/* * Copyright (c) 2012, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "jvm.h" #include "classfile/classLoaderDataGraph.hpp" #include "classfile/classListParser.hpp" #include "classfile/classLoaderExt.hpp" #include "classfile/dictionary.hpp" #include "classfile/loaderConstraints.hpp" #include "classfile/javaClasses.inline.hpp" #include "classfile/placeholders.hpp" #include "classfile/symbolTable.hpp" #include "classfile/stringTable.hpp" #include "classfile/systemDictionary.hpp" #include "classfile/systemDictionaryShared.hpp" #include "code/codeCache.hpp" #include "gc/shared/softRefPolicy.hpp" #include "interpreter/bytecodeStream.hpp" #include "interpreter/bytecodes.hpp" #include "logging/log.hpp" #include "logging/logMessage.hpp" #include "memory/archiveUtils.inline.hpp" #include "memory/dynamicArchive.hpp" #include "memory/filemap.hpp" #include "memory/heapShared.inline.hpp" #include "memory/metaspace.hpp" #include "memory/metaspaceClosure.hpp" #include "memory/metaspaceShared.hpp" #include "memory/resourceArea.hpp" #include "memory/universe.hpp" #include "oops/compressedOops.inline.hpp" #include "oops/instanceClassLoaderKlass.hpp" #include "oops/instanceMirrorKlass.hpp" #include "oops/instanceRefKlass.hpp" #include "oops/methodData.hpp" #include "oops/objArrayKlass.hpp" #include "oops/objArrayOop.hpp" #include "oops/oop.inline.hpp" #include "oops/typeArrayKlass.hpp" #include "prims/jvmtiRedefineClasses.hpp" #include "runtime/handles.inline.hpp" #include "runtime/os.hpp" #include "runtime/safepointVerifiers.hpp" #include "runtime/signature.hpp" #include "runtime/timerTrace.hpp" #include "runtime/vmThread.hpp" #include "runtime/vmOperations.hpp" #include "utilities/align.hpp" #include "utilities/bitMap.inline.hpp" #include "utilities/defaultStream.hpp" #include "utilities/hashtable.inline.hpp" #if INCLUDE_G1GC #include "gc/g1/g1CollectedHeap.hpp" #endif ReservedSpace MetaspaceShared::_shared_rs; VirtualSpace MetaspaceShared::_shared_vs; MetaspaceSharedStats MetaspaceShared::_stats; bool MetaspaceShared::_has_error_classes; bool MetaspaceShared::_archive_loading_failed = false; bool MetaspaceShared::_remapped_readwrite = false; address MetaspaceShared::_i2i_entry_code_buffers = NULL; size_t MetaspaceShared::_i2i_entry_code_buffers_size = 0; void* MetaspaceShared::_shared_metaspace_static_top = NULL; intx MetaspaceShared::_relocation_delta; // The CDS archive is divided into the following regions: // mc - misc code (the method entry trampolines) // rw - read-write metadata // ro - read-only metadata and read-only tables // md - misc data (the c++ vtables) // // ca0 - closed archive heap space #0 // ca1 - closed archive heap space #1 (may be empty) // oa0 - open archive heap space #0 // oa1 - open archive heap space #1 (may be empty) // // The mc, rw, ro, and md regions are linearly allocated, starting from // SharedBaseAddress, in the order of mc->rw->ro->md. The size of these 4 regions // are page-aligned, and there's no gap between any consecutive regions. // // These 4 regions are populated in the following steps: // [1] All classes are loaded in MetaspaceShared::preload_classes(). All metadata are // temporarily allocated outside of the shared regions. Only the method entry // trampolines are written into the mc region. // [2] ArchiveCompactor copies RW metadata into the rw region. // [3] ArchiveCompactor copies RO metadata into the ro region. // [4] SymbolTable, StringTable, SystemDictionary, and a few other read-only data // are copied into the ro region as read-only tables. // [5] C++ vtables are copied into the md region. // // The s0/s1 and oa0/oa1 regions are populated inside HeapShared::archive_java_heap_objects. // Their layout is independent of the other 4 regions. char* DumpRegion::expand_top_to(char* newtop) { assert(is_allocatable(), "must be initialized and not packed"); assert(newtop >= _top, "must not grow backwards"); if (newtop > _end) { MetaspaceShared::report_out_of_space(_name, newtop - _top); ShouldNotReachHere(); } uintx delta; if (DynamicDumpSharedSpaces) { delta = DynamicArchive::object_delta_uintx(newtop); } else { delta = MetaspaceShared::object_delta_uintx(newtop); } if (delta > MAX_SHARED_DELTA) { // This is just a sanity check and should not appear in any real world usage. This // happens only if you allocate more than 2GB of shared objects and would require // millions of shared classes. vm_exit_during_initialization("Out of memory in the CDS archive", "Please reduce the number of shared classes."); } MetaspaceShared::commit_shared_space_to(newtop); _top = newtop; return _top; } char* DumpRegion::allocate(size_t num_bytes, size_t alignment) { char* p = (char*)align_up(_top, alignment); char* newtop = p + align_up(num_bytes, alignment); expand_top_to(newtop); memset(p, 0, newtop - p); return p; } void DumpRegion::append_intptr_t(intptr_t n, bool need_to_mark) { assert(is_aligned(_top, sizeof(intptr_t)), "bad alignment"); intptr_t *p = (intptr_t*)_top; char* newtop = _top + sizeof(intptr_t); expand_top_to(newtop); *p = n; if (need_to_mark) { ArchivePtrMarker::mark_pointer(p); } } void DumpRegion::print(size_t total_bytes) const { tty->print_cr("%-3s space: " SIZE_FORMAT_W(9) " [ %4.1f%% of total] out of " SIZE_FORMAT_W(9) " bytes [%5.1f%% used] at " INTPTR_FORMAT, _name, used(), percent_of(used(), total_bytes), reserved(), percent_of(used(), reserved()), p2i(_base + MetaspaceShared::final_delta())); } void DumpRegion::print_out_of_space_msg(const char* failing_region, size_t needed_bytes) { tty->print("[%-8s] " PTR_FORMAT " - " PTR_FORMAT " capacity =%9d, allocated =%9d", _name, p2i(_base), p2i(_top), int(_end - _base), int(_top - _base)); if (strcmp(_name, failing_region) == 0) { tty->print_cr(" required = %d", int(needed_bytes)); } else { tty->cr(); } } void DumpRegion::pack(DumpRegion* next) { assert(!is_packed(), "sanity"); _end = (char*)align_up(_top, Metaspace::reserve_alignment()); _is_packed = true; if (next != NULL) { next->_base = next->_top = this->_end; next->_end = MetaspaceShared::shared_rs()->end(); } } static DumpRegion _mc_region("mc"), _ro_region("ro"), _rw_region("rw"), _md_region("md"); static size_t _total_closed_archive_region_size = 0, _total_open_archive_region_size = 0; void MetaspaceShared::init_shared_dump_space(DumpRegion* first_space, address first_space_bottom) { // Start with 0 committed bytes. The memory will be committed as needed by // MetaspaceShared::commit_shared_space_to(). if (!_shared_vs.initialize(_shared_rs, 0)) { fatal("Unable to allocate memory for shared space"); } first_space->init(&_shared_rs, (char*)first_space_bottom); } DumpRegion* MetaspaceShared::misc_code_dump_space() { return &_mc_region; } DumpRegion* MetaspaceShared::read_write_dump_space() { return &_rw_region; } DumpRegion* MetaspaceShared::read_only_dump_space() { return &_ro_region; } void MetaspaceShared::pack_dump_space(DumpRegion* current, DumpRegion* next, ReservedSpace* rs) { current->pack(next); } char* MetaspaceShared::misc_code_space_alloc(size_t num_bytes) { return _mc_region.allocate(num_bytes); } char* MetaspaceShared::read_only_space_alloc(size_t num_bytes) { return _ro_region.allocate(num_bytes); } // When reserving an address range using ReservedSpace, we need an alignment that satisfies both: // os::vm_allocation_granularity() -- so that we can sub-divide this range into multiple mmap regions, // while keeping the first range at offset 0 of this range. // Metaspace::reserve_alignment() -- so we can pass the region to // Metaspace::allocate_metaspace_compressed_klass_ptrs. size_t MetaspaceShared::reserved_space_alignment() { size_t os_align = os::vm_allocation_granularity(); size_t ms_align = Metaspace::reserve_alignment(); if (os_align >= ms_align) { assert(os_align % ms_align == 0, "must be a multiple"); return os_align; } else { assert(ms_align % os_align == 0, "must be a multiple"); return ms_align; } } ReservedSpace MetaspaceShared::reserve_shared_space(size_t size, char* requested_address) { bool large_pages = false; // Don't use large pages for the CDS archive. assert(is_aligned(requested_address, reserved_space_alignment()), "must be"); return ReservedSpace(size, reserved_space_alignment(), large_pages, requested_address); } void MetaspaceShared::initialize_dumptime_shared_and_meta_spaces() { assert(DumpSharedSpaces, "should be called for dump time only"); const size_t reserve_alignment = reserved_space_alignment(); char* shared_base = (char*)align_up((char*)SharedBaseAddress, reserve_alignment); #ifdef _LP64 // On 64-bit VM, the heap and class space layout will be the same as if // you're running in -Xshare:on mode: // // +-- SharedBaseAddress (default = 0x800000000) // v // +-..---------+---------+ ... +----+----+----+----+---------------+ // | Heap | Archive | | MC | RW | RO | MD | class space | // +-..---------+---------+ ... +----+----+----+----+---------------+ // |<-- MaxHeapSize -->| |<-- UnscaledClassSpaceMax = 4GB -->| // const uint64_t UnscaledClassSpaceMax = (uint64_t(max_juint) + 1); const size_t cds_total = align_down(UnscaledClassSpaceMax, reserve_alignment); #else // We don't support archives larger than 256MB on 32-bit due to limited virtual address space. size_t cds_total = align_down(256*M, reserve_alignment); #endif bool use_requested_base = true; if (ArchiveRelocationMode == 1) { log_info(cds)("ArchiveRelocationMode == 1: always allocate class space at an alternative address"); use_requested_base = false; } // First try to reserve the space at the specified SharedBaseAddress. assert(!_shared_rs.is_reserved(), "must be"); if (use_requested_base) { _shared_rs = reserve_shared_space(cds_total, shared_base); } if (_shared_rs.is_reserved()) { assert(shared_base == 0 || _shared_rs.base() == shared_base, "should match"); } else { // Get a mmap region anywhere if the SharedBaseAddress fails. _shared_rs = reserve_shared_space(cds_total); } if (!