oop o = RawAccess::oop_load(p); oop new_obj = o->is_forwarded() ? o->forwardee() : copy_to_survivor_space(o); // This code must come after the CAS test, or it will print incorrect // information. if (log_develop_is_enabled(Trace, gc, scavenge) && o->is_forwarded()) { log_develop_trace(gc, scavenge)("{%s %s " PTR_FORMAT " -> " PTR_FORMAT " (%d)}", "forwarding", new_obj->klass()->internal_name(), p2i((void *)o), p2i((void *)new_obj), new_obj->size()); } RawAccess::oop_store(p, new_obj); // We cannot mark without test, as some code passes us pointers // that are outside the heap. These pointers are either from roots // or from metadata. if ((!PSScavenge::is_obj_in_young((HeapWord*)p)) && ParallelScavengeHeap::heap()->is_in_reserved(p)) { if (PSScavenge::is_obj_in_young(new_obj)) { PSScavenge::card_table()->inline_write_ref_field_gc(p, new_obj); } } } inline void PSPromotionManager::process_popped_location_depth(StarTask p) { if (is_oop_masked(p)) { assert(PSChunkLargeArrays, "invariant"); oop const old = unmask_chunked_array_oop(p); process_array_chunk(old); } else { if (p.is_narrow()) { assert(UseCompressedOops, "Error"); copy_and_push_safe_barrier(p); } else { copy_and_push_safe_barrier(p); } } } inline bool PSPromotionManager::steal_depth(int queue_num, StarTask& t) { return stack_array_depth()->steal(queue_num, t); } #if TASKQUEUE_STATS void PSPromotionManager::record_steal(StarTask& p) { if (is_oop_masked(p)) { ++_masked_steals; } } #endif // TASKQUEUE_STATS #endif // SHARE_VM_GC_PARALLEL_PSPROMOTIONMANAGER_INLINE_HPP