_shared_rs.is_reserved()) { vm_exit_during_initialization("Unable to reserve memory for shared space", err_msg(SIZE_FORMAT " bytes.", cds_total)); } #ifdef _LP64 // During dump time, we allocate 4GB (UnscaledClassSpaceMax) of space and split it up: // + The upper 1 GB is used as the "temporary compressed class space" -- preload_classes() // will store Klasses into this space. // + The lower 3 GB is used for the archive -- when preload_classes() is done, // ArchiveCompactor will copy the class metadata into this space, first the RW parts, // then the RO parts. assert(UseCompressedOops && UseCompressedClassPointers, "UseCompressedOops and UseCompressedClassPointers must be set"); size_t max_archive_size = align_down(cds_total * 3 / 4, reserve_alignment); ReservedSpace tmp_class_space = _shared_rs.last_part(max_archive_size); CompressedClassSpaceSize = align_down(tmp_class_space.size(), reserve_alignment); _shared_rs = _shared_rs.first_part(max_archive_size); // Set up compress class pointers. CompressedKlassPointers::set_base((address)_shared_rs.base()); // Set narrow_klass_shift to be LogKlassAlignmentInBytes. This is consistent // with AOT. CompressedKlassPointers::set_shift(LogKlassAlignmentInBytes); // Set the range of klass addresses to 4GB. CompressedKlassPointers::set_range(cds_total); Metaspace::initialize_class_space(tmp_class_space); log_info(cds)("narrow_klass_base = " PTR_FORMAT ", narrow_klass_shift = %d", p2i(CompressedKlassPointers::base()), CompressedKlassPointers::shift()); log_info(cds)("Allocated temporary class space: " SIZE_FORMAT " bytes at " PTR_FORMAT, CompressedClassSpaceSize, p2i(tmp_class_space.base())); #endif init_shared_dump_space(&_mc_region); SharedBaseAddress = (size_t)_shared_rs.base(); tty->print_cr("Allocated shared space: " SIZE_FORMAT " bytes at " PTR_FORMAT, _shared_rs.size(), p2i(_shared_rs.base())); } // Called by universe_post_init() void MetaspaceShared::post_initialize(TRAPS) { if (UseSharedSpaces) { int size = FileMapInfo::get_number_of_shared_paths(); if (size > 0) { SystemDictionaryShared::allocate_shared_data_arrays(size, THREAD); if (!DynamicDumpSharedSpaces) { FileMapInfo* info; if (FileMapInfo::dynamic_info() == NULL) { info = FileMapInfo::current_info(); } else { info = FileMapInfo::dynamic_info(); } ClassLoaderExt::init_paths_start_index(info->app_class_paths_start_index()); ClassLoaderExt::init_app_module_paths_start_index(info->app_module_paths_start_index()); } } } } static GrowableArray<Handle>* _extra_interned_strings = NULL; void MetaspaceShared::read_extra_data(const char* filename, TRAPS) { _extra_interned_strings = new (ResourceObj::C_HEAP, mtInternal)GrowableArray<Handle>(10000, true); HashtableTextDump reader(filename); reader.check_version("VERSION: 1.0"); while (reader.remain() > 0) { int utf8_length; int prefix_type = reader.scan_prefix(&utf8_length); ResourceMark rm(THREAD); if (utf8_length == 0x7fffffff) { // buf_len will overflown 32-bit value. vm_exit_during_initialization(err_msg("string length too large: %d", utf8_length)); } int buf_len = utf8_length+1; char* utf8_buffer = NEW_RESOURCE_ARRAY(char, buf_len); reader.get_utf8(utf8_buffer, utf8_length); utf8_buffer[utf8_length] = '\0'; if (prefix_type == HashtableTextDump::SymbolPrefix) { SymbolTable::new_permanent_symbol(utf8_buffer); } else{ assert(prefix_type == HashtableTextDump::StringPrefix, "Sanity"); oop s = StringTable::intern(utf8_buffer, THREAD); if (HAS_PENDING_EXCEPTION) { log_warning(cds, heap)("[line %d] extra interned string allocation failed; size too large: %d", reader.last_line_no(), utf8_length); CLEAR_PENDING_EXCEPTION; } else { #if INCLUDE_G1GC if (UseG1GC) { typeArrayOop body = java_lang_String::value(s); const HeapRegion* hr = G1CollectedHeap::heap()->heap_region_containing(body); if (hr->is_humongous()) { // Don't keep it alive, so it will be GC'ed before we dump the strings, in order // to maximize free heap space and minimize fragmentation. log_warning(cds, heap)("[line %d] extra interned string ignored; size too large: %d", reader.last_line_no(), utf8_length); continue; } } #endif // Interned strings are GC'ed if there are no references to it, so let's // add a reference to keep this string alive. assert(s != NULL, "must succeed"); Handle h(THREAD, s); _extra_interned_strings->append(h); } } } } void MetaspaceShared::commit_shared_space_to(char* newtop) { Arguments::assert_is_dumping_archive(); char* base = _shared_rs.base(); size_t need_committed_size = newtop - base; size_t has_committed_size = _shared_vs.committed_size(); if (need_committed_size < has_committed_size) { return; } size_t min_bytes = need_committed_size - has_committed_size; size_t preferred_bytes = 1 * M; size_t uncommitted = _shared_vs.reserved_size() - has_committed_size; size_t commit =MAX2(min_bytes, preferred_bytes); commit = MIN2(commit, uncommitted); assert(commit <= uncommitted, "sanity"); bool result = _shared_vs.expand_by(commit, false); ArchivePtrMarker::expand_ptr_end((address*)_shared_vs.high()); if (!result) { vm_exit_during_initialization(err_msg("Failed to expand shared space to " SIZE_FORMAT " bytes", need_committed_size)); } log_info(cds)("Expanding shared spaces by " SIZE_FORMAT_W(7) " bytes [total " SIZE_FORMAT_W(9) " bytes ending at %p]", commit, _shared_vs.actual_committed_size(), _shared_vs.high()); } void MetaspaceShared::initialize_ptr_marker(CHeapBitMap* ptrmap) { ArchivePtrMarker::initialize(ptrmap, (address*)_shared_vs.low(), (address*)_shared_vs.high()); } // Read/write a data stream for restoring/preserving metadata pointers and // miscellaneous data from/to the shared archive file. void MetaspaceShared::serialize(SerializeClosure* soc) { int tag = 0; soc->do_tag(--tag); // Verify the sizes of various metadata in the system. soc->do_tag(sizeof(Method)); soc->do_tag(sizeof(ConstMethod)); soc->do_tag(arrayOopDesc::base_offset_in_bytes(T_BYTE)); soc->do_tag(sizeof(ConstantPool)); soc->do_tag(sizeof(ConstantPoolCache)); soc->do_tag(objArrayOopDesc::base_offset_in_bytes()); soc->do_tag(typeArrayOopDesc::base_offset_in_bytes(T_BYTE)); soc->do_tag(sizeof(Symbol)); // Dump/restore miscellaneous metadata. JavaClasses::serialize_offsets(soc); Universe::serialize(soc); soc->do_tag(--tag); // Dump/restore references to commonly used names and signatures. vmSymbols::serialize(soc); soc->do_tag(--tag); // Dump/restore the symbol/string/subgraph_info tables SymbolTable::serialize_shared_table_header(soc); StringTable::serialize_shared_table_header(soc); HeapShared::serialize_subgraph_info_table_header(soc); SystemDictionaryShared::serialize_dictionary_headers(soc); InstanceMirrorKlass::serialize_offsets(soc); soc->do_tag(--tag); serialize_cloned_cpp_vtptrs(soc); soc->do_tag(--tag); soc->do_tag(666); } address MetaspaceShared::i2i_entry_code_buffers(size_t total_size) { if (DumpSharedSpaces) { if (_i2i_entry_code_buffers == NULL) { _i2i_entry_code_buffers = (address)misc_code_space_alloc(total_size); _i2i_entry_code_buffers_size = total_size; } } else if (UseSharedSpaces) { assert(_i2i_entry_code_buffers != NULL, "must already been initialized"); } else { return NULL; } assert(_i2i_entry_code_buffers_size == total_size, "must not change"); return _i2i_entry_code_buffers; } uintx MetaspaceShared::object_delta_uintx(void* obj) { Arguments::assert_is_dumping_archive(); if (DumpSharedSpaces) { assert(shared_rs()->contains(obj), "must be"); } else { assert(is_in_shared_metaspace(obj) || DynamicArchive::is_in_target_space(obj), "must be"); } address base_address = address(SharedBaseAddress); uintx deltax = address(obj) - base_address; return deltax; } // Global object for holding classes that have been loaded. Since this // is run at a safepoint just before exit, this is the entire set of classes. static GrowableArray<Klass*>* _global_klass_objects; GrowableArray<Klass*>* MetaspaceShared::collected_klasses() { return _global_klass_objects; } static void collect_array_classes(Klass* k) { _global_klass_objects->append_if_missing(k); if (k->is_array_klass()) { // Add in the array classes too ArrayKlass* ak = ArrayKlass::cast(k); Klass* h = ak->higher_dimension(); if (h != NULL) { h->array_klasses_do(collect_array_classes); } } } class CollectClassesClosure : public KlassClosure { void do_klass(Klass* k) { if (k->is_instance_klass() && SystemDictionaryShared::is_excluded_class(InstanceKlass::cast(k))) { // Don't add to the _global_klass_objects } else { _global_klass_objects->append_if_missing(k); } if (k->is_array_klass()) { // Add in the array classes too ArrayKlass* ak = ArrayKlass::cast(k); Klass* h = ak->higher_dimension(); if (h != NULL) { h->array_klasses_do(collect_array_classes); } } } }; static void remove_unshareable_in_classes() { for (int i = 0; i < _global_klass_objects->length(); i++) { Klass* k = _global_klass_objects->at(i); if (!k->is_objArray_klass()) { // InstanceKlass and TypeArrayKlass will in turn call remove_unshareable_info // on their array classes. assert(k->is_instance_klass() || k->is_typeArray_klass(), "must be"); k->remove_unshareable_info(); } } } static void remove_java_mirror_in_classes() { for (int i = 0; i < _global_klass_objects->length(); i++) { Klass* k = _global_klass_objects->at(i); if (!k->is_objArray_klass()) { // InstanceKlass and TypeArrayKlass will in turn call remove_unshareable_info // on their array classes. assert(k->is_instance_klass() || k->is_typeArray_klass(), "must be"); k->remove_java_mirror(); } } } static void clear_basic_type_mirrors() { assert(!HeapShared::is_heap_object_archiving_allowed(), "Sanity"); Universe::set_int_mirror(NULL); Universe::set_float_mirror(NULL); Universe::set_double_mirror(NULL); Universe::set_byte_mirror(NULL); Universe::set_bool_mirror(NULL); Universe::set_char_mirror(NULL); Universe::set_long_mirror(NULL); Universe::set_short_mirror(NULL); Universe::set_void_mirror(NULL); } static void rewrite_nofast_bytecode(const methodHandle& method) { BytecodeStream bcs(method); while (!bcs.is_last_bytecode()) { Bytecodes::Code opcode = bcs.next(); switch (opcode) { case Bytecodes::_getfield: *bcs.bcp() = Bytecodes::_nofast_getfield; break; case Bytecodes::_putfield: *bcs.bcp() = Bytecodes::_nofast_putfield; break; case Bytecodes::_aload_0: *bcs.bcp() = Bytecodes::_nofast_aload_0; break; case Bytecodes::_iload: { if (!bcs.is_wide()) { *bcs.bcp() = Bytecodes::_nofast_iload; } break; } default: break; } } } // Walk all methods in the class list to ensure that they won't be modified at // run time. This includes: // [1] Rewrite all bytecodes as needed, so that the ConstMethod* will not be modified // at run time by RewriteBytecodes/RewriteFrequentPairs // [2] Assign a fingerprint, so one doesn't need to be assigned at run-time. static void rewrite_nofast_bytecodes_and_calculate_fingerprints(Thread* thread) { for (int i = 0; i < _global_klass_objects->length(); i++) { Klass* k = _global_klass_objects->at(i); if (k->is_instance_klass()) { InstanceKlass* ik = InstanceKlass::cast(k); MetaspaceShared::rewrite_nofast_bytecodes_and_calculate_fingerprints(thread, ik); } } } void MetaspaceShared::rewrite_nofast_bytecodes_and_calculate_fingerprints(Thread* thread, InstanceKlass* ik) { for (int i = 0; i < ik->methods()->length(); i++) { methodHandle m(thread, ik->methods()->at(i)); rewrite_nofast_bytecode(m); Fingerprinter fp(m); // The side effect of this call sets method's fingerprint field. fp.fingerprint(); } } // Objects of the Metadata types (such as Klass and ConstantPool) have C++ vtables. // (In GCC this is the field <Type>::_vptr, i.e., first word in the object.) // // Addresses of the vtables and the methods may be different across JVM runs, // if libjvm.so is dynamically loaded at a different base address. // // To ensure that the Metadata objects in the CDS archive always have the correct vtable: // // + at dump time: we redirect the _vptr to point to our own vtables inside // the CDS image // + at run time: we clone the actual contents of the vtables from libjvm.so // into our own tables. // Currently, the archive contain ONLY the following types of objects that have C++ vtables. #define CPP_VTABLE_PATCH_TYPES_DO(f) \ f(ConstantPool) \ f(InstanceKlass) \ f(InstanceClassLoaderKlass) \ f(InstanceMirrorKlass) \ f(InstanceRefKlass) \ f(Method) \ f(ObjArrayKlass) \ f(TypeArrayKlass) class CppVtableInfo { intptr_t _vtable_size; intptr_t _cloned_vtable[1]; public: static int num_slots(int vtable_size) { return 1 + vtable_size; // Need to add the space occupied by _vtable_size; } int vtable_size() { return int(uintx(_vtable_size)); } void set_vtable_size(int n) { _vtable_size = intptr_t(n); } intptr_t* cloned_vtable() { return &_cloned_vtable[0]; } void zero() { memset(_cloned_vtable, 0, sizeof(intptr_t) * vtable_size()); } // Returns the address of the next CppVtableInfo that can be placed immediately after this CppVtableInfo static size_t byte_size(int vtable_size) { CppVtableInfo i; return pointer_delta(&i._cloned_vtable[vtable_size], &i, sizeof(u1)); } }; template <class T> class CppVtableCloner : public T { static intptr_t* vtable_of(Metadata& m) { return *((intptr_t**)&m); } static CppVtableInfo* _info; static int get_vtable_length(const char* name); public: // Allocate and initialize the C++ vtable, starting from top, but do not go past end. static intptr_t* allocate(const char* name); // Clone the vtable to ... static intptr_t* clone_vtable(const char* name, CppVtableInfo* info); static void zero_vtable_clone() { assert(DumpSharedSpaces, "dump-time only"); _info->zero(); } // Switch the vtable pointer to point to the cloned vtable. static void patch(Metadata* obj) { assert(DumpSharedSpaces, "dump-time only"); assert(MetaspaceShared::is_in_output_space(obj), "must be"); *(void**)obj = (void*)(_info->cloned_vtable()); ArchivePtrMarker::mark_pointer(obj); } static bool is_valid_shared_object(const T* obj) { intptr_t* vptr = *(intptr_t**)obj; return vptr == _info->cloned_vtable(); } }; template <class T> CppVtableInfo* CppVtableCloner<T>::_info = NULL; template <class T> intptr_t* CppVtableCloner<T>::allocate(const char* name) { assert(is_aligned(_md_region.top(), sizeof(intptr_t)), "bad alignment"); int n = get_vtable_length(name); _info = (CppVtableInfo*)_md_region.allocate(CppVtableInfo::byte_size(n), sizeof(intptr_t)); _info->set_vtable_size(n); intptr_t* p = clone_vtable(name, _info); assert((char*)p == _md_region.top(), "must be"); return _info->cloned_vtable(); } template <class T> intptr_t* CppVtableCloner<T>::clone_vtable(const char* name, CppVtableInfo* info) { if (!DumpSharedSpaces) { assert(_info == 0, "_info is initialized only at dump time"); _info = info; // Remember it -- it will be used by MetaspaceShared::is_valid_shared_method() } T tmp; // Allocate temporary dummy metadata object to get to the original vtable. int n = info->vtable_size(); intptr_t* srcvtable = vtable_of(tmp); intptr_t* dstvtable = info->cloned_vtable(); // We already checked (and, if necessary, adjusted n) when the vtables were allocated, so we are // safe to do memcpy. log_debug(cds, vtables)("Copying %3d vtable entries for %s", n, name); memcpy(dstvtable, srcvtable, sizeof(intptr_t) * n); return dstvtable + n; } // To determine the size of the vtable for each type, we use the following // trick by declaring 2 subclasses: // // class CppVtableTesterA: public InstanceKlass {virtual int last_virtual_method() {return 1;} }; // class CppVtableTesterB: public InstanceKlass {virtual void* last_virtual_method() {return NULL}; }; // // CppVtableTesterA and CppVtableTesterB's vtables have the following properties: // - Their size (N+1) is exactly one more than the size of InstanceKlass's vtable (N) // - The first N entries have are exactly the same as in InstanceKlass's vtable. // - Their last entry is different. // // So to determine the value of N, we just walk CppVtableTesterA and CppVtableTesterB's tables // and find the first entry that's different. // // This works on all C++ compilers supported by Oracle, but you may need to tweak it for more // esoteric compilers. template <class T> class CppVtableTesterB: public T { public: virtual int last_virtual_method() {return 1;} }; template <class T> class CppVtableTesterA : public T { public: virtual void* last_virtual_method() { // Make this different than CppVtableTesterB::last_virtual_method so the C++ // compiler/linker won't alias the two functions. return NULL; } }; template <class T> int CppVtableCloner<T>::get_vtable_length(const char* name) { CppVtableTesterA<T> a; CppVtableTesterB<T> b; intptr_t* avtable = vtable_of(a); intptr_t* bvtable = vtable_of(b); // Start at slot 1, because slot 0 may be RTTI (on Solaris/Sparc) int vtable_len = 1; for (; ; vtable_len++) { if (avtable[vtable_len] != bvtable[vtable_len]) { break; } } log_debug(cds, vtables)("Found %3d vtable entries for %s", vtable_len, name); return vtable_len; } #define ALLOC_CPP_VTABLE_CLONE(c) \ _cloned_cpp_vtptrs[c##_Kind] = CppVtableCloner<c>::allocate(#c); \ ArchivePtrMarker::mark_pointer(&_cloned_cpp_vtptrs[c##_Kind]); #define CLONE_CPP_VTABLE(c) \ p = CppVtableCloner<c>::clone_vtable(#c, (CppVtableInfo*)p); #define ZERO_CPP_VTABLE(c) \ CppVtableCloner<c>::zero_vtable_clone(); //------------------------------ for DynamicDumpSharedSpaces - start #define DECLARE_CLONED_VTABLE_KIND(c) c ## _Kind, enum { CPP_VTABLE_PATCH_TYPES_DO(DECLARE_CLONED_VTABLE_KIND) _num_cloned_vtable_kinds }; static intptr_t** _cloned_cpp_vtptrs = NULL; void MetaspaceShared::serialize_cloned_cpp_vtptrs(SerializeClosure* soc) { soc->do_ptr((void**)&_cloned_cpp_vtptrs); } intptr_t* MetaspaceShared::fix_cpp_vtable_for_dynamic_archive(MetaspaceObj::Type msotype, address obj) { assert(DynamicDumpSharedSpaces, "must"); int kind = -1; switch (msotype) { case MetaspaceObj::SymbolType: case MetaspaceObj::TypeArrayU1Type: case MetaspaceObj::TypeArrayU2Type: case MetaspaceObj::TypeArrayU4Type: case MetaspaceObj::TypeArrayU8Type: case MetaspaceObj::TypeArrayOtherType: case MetaspaceObj::ConstMethodType: case MetaspaceObj::ConstantPoolCacheType: case MetaspaceObj::AnnotationsType: case MetaspaceObj::MethodCountersType: case MetaspaceObj::RecordComponentType: // These have no vtables. break; case MetaspaceObj::ClassType: { Klass* k = (Klass*)obj; assert(k->is_klass(), "must be"); if (k->is_instance_klass()) { kind = InstanceKlass_Kind; } else { assert(k->is_objArray_klass(), "We shouldn't archive any other klasses in DynamicDumpSharedSpaces"); kind = ObjArrayKlass_Kind; } } break; case MetaspaceObj::MethodType: { Method* m = (Method*)obj; assert(m->is_method(), "must be"); kind = Method_Kind; } break; case MetaspaceObj::MethodDataType: // We don't archive MethodData <-- should have been removed in removed_unsharable_info ShouldNotReachHere(); break; case MetaspaceObj::ConstantPoolType: { ConstantPool *cp = (ConstantPool*)obj; assert(cp->is_constantPool(), "must be"); kind = ConstantPool_Kind; } break; default: ShouldNotReachHere(); } if (kind >= 0) { assert(kind < _num_cloned_vtable_kinds, "must be"); return _cloned_cpp_vtptrs[kind]; } else { return NULL; } } //------------------------------ for DynamicDumpSharedSpaces - end // This can be called at both dump time and run time. intptr_t* MetaspaceShared::clone_cpp_vtables(intptr_t* p) { assert(DumpSharedSpaces || UseSharedSpaces, "sanity"); CPP_VTABLE_PATCH_TYPES_DO(CLONE_CPP_VTABLE); return p; } void MetaspaceShared::zero_cpp_vtable_clones_for_writing() { assert(DumpSharedSpaces, "dump-time only"); CPP_VTABLE_PATCH_TYPES_DO(ZERO_CPP_VTABLE); } // Allocate and initialize the C++ vtables, starting from top, but do not go past end. void MetaspaceShared::allocate_cpp_vtable_clones() { assert(DumpSharedSpaces, "dump-time only"); // Layout (each slot is a intptr_t): // [number of slots in the first vtable = n1] // [ <n1> slots for the first vtable] // [number of slots in the first second = n2] // [ <n2> slots for the second vtable] // ... // The order of the vtables is the same as the CPP_VTAB_PATCH_TYPES_DO macro. CPP_VTABLE_PATCH_TYPES_DO(ALLOC_CPP_VTABLE_CLONE); } // Switch the vtable pointer to point to the cloned vtable. We assume the // vtable pointer is in first slot in object. void MetaspaceShared::patch_cpp_vtable_pointers() { int n = _global_klass_objects->length(); for (int i = 0; i < n; i++) { Klass* obj = _global_klass_objects->at(i); if (obj->is_instance_klass()) { InstanceKlass* ik = InstanceKlass::cast(obj); if (ik->is_class_loader_instance_klass()) { CppVtableCloner<InstanceClassLoaderKlass>::patch(ik); } else if (ik->is_reference_instance_klass()) { CppVtableCloner<InstanceRefKlass>::patch(ik); } else if (ik->is_mirror_instance_klass()) { CppVtableCloner<InstanceMirrorKlass>::patch(ik); } else { CppVtableCloner<InstanceKlass>::patch(ik); } ConstantPool* cp = ik->constants(); CppVtableCloner<ConstantPool>::patch(cp); for (int j = 0; j < ik->methods()->length(); j++) { Method* m = ik->methods()->at(j); CppVtableCloner<Method>::patch(m); assert(CppVtableCloner<Method>::is_valid_shared_object(m), "must be"); } } else if (obj->is_objArray_klass()) { CppVtableCloner<ObjArrayKlass>::patch(obj); } else { assert(obj->is_typeArray_klass(), "sanity"); CppVtableCloner<TypeArrayKlass>::patch(obj); } } } bool MetaspaceShared::is_valid_shared_method(const Method* m) { assert(is_in_shared_metaspace(m), "must be"); return CppVtableCloner<Method>::is_valid_shared_object(m); } void WriteClosure::do_oop(oop* o) { if (*o == NULL) { _dump_region->append_intptr_t(0); } else { assert(HeapShared::is_heap_object_archiving_allowed(), "Archiving heap object is not allowed"); _dump_region->append_intptr_t( (intptr_t)CompressedOops::encode_not_null(*o)); } } void WriteClosure::do_region(u_char* start, size_t size) { assert((intptr_t)start % sizeof(intptr_t) == 0, "bad alignment"); assert(size % sizeof(intptr_t) == 0, "bad size"); do_tag((int)size); while (size > 0) { _dump_region->append_intptr_t(*(intptr_t*)start, true); start += sizeof(intptr_t); size -= sizeof(intptr_t); } } // This is for dumping detailed statistics for the allocations // in the shared spaces. class DumpAllocStats : public ResourceObj { public: // Here's poor man's enum inheritance #define SHAREDSPACE_OBJ_TYPES_DO(f) \ METASPACE_OBJ_TYPES_DO(f) \ f(SymbolHashentry) \ f(SymbolBucket) \ f(StringHashentry) \ f(StringBucket) \ f(Other) enum Type { // Types are MetaspaceObj::ClassType, MetaspaceObj::SymbolType, etc SHAREDSPACE_OBJ_TYPES_DO(METASPACE_OBJ_TYPE_DECLARE) _number_of_types }; static const char * type_name(Type type) { switch(type) { SHAREDSPACE_OBJ_TYPES_DO(METASPACE_OBJ_TYPE_NAME_CASE) default: ShouldNotReachHere(); return NULL; } } public: enum { RO = 0, RW = 1 }; int _counts[2][_number_of_types]; int _bytes [2][_number_of_types]; DumpAllocStats() { memset(_counts, 0, sizeof(_counts)); memset(_bytes, 0, sizeof(_bytes)); }; void record(MetaspaceObj::Type type, int byte_size, bool read_only) { assert(int(type) >= 0 && type < MetaspaceObj::_number_of_types, "sanity"); int which = (read_only) ? RO : RW; _counts[which][type] ++; _bytes [which][type] += byte_size; } void record_other_type(int byte_size, bool read_only) { int which = (read_only) ? RO : RW; _bytes [which][OtherType] += byte_size; } void print_stats(int ro_all, int rw_all, int mc_all, int md_all); }; void DumpAllocStats::print_stats(int ro_all, int rw_all, int mc_all, int md_all) { // Calculate size of data that was not allocated by Metaspace::allocate() MetaspaceSharedStats *stats = MetaspaceShared::stats(); // symbols _counts[RO][SymbolHashentryType] = stats->symbol.hashentry_count; _bytes [RO][SymbolHashentryType] = stats->symbol.hashentry_bytes; _counts[RO][SymbolBucketType] = stats->symbol.bucket_count; _bytes [RO][SymbolBucketType] = stats->symbol.bucket_bytes; // strings _counts[RO][StringHashentryType] = stats->string.hashentry_count; _bytes [RO][StringHashentryType] = stats->string.hashentry_bytes; _counts[RO][StringBucketType] = stats->string.bucket_count; _bytes [RO][StringBucketType] = stats->string.bucket_bytes; // TODO: count things like dictionary, vtable, etc _bytes[RW][OtherType] += mc_all + md_all; rw_all += mc_all + md_all; // mc/md are mapped Read/Write // prevent divide-by-zero if (ro_all < 1) { ro_all = 1; } if (rw_all < 1) { rw_all = 1; } int all_ro_count = 0; int all_ro_bytes = 0; int all_rw_count = 0; int all_rw_bytes = 0; // To make fmt_stats be a syntactic constant (for format warnings), use #define. #define fmt_stats "%-20s: %8d %10d %5.1f | %8d %10d %5.1f | %8d %10d %5.1f" const char *sep = "--------------------+---------------------------+---------------------------+--------------------------"; const char *hdr = " ro_cnt ro_bytes % | rw_cnt rw_bytes % | all_cnt all_bytes %"; LogMessage(cds) msg; msg.info("Detailed metadata info (excluding st regions; rw stats include md/mc regions):"); msg.info("%s", hdr); msg.info("%s", sep); for (int type = 0; type < int(_number_of_types); type ++) { const char *name = type_name((Type)type); int ro_count = _counts[RO][type]; int ro_bytes = _bytes [RO][type]; int rw_count = _counts[RW][type]; int rw_bytes = _bytes [RW][type]; int count = ro_count + rw_count; int bytes = ro_bytes + rw_bytes; double ro_perc = percent_of(ro_bytes, ro_all); double rw_perc = percent_of(rw_bytes, rw_all); double perc = percent_of(bytes, ro_all + rw_all); msg.info(fmt_stats, name, ro_count, ro_bytes, ro_perc, rw_count, rw_bytes, rw_perc, count, bytes, perc); all_ro_count += ro_count; all_ro_bytes += ro_bytes; all_rw_count += rw_count; all_rw_bytes += rw_bytes; } int all_count = all_ro_count + all_rw_count; int all_bytes = all_ro_bytes + all_rw_bytes; double all_ro_perc = percent_of(all_ro_bytes, ro_all); double all_rw_perc = percent_of(all_rw_bytes, rw_all); double all_perc = percent_of(all_bytes, ro_all + rw_all); msg.info("%s", sep); msg.info(fmt_stats, "Total", all_ro_count, all_ro_bytes, all_ro_perc, all_rw_count, all_rw_bytes, all_rw_perc, all_count, all_bytes, all_perc); assert(all_ro_bytes == ro_all, "everything should have been counted"); assert(all_rw_bytes == rw_all, "everything should have been counted"); #undef fmt_stats } // Populate the shared space. class VM_PopulateDumpSharedSpace: public VM_Operation { private: GrowableArray<MemRegion> *_closed_archive_heap_regions; GrowableArray<MemRegion> *_open_archive_heap_regions; GrowableArray<ArchiveHeapOopmapInfo> *_closed_archive_heap_oopmaps; GrowableArray<ArchiveHeapOopmapInfo> *_open_archive_heap_oopmaps; void dump_java_heap_objects() NOT_CDS_JAVA_HEAP_RETURN; void dump_archive_heap_oopmaps() NOT_CDS_JAVA_HEAP_RETURN; void dump_archive_heap_oopmaps(GrowableArray<MemRegion>* regions, GrowableArray<ArchiveHeapOopmapInfo>* oopmaps); void dump_symbols(); char* dump_read_only_tables(); void print_class_stats(); void print_region_stats(); void print_bitmap_region_stats(size_t size, size_t total_size); void print_heap_region_stats(GrowableArray<MemRegion> *heap_mem, const char *name, size_t total_size); void relocate_to_default_base_address(CHeapBitMap* ptrmap); public: VMOp_Type type() const { return VMOp_PopulateDumpSharedSpace; } void doit(); // outline because gdb sucks static void write_region(FileMapInfo* mapinfo, int region_idx, DumpRegion* dump_region, bool read_only, bool allow_exec) { mapinfo->write_region(region_idx, dump_region->base(), dump_region->used(), read_only, allow_exec); } bool allow_nested_vm_operations() const { return true; } }; // class VM_PopulateDumpSharedSpace class SortedSymbolClosure: public SymbolClosure { GrowableArray<Symbol*> _symbols; virtual void do_symbol(Symbol** sym) { assert((*sym)->is_permanent(), "archived symbols must be permanent"); _symbols.append(*sym); } static int compare_symbols_by_address(Symbol** a, Symbol** b) { if (a[0] < b[0]) { return -1; } else if (a[0] == b[0]) { return 0; } else { return 1; } } public: SortedSymbolClosure() { SymbolTable::symbols_do(this); _symbols.sort(compare_symbols_by_address); } GrowableArray<Symbol*>* get_sorted_symbols() { return &_symbols; } }; // ArchiveCompactor -- // // This class is the central piece of shared archive compaction -- all metaspace data are // initially allocated outside of the shared regions. ArchiveCompactor copies the // metaspace data into their final location in the shared regions. class ArchiveCompactor : AllStatic { static const int INITIAL_TABLE_SIZE = 8087; static const int MAX_TABLE_SIZE = 1000000; static DumpAllocStats* _alloc_stats; static SortedSymbolClosure* _ssc; typedef KVHashtable<address, address, mtInternal> RelocationTable; static RelocationTable* _new_loc_table; public: static void initialize() { _alloc_stats = new(ResourceObj::C_HEAP, mtInternal)DumpAllocStats; _new_loc_table = new RelocationTable(INITIAL_TABLE_SIZE); } static DumpAllocStats* alloc_stats() { return _alloc_stats; } // Use this when you allocate space with MetaspaceShare::read_only_space_alloc() // outside of ArchiveCompactor::allocate(). These are usually for misc tables // that are allocated in the RO space. class OtherROAllocMark { char* _oldtop; public: OtherROAllocMark() { _oldtop = _ro_region.top(); } ~OtherROAllocMark() { char* newtop = _ro_region.top(); ArchiveCompactor::alloc_stats()->record_other_type(int(newtop - _oldtop), true); } }; static void allocate(MetaspaceClosure::Ref* ref, bool read_only) { address obj = ref->obj(); int bytes = ref->size() * BytesPerWord; char* p; size_t alignment = BytesPerWord; char* oldtop; char* newtop; if (read_only) { oldtop = _ro_region.top(); p = _ro_region.allocate(bytes, alignment); newtop = _ro_region.top(); } else { oldtop = _rw_region.top(); if (ref->msotype() == MetaspaceObj::ClassType) { // Save a pointer immediate in front of an InstanceKlass, so // we can do a quick lookup from InstanceKlass* -> RunTimeSharedClassInfo* // without building another hashtable. See RunTimeSharedClassInfo::get_for() // in systemDictionaryShared.cpp. Klass* klass = (Klass*)obj; if (klass->is_instance_klass()) { SystemDictionaryShared::validate_before_archiving(InstanceKlass::cast(klass)); _rw_region.allocate(sizeof(address), BytesPerWord); } } p = _rw_region.allocate(bytes, alignment); newtop = _rw_region.top(); } memcpy(p, obj, bytes); assert(_new_loc_table->lookup(obj) == NULL, "each object can be relocated at most once"); _new_loc_table->add(obj, (address)p); log_trace(cds)("Copy: " PTR_FORMAT " ==> " PTR_FORMAT " %d", p2i(obj), p2i(p), bytes); if (_new_loc_table->maybe_grow(MAX_TABLE_SIZE)) { log_info(cds, hashtables)("Expanded _new_loc_table to %d", _new_loc_table->table_size()); } _alloc_stats->record(ref->msotype(), int(newtop - oldtop), read_only); } static address get_new_loc(MetaspaceClosure::Ref* ref) { address* pp = _new_loc_table->lookup(ref->obj()); assert(pp != NULL, "must be"); return *pp; } private: // Makes a shallow copy of visited MetaspaceObj's class ShallowCopier: public UniqueMetaspaceClosure { bool _read_only; public: ShallowCopier(bool read_only) : _read_only(read_only) {} virtual bool do_unique_ref(Ref* ref, bool read_only) { if (read_only == _read_only) { allocate(ref, read_only); } return true; // recurse into ref.obj() } }; // Relocate embedded pointers within a MetaspaceObj's shallow copy class ShallowCopyEmbeddedRefRelocator: public UniqueMetaspaceClosure { public: virtual bool do_unique_ref(Ref* ref, bool read_only) { address new_loc = get_new_loc(ref); RefRelocator refer; ref->metaspace_pointers_do_at(&refer, new_loc); return true; // recurse into ref.obj() } virtual void push_special(SpecialRef type, Ref* ref, intptr_t* p) { assert(type == _method_entry_ref, "only special type allowed for now"); address obj = ref->obj(); address new_obj = get_new_loc(ref); size_t offset = pointer_delta(p, obj, sizeof(u1)); intptr_t* new_p = (intptr_t*)(new_obj + offset); assert(*p == *new_p, "must be a copy"); ArchivePtrMarker::mark_pointer((address*)new_p); } }; // Relocate a reference to point to its shallow copy class RefRelocator: public MetaspaceClosure { public: virtual bool do_ref(Ref* ref, bool read_only) { if (ref->not_null()) { ref->update(get_new_loc(ref)); ArchivePtrMarker::mark_pointer(ref->addr()); } return false; // Do not recurse. } }; #ifdef ASSERT class IsRefInArchiveChecker: public MetaspaceClosure { public: virtual bool do_ref(Ref* ref, bool read_only) { if (ref->not_null()) { char* obj = (char*)ref->obj(); assert(_ro_region.contains(obj) || _rw_region.contains(obj), "must be relocated to point to CDS archive"); } return false; // Do not recurse. } }; #endif public: static void copy_and_compact() { ResourceMark rm; SortedSymbolClosure the_ssc; // StackObj _ssc = &the_ssc; tty->print_cr("Scanning all metaspace objects ... "); { // allocate and shallow-copy RW objects, immediately following the MC region tty->print_cr("Allocating RW objects ... "); _mc_region.pack(&_rw_region); ResourceMark rm; ShallowCopier rw_copier(false); iterate_roots(&rw_copier); } { // allocate and shallow-copy of RO object, immediately following the RW region tty->print_cr("Allocating RO objects ... "); _rw_region.pack(&_ro_region); ResourceMark rm; ShallowCopier ro_copier(true); iterate_roots(&ro_copier); } { tty->print_cr("Relocating embedded pointers ... "); ResourceMark rm; ShallowCopyEmbeddedRefRelocator emb_reloc; iterate_roots(&emb_reloc); } { tty->print_cr("Relocating external roots ... "); ResourceMark rm; RefRelocator ext_reloc; iterate_roots(&ext_reloc); } #ifdef ASSERT { tty->print_cr("Verifying external roots ... "); ResourceMark rm; IsRefInArchiveChecker checker; iterate_roots(&checker); } #endif // cleanup _ssc = NULL; } // We must relocate the System::_well_known_klasses only after we have copied the // java objects in during dump_java_heap_objects(): during the object copy, we operate on // old objects which assert that their klass is the original klass. static void relocate_well_known_klasses() { { tty->print_cr("Relocating SystemDictionary::_well_known_klasses[] ... "); ResourceMark rm; RefRelocator ext_reloc; SystemDictionary::well_known_klasses_do(&ext_reloc); } // NOTE: after this point, we shouldn't have any globals that can reach the old // objects. // We cannot use any of the objects in the heap anymore (except for the // shared strings) because their headers no longer point to valid Klasses. } static void iterate_roots(MetaspaceClosure* it) { GrowableArray<Symbol*>* symbols = _ssc->get_sorted_symbols(); for (int i=0; i<symbols->length(); i++) { it->push(symbols->adr_at(i)); } if (_global_klass_objects != NULL) { // Need to fix up the pointers for (int i = 0; i < _global_klass_objects->length(); i++) { // NOTE -- this requires that the vtable is NOT yet patched, or else we are hosed. it->push(_global_klass_objects->adr_at(i)); } } FileMapInfo::metaspace_pointers_do(it); SystemDictionaryShared::dumptime_classes_do(it); Universe::metaspace_pointers_do(it); SymbolTable::metaspace_pointers_do(it); vmSymbols::metaspace_pointers_do(it); it->finish(); } static Klass* get_relocated_klass(Klass* orig_klass) { assert(DumpSharedSpaces, "dump time only"); address* pp = _new_loc_table->lookup((address)orig_klass); assert(pp != NULL, "must be"); Klass* klass = (Klass*)(*pp); assert(klass->is_klass(), "must be"); return klass; } }; DumpAllocStats* ArchiveCompactor::_alloc_stats; SortedSymbolClosure* ArchiveCompactor::_ssc; ArchiveCompactor::RelocationTable* ArchiveCompactor::_new_loc_table; void VM_PopulateDumpSharedSpace::dump_symbols() { tty->print_cr("Dumping symbol table ..."); NOT_PRODUCT(SymbolTable::verify()); SymbolTable::write_to_archive(); } char* VM_PopulateDumpSharedSpace::dump_read_only_tables() { ArchiveCompactor::OtherROAllocMark mark; tty->print("Removing java_mirror ... "); if (!HeapShared::is_heap_object_archiving_allowed()) { clear_basic_type_mirrors(); } remove_java_mirror_in_classes(); tty->print_cr("done. "); SystemDictionaryShared::write_to_archive(); size_t vtptrs_bytes = _num_cloned_vtable_kinds * sizeof(intptr_t*); _cloned_cpp_vtptrs = (intptr_t**)_ro_region.allocate(vtptrs_bytes, sizeof(intptr_t*)); // Write the other data to the output array. char* start = _ro_region.top(); WriteClosure wc(&_ro_region); MetaspaceShared::serialize(&wc); // Write the bitmaps for patching the archive heap regions dump_archive_heap_oopmaps(); return start; } void VM_PopulateDumpSharedSpace::print_class_stats() { tty->print_cr("Number of classes %d", _global_klass_objects->length()); { int num_type_array = 0, num_obj_array = 0, num_inst = 0; for (int i = 0; i < _global_klass_objects->length(); i++) { Klass* k = _global_klass_objects->at(i); if (k->is_instance_klass()) { num_inst ++; } else if (k->is_objArray_klass()) { num_obj_array ++; } else { assert(k->is_typeArray_klass(), "sanity"); num_type_array ++; } } tty->print_cr(" instance classes = %5d", num_inst); tty->print_cr(" obj array classes = %5d", num_obj_array); tty->print_cr(" type array classes = %5d", num_type_array); } } void VM_PopulateDumpSharedSpace::relocate_to_default_base_address(CHeapBitMap* ptrmap) { intx addr_delta = MetaspaceShared::final_delta(); if (addr_delta == 0) { ArchivePtrMarker::compact((address)SharedBaseAddress, (address)_md_region.top()); } else { // We are not able to reserve space at Arguments::default_SharedBaseAddress() (due to ASLR). // This means that the current content of the archive is based on a random // address. Let's relocate all the pointers, so that it can be mapped to // Arguments::default_SharedBaseAddress() without runtime relocation. // // Note: both the base and dynamic archive are written with // FileMapHeader::_shared_base_address == Arguments::default_SharedBaseAddress() // Patch all pointers that are marked by ptrmap within this region, // where we have just dumped all the metaspace data. address patch_base = (address)SharedBaseAddress; address patch_end = (address)_md_region.top(); size_t size = patch_end - patch_base; // the current value of the pointers to be patched must be within this // range (i.e., must point to valid metaspace objects) address valid_old_base = patch_base; address valid_old_end = patch_end; // after patching, the pointers must point inside this range // (the requested location of the archive, as mapped at runtime). address valid_new_base = (address)Arguments::default_SharedBaseAddress(); address valid_new_end = valid_new_base + size; log_debug(cds)("Relocating archive from [" INTPTR_FORMAT " - " INTPTR_FORMAT " ] to " "[" INTPTR_FORMAT " - " INTPTR_FORMAT " ]", p2i(patch_base), p2i(patch_end), p2i(valid_new_base), p2i(valid_new_end)); SharedDataRelocator<true> patcher((address*)patch_base, (address*)patch_end, valid_old_base, valid_old_end, valid_new_base, valid_new_end, addr_delta, ptrmap); ptrmap->iterate(&patcher); ArchivePtrMarker::compact(patcher.max_non_null_offset()); } } void VM_PopulateDumpSharedSpace::doit() { CHeapBitMap ptrmap; MetaspaceShared::initialize_ptr_marker(&ptrmap); // We should no longer allocate anything from the metaspace, so that: // // (1) Metaspace::allocate might trigger GC if we have run out of // committed metaspace, but we can't GC because we're running // in the VM thread. // (2) ArchiveCompactor needs to work with a stable set of MetaspaceObjs. Metaspace::freeze(); DEBUG_ONLY(SystemDictionaryShared::NoClassLoadingMark nclm); Thread* THREAD = VMThread::vm_thread(); FileMapInfo::check_nonempty_dir_in_shared_path_table(); NOT_PRODUCT(SystemDictionary::verify();) // The following guarantee is meant to ensure that no loader constraints // exist yet, since the constraints table is not shared. This becomes // more important now that we don't re-initialize vtables/itables for // shared classes at runtime, where constraints were previously created. guarantee(SystemDictionary::constraints()->number_of_entries() == 0, "loader constraints are not saved"); guarantee(SystemDictionary::placeholders()->number_of_entries() == 0, "placeholders are not saved"); // At this point, many classes have been loaded. // Gather systemDictionary classes in a global array and do everything to // that so we don't have to walk the SystemDictionary again. SystemDictionaryShared::check_excluded_classes(); _global_klass_objects = new GrowableArray<Klass*>(1000); CollectClassesClosure collect_classes; ClassLoaderDataGraph::loaded_classes_do(&collect_classes); print_class_stats(); // Ensure the ConstMethods won't be modified at run-time tty->print("Updating ConstMethods ... "); rewrite_nofast_bytecodes_and_calculate_fingerprints(THREAD); tty->print_cr("done. "); // Remove all references outside the metadata tty->print("Removing unshareable information ... "); remove_unshareable_in_classes(); tty->print_cr("done. "); ArchiveCompactor::initialize(); ArchiveCompactor::copy_and_compact(); dump_symbols(); // Dump supported java heap objects _closed_archive_heap_regions = NULL; _open_archive_heap_regions = NULL; dump_java_heap_objects(); ArchiveCompactor::relocate_well_known_klasses(); char* serialized_data_start = dump_read_only_tables(); _ro_region.pack(&_md_region); char* vtbl_list = _md_region.top(); MetaspaceShared::allocate_cpp_vtable_clones(); _md_region.pack(); // During patching, some virtual methods may be called, so at this point // the vtables must contain valid methods (as filled in by CppVtableCloner::allocate). MetaspaceShared::patch_cpp_vtable_pointers(); // The vtable clones contain addresses of the current process. // We don't want to write these addresses into the archive. MetaspaceShared::zero_cpp_vtable_clones_for_writing(); // relocate the data so that it can be mapped to Arguments::default_SharedBaseAddress() // without runtime relocation. relocate_to_default_base_address(&ptrmap); // Create and write the archive file that maps the shared spaces. FileMapInfo* mapinfo = new FileMapInfo(true); mapinfo->populate_header(os::vm_allocation_granularity()); mapinfo->set_serialized_data_start(serialized_data_start); mapinfo->set_misc_data_patching_start(vtbl_list); mapinfo->set_i2i_entry_code_buffers(MetaspaceShared::i2i_entry_code_buffers(), MetaspaceShared::i2i_entry_code_buffers_size()); mapinfo->open_for_write(); // NOTE: md contains the trampoline code for method entries, which are patched at run time, // so it needs to be read/write. write_region(mapinfo, MetaspaceShared::mc, &_mc_region, /*read_only=*/false,/*allow_exec=*/true); write_region(mapinfo, MetaspaceShared::rw, &_rw_region, /*read_only=*/false,/*allow_exec=*/false); write_region(mapinfo, MetaspaceShared::ro, &_ro_region, /*read_only=*/true, /*allow_exec=*/false); write_region(mapinfo, MetaspaceShared::md, &_md_region, /*read_only=*/false,/*allow_exec=*/false); mapinfo->write_bitmap_region(ArchivePtrMarker::ptrmap()); _total_closed_archive_region_size = mapinfo->write_archive_heap_regions( _closed_archive_heap_regions, _closed_archive_heap_oopmaps, MetaspaceShared::first_closed_archive_heap_region, MetaspaceShared::max_closed_archive_heap_region); _total_open_archive_region_size = mapinfo->write_archive_heap_regions( _open_archive_heap_regions, _open_archive_heap_oopmaps, MetaspaceShared::first_open_archive_heap_region, MetaspaceShared::max_open_archive_heap_region); mapinfo->set_final_requested_base((char*)Arguments::default_SharedBaseAddress()); mapinfo->set_header_crc(mapinfo->compute_header_crc()); mapinfo->write_header(); mapinfo->close(); // Restore the vtable in case we invoke any virtual methods. MetaspaceShared::clone_cpp_vtables((intptr_t*)vtbl_list); print_region_stats(); if (log_is_enabled(Info, cds)) { ArchiveCompactor::alloc_stats()->print_stats(int(_ro_region.used()), int(_rw_region.used()), int(_mc_region.used()), int(_md_region.used())); } if (PrintSystemDictionaryAtExit) { SystemDictionary::print(); } if (AllowArchivingWithJavaAgent) { warning("This archive was created with AllowArchivingWithJavaAgent. It should be used " "for testing purposes only and should not be used in a production environment"); } // There may be other pending VM operations that operate on the InstanceKlasses, // which will fail because InstanceKlasses::remove_unshareable_info() // has been called. Forget these operations and exit the VM directly. vm_direct_exit(0); } void VM_PopulateDumpSharedSpace::print_region_stats() { // Print statistics of all the regions const size_t bitmap_used = ArchivePtrMarker::ptrmap()->size_in_bytes(); const size_t bitmap_reserved = align_up(bitmap_used, Metaspace::reserve_alignment()); const size_t total_reserved = _ro_region.reserved() + _rw_region.reserved() + _mc_region.reserved() + _md_region.reserved() + bitmap_reserved + _total_closed_archive_region_size + _total_open_archive_region_size; const size_t total_bytes = _ro_region.used() + _rw_region.used() + _mc_region.used() + _md_region.used() + bitmap_used + _total_closed_archive_region_size + _total_open_archive_region_size; const double total_u_perc = percent_of(total_bytes, total_reserved); _mc_region.print(total_reserved); _rw_region.print(total_reserved); _ro_region.print(total_reserved); _md_region.print(total_reserved); print_bitmap_region_stats(bitmap_reserved, total_reserved); print_heap_region_stats(_closed_archive_heap_regions, "ca", total_reserved); print_heap_region_stats(_open_archive_heap_regions, "oa", total_reserved); tty->print_cr("total : " SIZE_FORMAT_W(9) " [100.0%% of total] out of " SIZE_FORMAT_W(9) " bytes [%5.1f%% used]", total_bytes, total_reserved, total_u_perc); } void VM_PopulateDumpSharedSpace::print_bitmap_region_stats(size_t size, size_t total_size) { tty->print_cr("bm space: " SIZE_FORMAT_W(9) " [ %4.1f%% of total] out of " SIZE_FORMAT_W(9) " bytes [100.0%% used] at " INTPTR_FORMAT, size, size/double(total_size)*100.0, size, p2i(NULL)); } void VM_PopulateDumpSharedSpace::print_heap_region_stats(GrowableArray<MemRegion> *heap_mem, const char *name, size_t total_size) { int arr_len = heap_mem == NULL ? 0 : heap_mem->length(); for (int i = 0; i < arr_len; i++) { char* start = (char*)heap_mem->at(i).start(); size_t size = heap_mem->at(i).byte_size(); char* top = start + size; tty->print_cr("%s%d space: " SIZE_FORMAT_W(9) " [ %4.1f%% of total] out of " SIZE_FORMAT_W(9) " bytes [100.0%% used] at " INTPTR_FORMAT, name, i, size, size/double(total_size)*100.0, size, p2i(start)); } } // Update a Java object to point its Klass* to the new location after // shared archive has been compacted. void MetaspaceShared::relocate_klass_ptr(oop o) { assert(DumpSharedSpaces, "sanity"); Klass* k = ArchiveCompactor::get_relocated_klass(o->klass()); o->set_klass(k); } Klass* MetaspaceShared::get_relocated_klass(Klass *k, bool is_final) { assert(DumpSharedSpaces, "sanity"); k = ArchiveCompactor::get_relocated_klass(k); if (is_final) { k = (Klass*)(address(k) + final_delta()); } return k; } class LinkSharedClassesClosure : public KlassClosure { Thread* THREAD; bool _made_progress; public: LinkSharedClassesClosure(Thread* thread) : THREAD(thread), _made_progress(false) {} void reset() { _made_progress = false; } bool made_progress() const { return _made_progress; } void do_klass(Klass* k) { if (k->is_instance_klass()) { InstanceKlass* ik = InstanceKlass::cast(k); // Link the class to cause the bytecodes to be rewritten and the // cpcache to be created. Class verification is done according // to -Xverify setting. _made_progress |= MetaspaceShared::try_link_class(ik, THREAD); guarantee(!HAS_PENDING_EXCEPTION, "exception in link_class"); ik->constants()->resolve_class_constants(THREAD); } } }; class CheckSharedClassesClosure : public KlassClosure { bool _made_progress; public: CheckSharedClassesClosure() : _made_progress(false) {} void reset() { _made_progress = false; } bool made_progress() const { return _made_progress; } void do_klass(Klass* k) { if (k->is_instance_klass() && InstanceKlass::cast(k)->check_sharing_error_state()) { _made_progress = true; } } }; void MetaspaceShared::link_and_cleanup_shared_classes(TRAPS) { // We need to iterate because verification may cause additional classes // to be loaded. LinkSharedClassesClosure link_closure(THREAD); do { link_closure.reset(); ClassLoaderDataGraph::unlocked_loaded_classes_do(&link_closure); guarantee(!HAS_PENDING_EXCEPTION, "exception in link_class"); } while (link_closure.made_progress()); if (_has_error_classes) { // Mark all classes whose super class or interfaces failed verification. CheckSharedClassesClosure check_closure; do { // Not completely sure if we need to do this iteratively. Anyway, // we should come here only if there are unverifiable classes, which // shouldn't happen in normal cases. So better safe than sorry. check_closure.reset(); ClassLoaderDataGraph::unlocked_loaded_classes_do(&check_closure); } while (check_closure.made_progress()); } } void MetaspaceShared::prepare_for_dumping() { Arguments::check_unsupported_dumping_properties(); ClassLoader::initialize_shared_path(); } // Preload classes from a list, populate the shared spaces and dump to a // file. void MetaspaceShared::preload_and_dump(TRAPS) { { TraceTime timer("Dump Shared Spaces", TRACETIME_LOG(Info, startuptime)); ResourceMark rm; char class_list_path_str[JVM_MAXPATHLEN]; // Preload classes to be shared. const char* class_list_path; if (SharedClassListFile == NULL) { // Construct the path to the class list (in jre/lib) // Walk up two directories from the location of the VM and // optionally tack on "lib" (depending on platform) os::jvm_path(class_list_path_str, sizeof(class_list_path_str)); for (int i = 0; i < 3; i++) { char *end = strrchr(class_list_path_str, *os::file_separator()); if (end != NULL) *end = '\0'; } int class_list_path_len = (int)strlen(class_list_path_str); if (class_list_path_len >= 3) { if (strcmp(class_list_path_str + class_list_path_len - 3, "lib") != 0) { if (class_list_path_len < JVM_MAXPATHLEN - 4) { jio_snprintf(class_list_path_str + class_list_path_len, sizeof(class_list_path_str) - class_list_path_len, "%slib", os::file_separator()); class_list_path_len += 4; } } } if (class_list_path_len < JVM_MAXPATHLEN - 10) { jio_snprintf(class_list_path_str + class_list_path_len, sizeof(class_list_path_str) - class_list_path_len, "%sclasslist", os::file_separator()); } class_list_path = class_list_path_str; } else { class_list_path = SharedClassListFile; } tty->print_cr("Loading classes to share ..."); _has_error_classes = false; int class_count = preload_classes(class_list_path, THREAD); if (ExtraSharedClassListFile) { class_count += preload_classes(ExtraSharedClassListFile, THREAD); } tty->print_cr("Loading classes to share: done."); log_info(cds)("Shared spaces: preloaded %d classes", class_count); if (SharedArchiveConfigFile) { tty->print_cr("Reading extra data from %s ...", SharedArchiveConfigFile); read_extra_data(SharedArchiveConfigFile, THREAD); } tty->print_cr("Reading extra data: done."); HeapShared::init_subgraph_entry_fields(THREAD); // Rewrite and link classes tty->print_cr("Rewriting and linking classes ..."); // Link any classes which got missed. This would happen if we have loaded classes that // were not explicitly specified in the classlist. E.g., if an interface implemented by class K // fails verification, all other interfaces that were not specified in the classlist but // are implemented by K are not verified. link_and_cleanup_shared_classes(CATCH); tty->print_cr("Rewriting and linking classes: done"); if (HeapShared::is_heap_object_archiving_allowed()) { // Avoid fragmentation while archiving heap objects. Universe::heap()->soft_ref_policy()->set_should_clear_all_soft_refs(true); Universe::heap()->collect(GCCause::_archive_time_gc); Universe::heap()->soft_ref_policy()->set_should_clear_all_soft_refs(false); } VM_PopulateDumpSharedSpace op; VMThread::execute(&op); } } int MetaspaceShared::preload_classes(const char* class_list_path, TRAPS) { ClassListParser parser(class_list_path); int class_count = 0; while (parser.parse_one_line()) { Klass* klass = parser.load_current_class(THREAD); if (HAS_PENDING_EXCEPTION) { if (klass == NULL && (PENDING_EXCEPTION->klass()->name() == vmSymbols::java_lang_ClassNotFoundException())) { // print a warning only when the pending exception is class not found log_warning(cds)("Preload Warning: Cannot find %s", parser.current_class_name()); } CLEAR_PENDING_EXCEPTION; } if (klass != NULL) { if (log_is_enabled(Trace, cds)) { ResourceMark rm; log_trace(cds)("Shared spaces preloaded: %s", klass->external_name()); } if (klass->is_instance_klass()) { InstanceKlass* ik = InstanceKlass::cast(klass); // Link the class to cause the bytecodes to be rewritten and the // cpcache to be created. The linking is done as soon as classes // are loaded in order that the related data structures (klass and // cpCache) are located together. try_link_class(ik, THREAD); guarantee(!HAS_PENDING_EXCEPTION, "exception in link_class"); } class_count++; } } return class_count; } // Returns true if the class's status has changed bool MetaspaceShared::try_link_class(InstanceKlass* ik, TRAPS) { assert(DumpSharedSpaces, "should only be called during dumping"); if (ik->init_state() < InstanceKlass::linked) { bool saved = BytecodeVerificationLocal; if (ik->loader_type() == 0 && ik->class_loader() == NULL) { // The verification decision is based on BytecodeVerificationRemote // for non-system classes. Since we are using the NULL classloader // to load non-system classes for customized class loaders during dumping, // we need to temporarily change BytecodeVerificationLocal to be the same as // BytecodeVerificationRemote. Note this can cause the parent system // classes also being verified. The extra overhead is acceptable during // dumping. BytecodeVerificationLocal = BytecodeVerificationRemote; } ik->link_class(THREAD); if (HAS_PENDING_EXCEPTION) { ResourceMark rm; log_warning(cds)("Preload Warning: Verification failed for %s", ik->external_name()); CLEAR_PENDING_EXCEPTION; ik->set_in_error_state(); _has_error_classes = true; } BytecodeVerificationLocal = saved; return true; } else { return false; } } #if INCLUDE_CDS_JAVA_HEAP void VM_PopulateDumpSharedSpace::dump_java_heap_objects() { // The closed and open archive heap space has maximum two regions. // See FileMapInfo::write_archive_heap_regions() for details. _closed_archive_heap_regions = new GrowableArray<MemRegion>(2); _open_archive_heap_regions = new GrowableArray<MemRegion>(2); HeapShared::archive_java_heap_objects(_closed_archive_heap_regions, _open_archive_heap_regions); ArchiveCompactor::OtherROAllocMark mark; HeapShared::write_subgraph_info_table(); } void VM_PopulateDumpSharedSpace::dump_archive_heap_oopmaps() { if (HeapShared::is_heap_object_archiving_allowed()) { _closed_archive_heap_oopmaps = new GrowableArray<ArchiveHeapOopmapInfo>(2); dump_archive_heap_oopmaps(_closed_archive_heap_regions, _closed_archive_heap_oopmaps); _open_archive_heap_oopmaps = new GrowableArray<ArchiveHeapOopmapInfo>(2); dump_archive_heap_oopmaps(_open_archive_heap_regions, _open_archive_heap_oopmaps); } } void VM_PopulateDumpSharedSpace::dump_archive_heap_oopmaps(GrowableArray<MemRegion>* regions, GrowableArray<ArchiveHeapOopmapInfo>* oopmaps) { for (int i=0; i<regions->length(); i++) { ResourceBitMap oopmap = HeapShared::calculate_oopmap(regions->at(i)); size_t size_in_bits = oopmap.size(); size_t size_in_bytes = oopmap.size_in_bytes(); uintptr_t* buffer = (uintptr_t*)_ro_region.allocate(size_in_bytes, sizeof(intptr_t)); oopmap.write_to(buffer, size_in_bytes); log_info(cds)("Oopmap = " INTPTR_FORMAT " (" SIZE_FORMAT_W(6) " bytes) for heap region " INTPTR_FORMAT " (" SIZE_FORMAT_W(8) " bytes)", p2i(buffer), size_in_bytes, p2i(regions->at(i).start()), regions->at(i).byte_size()); ArchiveHeapOopmapInfo info; info._oopmap = (address)buffer; info._oopmap_size_in_bits = size_in_bits; oopmaps->append(info); } } #endif // INCLUDE_CDS_JAVA_HEAP void ReadClosure::do_ptr(void** p) { assert(*p == NULL, "initializing previous initialized pointer."); intptr_t obj = nextPtr(); assert((intptr_t)obj >= 0 || (intptr_t)obj < -100, "hit tag while initializing ptrs."); *p = (void*)obj; } void ReadClosure::do_u4(u4* p) { intptr_t obj = nextPtr(); *p = (u4)(uintx(obj)); } void ReadClosure::do_bool(bool* p) { intptr_t obj = nextPtr(); *p = (bool)(uintx(obj)); } void ReadClosure::do_tag(int tag) { int old_tag; old_tag = (int)(intptr_t)nextPtr(); // do_int(&old_tag); assert(tag == old_tag, "old tag doesn't match"); FileMapInfo::assert_mark(tag == old_tag); } void ReadClosure::do_oop(oop *p) { narrowOop o = (narrowOop)nextPtr(); if (o == 0 || !HeapShared::open_archive_heap_region_mapped()) { p = NULL; } else { assert(HeapShared::is_heap_object_archiving_allowed(), "Archived heap object is not allowed"); assert(HeapShared::open_archive_heap_region_mapped(), "Open archive heap region is not mapped"); *p = HeapShared::decode_from_archive(o); } } void ReadClosure::do_region(u_char* start, size_t size) { assert((intptr_t)start % sizeof(intptr_t) == 0, "bad alignment"); assert(size % sizeof(intptr_t) == 0, "bad size"); do_tag((int)size); while (size > 0) { *(intptr_t*)start = nextPtr(); start += sizeof(intptr_t); size -= sizeof(intptr_t); } } void MetaspaceShared::set_shared_metaspace_range(void* base, void *static_top, void* top) { assert(base <= static_top && static_top <= top, "must be"); _shared_metaspace_static_top = static_top; MetaspaceObj::set_shared_metaspace_range(base, top); } // Return true if given address is in the misc data region bool MetaspaceShared::is_in_shared_region(const void* p, int idx) { return UseSharedSpaces && FileMapInfo::current_info()->is_in_shared_region(p, idx); } bool MetaspaceShared::is_in_trampoline_frame(address addr) { if (UseSharedSpaces && is_in_shared_region(addr, MetaspaceShared::mc)) { return true; } return false; } bool MetaspaceShared::is_shared_dynamic(void* p) { if ((p < MetaspaceObj::shared_metaspace_top()) && (p >= _shared_metaspace_static_top)) { return true; } else { return false; } } void MetaspaceShared::initialize_runtime_shared_and_meta_spaces() { assert(UseSharedSpaces, "Must be called when UseSharedSpaces is enabled"); MapArchiveResult result = MAP_ARCHIVE_OTHER_FAILURE; FileMapInfo* static_mapinfo = open_static_archive(); FileMapInfo* dynamic_mapinfo = NULL; if (static_mapinfo != NULL) { dynamic_mapinfo = open_dynamic_archive(); // First try to map at the requested address result = map_archives(static_mapinfo, dynamic_mapinfo, true); if (result == MAP_ARCHIVE_MMAP_FAILURE) { // Mapping has failed (probably due to ASLR). Let's map at an address chosen // by the OS. log_info(cds)("Try to map archive(s) at an alternative address"); result = map_archives(static_mapinfo, dynamic_mapinfo, false); } } if (result == MAP_ARCHIVE_SUCCESS) { bool dynamic_mapped = (dynamic_mapinfo != NULL && dynamic_mapinfo->is_mapped()); char* cds_base = static_mapinfo->mapped_base(); char* cds_end = dynamic_mapped ? dynamic_mapinfo->mapped_end() : static_mapinfo->mapped_end(); set_shared_metaspace_range(cds_base, static_mapinfo->mapped_end(), cds_end); _relocation_delta = static_mapinfo->relocation_delta(); if (dynamic_mapped) { FileMapInfo::set_shared_path_table(dynamic_mapinfo); } else { FileMapInfo::set_shared_path_table(static_mapinfo); } } else { set_shared_metaspace_range(NULL, NULL, NULL); UseSharedSpaces = false; FileMapInfo::fail_continue("Unable to map shared spaces"); if (PrintSharedArchiveAndExit) { vm_exit_during_initialization("Unable to use shared archive."); } } if (static_mapinfo != NULL && !static_mapinfo->is_mapped()) { delete static_mapinfo; } if (dynamic_mapinfo != NULL && !dynamic_mapinfo->is_mapped()) { delete dynamic_mapinfo; } } FileMapInfo* MetaspaceShared::open_static_archive() { FileMapInfo* mapinfo = new FileMapInfo(true); if (!mapinfo->initialize()) { delete(mapinfo); return NULL; } return mapinfo; } FileMapInfo* MetaspaceShared::open_dynamic_archive() { if (DynamicDumpSharedSpaces) { return NULL; } if (Arguments::GetSharedDynamicArchivePath() == NULL) { return NULL; } FileMapInfo* mapinfo = new FileMapInfo(false); if (!mapinfo->initialize()) { delete(mapinfo); return NULL; } return mapinfo; } // use_requested_addr: // true = map at FileMapHeader::_requested_base_address // false = map at an alternative address picked by OS. MapArchiveResult MetaspaceShared::map_archives(FileMapInfo* static_mapinfo, FileMapInfo* dynamic_mapinfo, bool use_requested_addr) { PRODUCT_ONLY(if (ArchiveRelocationMode == 1 && use_requested_addr) { // For product build only -- this is for benchmarking the cost of doing relocation. // For debug builds, the check is done in FileMapInfo::map_regions for better test coverage. log_info(cds)("ArchiveRelocationMode == 1: always map archive(s) at an alternative address"); return MAP_ARCHIVE_MMAP_FAILURE; }); if (ArchiveRelocationMode == 2 && !use_requested_addr) { log_info(cds)("ArchiveRelocationMode == 2: never map archive(s) at an alternative address"); return MAP_ARCHIVE_MMAP_FAILURE; }; if (dynamic_mapinfo != NULL) { // Ensure that the OS won't be able to allocate new memory spaces between the two // archives, or else it would mess up the simple comparision in MetaspaceObj::is_shared(). assert(static_mapinfo->mapping_end_offset() == dynamic_mapinfo->mapping_base_offset(), "no gap"); } ReservedSpace main_rs, archive_space_rs, class_space_rs; MapArchiveResult result = MAP_ARCHIVE_OTHER_FAILURE; char* mapped_base_address = reserve_address_space_for_archives(static_mapinfo, dynamic_mapinfo, use_requested_addr, main_rs, archive_space_rs, class_space_rs); if (mapped_base_address == NULL) { result = MAP_ARCHIVE_MMAP_FAILURE; } else { log_debug(cds)("Reserved archive_space_rs [" INTPTR_FORMAT " - " INTPTR_FORMAT "] (" SIZE_FORMAT ") bytes", p2i(archive_space_rs.base()), p2i(archive_space_rs.end()), archive_space_rs.size()); log_debug(cds)("Reserved class_space_rs [" INTPTR_FORMAT " - " INTPTR_FORMAT "] (" SIZE_FORMAT ") bytes", p2i(class_space_rs.base()), p2i(class_space_rs.end()), class_space_rs.size()); MapArchiveResult static_result = map_archive(static_mapinfo, mapped_base_address, archive_space_rs); MapArchiveResult dynamic_result = (static_result == MAP_ARCHIVE_SUCCESS) ? map_archive(dynamic_mapinfo, mapped_base_address, archive_space_rs) : MAP_ARCHIVE_OTHER_FAILURE; DEBUG_ONLY(if (ArchiveRelocationMode == 1 && use_requested_addr) { // This is for simulating mmap failures at the requested address. In debug builds, we do it // here (after all archives have possibly been mapped), so we can thoroughly test the code for // failure handling (releasing all allocated resource, etc). log_info(cds)("ArchiveRelocationMode == 1: always map archive(s) at an alternative address"); if (static_result == MAP_ARCHIVE_SUCCESS) { static_result = MAP_ARCHIVE_MMAP_FAILURE; } if (dynamic_result == MAP_ARCHIVE_SUCCESS) { dynamic_result = MAP_ARCHIVE_MMAP_FAILURE; } }); if (static_result == MAP_ARCHIVE_SUCCESS) { if (dynamic_result == MAP_ARCHIVE_SUCCESS) { result = MAP_ARCHIVE_SUCCESS; } else if (dynamic_result == MAP_ARCHIVE_OTHER_FAILURE) { assert(dynamic_mapinfo != NULL && !dynamic_mapinfo->is_mapped(), "must have failed"); // No need to retry mapping the dynamic archive again, as it will never succeed // (bad file, etc) -- just keep the base archive. log_warning(cds, dynamic)("Unable to use shared archive. The top archive failed to load: %s", dynamic_mapinfo->full_path()); result = MAP_ARCHIVE_SUCCESS; // TODO, we can give the unused space for the dynamic archive to class_space_rs, but there's no // easy API to do that right now. } else { result = MAP_ARCHIVE_MMAP_FAILURE; } } else if (static_result == MAP_ARCHIVE_OTHER_FAILURE) { result = MAP_ARCHIVE_OTHER_FAILURE; } else { result = MAP_ARCHIVE_MMAP_FAILURE; } } if (result == MAP_ARCHIVE_SUCCESS) { if (!main_rs.is_reserved() && class_space_rs.is_reserved()) { MemTracker::record_virtual_memory_type((address)class_space_rs.base(), mtClass); } SharedBaseAddress = (size_t)mapped_base_address; LP64_ONLY({ if (Metaspace::using_class_space()) { assert(class_space_rs.is_reserved(), "must be"); char* cds_base = static_mapinfo->mapped_base(); Metaspace::allocate_metaspace_compressed_klass_ptrs(class_space_rs, NULL, (address)cds_base); // map_heap_regions() compares the current narrow oop and klass encodings // with the archived ones, so it must be done after all encodings are determined. static_mapinfo->map_heap_regions(); } CompressedKlassPointers::set_range(CompressedClassSpaceSize); }); } else { unmap_archive(static_mapinfo); unmap_archive(dynamic_mapinfo); release_reserved_spaces(main_rs, archive_space_rs, class_space_rs); } return result; } char* MetaspaceShared::reserve_address_space_for_archives(FileMapInfo* static_mapinfo, FileMapInfo* dynamic_mapinfo, bool use_requested_addr, ReservedSpace& main_rs, ReservedSpace& archive_space_rs, ReservedSpace& class_space_rs) { const bool use_klass_space = NOT_LP64(false) LP64_ONLY(Metaspace::using_class_space()); const size_t class_space_size = NOT_LP64(0) LP64_ONLY(Metaspace::compressed_class_space_size()); if (use_klass_space) { assert(class_space_size > 0, "CompressedClassSpaceSize must have been validated"); } if (use_requested_addr && !is_aligned(static_mapinfo->requested_base_address(), reserved_space_alignment())) { return NULL; } // Size and requested location of the archive_space_rs (for both static and dynamic archives) size_t base_offset = static_mapinfo->mapping_base_offset(); size_t end_offset = (dynamic_mapinfo == NULL) ? static_mapinfo->mapping_end_offset() : dynamic_mapinfo->mapping_end_offset(); assert(base_offset == 0, "must be"); assert(is_aligned(end_offset, os::vm_allocation_granularity()), "must be"); assert(is_aligned(base_offset, os::vm_allocation_granularity()), "must be"); // In case reserved_space_alignment() != os::vm_allocation_granularity() assert((size_t)os::vm_allocation_granularity() <= reserved_space_alignment(), "must be"); end_offset = align_up(end_offset, reserved_space_alignment()); size_t archive_space_size = end_offset - base_offset; // Special handling for Windows because it cannot mmap into a reserved space: // use_requested_addr: We just map each region individually, and give up if any one of them fails. // !use_requested_addr: We reserve the space first, and then os::read in all the regions (instead of mmap). // We're going to patch all the pointers anyway so there's no benefit for mmap. if (use_requested_addr) { char* archive_space_base = static_mapinfo->requested_base_address() + base_offset; char* archive_space_end = archive_space_base + archive_space_size; if (!MetaspaceShared::use_windows_memory_mapping()) { archive_space_rs = reserve_shared_space(archive_space_size, archive_space_base); if (!archive_space_rs.is_reserved()) { return NULL; } } if (use_klass_space) { // Make sure we can map the klass space immediately following the archive_space space char* class_space_base = archive_space_end; class_space_rs = reserve_shared_space(class_space_size, class_space_base); if (!class_space_rs.is_reserved()) { return NULL; } } return static_mapinfo->requested_base_address(); } else { if (use_klass_space) { main_rs = reserve_shared_space(archive_space_size + class_space_size); if (main_rs.is_reserved()) { archive_space_rs = main_rs.first_part(archive_space_size, reserved_space_alignment(), /*split=*/true); class_space_rs = main_rs.last_part(archive_space_size); } } else { main_rs = reserve_shared_space(archive_space_size); archive_space_rs = main_rs; } if (archive_space_rs.is_reserved()) { return archive_space_rs.base(); } else { return NULL; } } } void MetaspaceShared::release_reserved_spaces(ReservedSpace& main_rs, ReservedSpace& archive_space_rs, ReservedSpace& class_space_rs) { if (main_rs.is_reserved()) { assert(main_rs.contains(archive_space_rs.base()), "must be"); assert(main_rs.contains(class_space_rs.base()), "must be"); log_debug(cds)("Released shared space (archive+classes) " INTPTR_FORMAT, p2i(main_rs.base())); main_rs.release(); } else { if (archive_space_rs.is_reserved()) { log_debug(cds)("Released shared space (archive) " INTPTR_FORMAT, p2i(archive_space_rs.base())); archive_space_rs.release(); } if (class_space_rs.is_reserved()) { log_debug(cds)("Released shared space (classes) " INTPTR_FORMAT, p2i(class_space_rs.base())); class_space_rs.release(); } } } static int static_regions[] = {MetaspaceShared::mc, MetaspaceShared::rw, MetaspaceShared::ro, MetaspaceShared::md}; static int dynamic_regions[] = {MetaspaceShared::rw, MetaspaceShared::ro, MetaspaceShared::mc}; static int static_regions_count = 4; static int dynamic_regions_count = 3; MapArchiveResult MetaspaceShared::map_archive(FileMapInfo* mapinfo, char* mapped_base_address, ReservedSpace rs) { assert(UseSharedSpaces, "must be runtime"); if (mapinfo == NULL) { return MAP_ARCHIVE_SUCCESS; // The dynamic archive has not been specified. No error has happened -- trivially succeeded. } mapinfo->set_is_mapped(false); if (mapinfo->alignment() != (size_t)os::vm_allocation_granularity()) { log_error(cds)("Unable to map CDS archive -- os::vm_allocation_granularity() expected: " SIZE_FORMAT " actual: %d", mapinfo->alignment(), os::vm_allocation_granularity()); return MAP_ARCHIVE_OTHER_FAILURE; } MapArchiveResult result = mapinfo->is_static() ? mapinfo->map_regions(static_regions, static_regions_count, mapped_base_address, rs) : mapinfo->map_regions(dynamic_regions, dynamic_regions_count, mapped_base_address, rs); if (result != MAP_ARCHIVE_SUCCESS) { unmap_archive(mapinfo); return result; } if (mapinfo->is_static()) { if (!mapinfo->validate_shared_path_table()) { unmap_archive(mapinfo); return MAP_ARCHIVE_OTHER_FAILURE; } } else { if (!DynamicArchive::validate(mapinfo)) { unmap_archive(mapinfo); return MAP_ARCHIVE_OTHER_FAILURE; } } mapinfo->set_is_mapped(true); return MAP_ARCHIVE_SUCCESS; } void MetaspaceShared::unmap_archive(FileMapInfo* mapinfo) { assert(UseSharedSpaces, "must be runtime"); if (mapinfo != NULL) { if (mapinfo->is_static()) { mapinfo->unmap_regions(static_regions, static_regions_count); } else { mapinfo->unmap_regions(dynamic_regions, dynamic_regions_count); } mapinfo->set_is_mapped(false); } } // Read the miscellaneous data from the shared file, and // serialize it out to its various destinations. void MetaspaceShared::initialize_shared_spaces() { FileMapInfo *static_mapinfo = FileMapInfo::current_info(); _i2i_entry_code_buffers = static_mapinfo->i2i_entry_code_buffers(); _i2i_entry_code_buffers_size = static_mapinfo->i2i_entry_code_buffers_size(); char* buffer = static_mapinfo->misc_data_patching_start(); clone_cpp_vtables((intptr_t*)buffer); // Verify various attributes of the archive, plus initialize the // shared string/symbol tables buffer = static_mapinfo->serialized_data_start(); intptr_t* array = (intptr_t*)buffer; ReadClosure rc(&array); serialize(&rc); // Initialize the run-time symbol table. SymbolTable::create_table(); static_mapinfo->patch_archived_heap_embedded_pointers(); // Close the mapinfo file static_mapinfo->close(); FileMapInfo *dynamic_mapinfo = FileMapInfo::dynamic_info(); if (dynamic_mapinfo != NULL) { intptr_t* buffer = (intptr_t*)dynamic_mapinfo->serialized_data_start(); ReadClosure rc(&buffer); SymbolTable::serialize_shared_table_header(&rc, false); SystemDictionaryShared::serialize_dictionary_headers(&rc, false); dynamic_mapinfo->close(); } if (PrintSharedArchiveAndExit) { if (PrintSharedDictionary) { tty->print_cr("\nShared classes:\n"); SystemDictionaryShared::print_on(tty); } if (FileMapInfo::current_info() == NULL || _archive_loading_failed) { tty->print_cr("archive is invalid"); vm_exit(1); } else { tty->print_cr("archive is valid"); vm_exit(0); } } } // JVM/TI RedefineClasses() support: bool MetaspaceShared::remap_shared_readonly_as_readwrite() { assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint"); if (UseSharedSpaces) { // remap the shared readonly space to shared readwrite, private FileMapInfo* mapinfo = FileMapInfo::current_info(); if (!mapinfo->remap_shared_readonly_as_readwrite()) { return false; } if (FileMapInfo::dynamic_info() != NULL) { mapinfo = FileMapInfo::dynamic_info(); if (!mapinfo->remap_shared_readonly_as_readwrite()) { return false; } } _remapped_readwrite = true; } return true; } void MetaspaceShared::report_out_of_space(const char* name, size_t needed_bytes) { // This is highly unlikely to happen on 64-bits because we have reserved a 4GB space. // On 32-bit we reserve only 256MB so you could run out of space with 100,000 classes // or so. _mc_region.print_out_of_space_msg(name, needed_bytes); _rw_region.print_out_of_space_msg(name, needed_bytes); _ro_region.print_out_of_space_msg(name, needed_bytes); _md_region.print_out_of_space_msg(name, needed_bytes); vm_exit_during_initialization(err_msg("Unable to allocate from '%s' region", name), "Please reduce the number of shared classes."); } // This is used to relocate the pointers so that the archive can be mapped at // Arguments::default_SharedBaseAddress() without runtime relocation. intx MetaspaceShared::final_delta() { return intx(Arguments::default_SharedBaseAddress()) // We want the archive to be mapped to here at runtime - intx(SharedBaseAddress); // .. but the archive is mapped at here at dump time }