/* * Copyright (c) 2019, 2023, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package org.openjdk.bench.vm.compiler; import org.openjdk.jmh.annotations.*; import org.openjdk.jmh.infra.*; import java.util.concurrent.TimeUnit; import java.util.Random; @BenchmarkMode(Mode.AverageTime) @OutputTimeUnit(TimeUnit.NANOSECONDS) @State(Scope.Thread) @Warmup(iterations = 4, time = 2, timeUnit = TimeUnit.SECONDS) @Measurement(iterations = 4, time = 2, timeUnit = TimeUnit.SECONDS) @Fork(value = 3) public class FpMinMaxIntrinsics { private static final int COUNT = 1000; private double[] doubles = new double[COUNT]; private float[] floats = new float[COUNT]; private int c1, c2, s1, s2; private Random r = new Random(); private static int stride = 1; private static float acc; @Setup public void init() { c1 = s1 = step(); c2 = COUNT - (s2 = step()); for (int i=0; i<COUNT; i++) { floats[i] = r.nextFloat(); doubles[i] = r.nextDouble(); } } private int step() { return (r.nextInt() & 0xf) + 1; } @Benchmark public void dMax(Blackhole bh) { for (int i=0; i<COUNT; i++) bh.consume(dMaxBench()); } @Benchmark public void dMin(Blackhole bh) { for (int i=0; i<COUNT; i++) bh.consume(dMinBench()); } @Benchmark public void fMax(Blackhole bh) { for (int i=0; i<COUNT; i++) bh.consume(fMaxBench()); } @Benchmark public void fMin(Blackhole bh) { for (int i=0; i<COUNT; i++) bh.consume(fMinBench()); } private double dMaxBench() { inc(); return Math.max(doubles[c1], doubles[c2]); } private double dMinBench() { inc(); return Math.min(doubles[c1], doubles[c2]); } private float fMaxBench() { inc(); return Math.max(floats[c1], floats[c2]); } private float fMinBench() { inc(); return Math.min(floats[c1], floats[c2]); } private void inc() { c1 = c1 + s1 < COUNT ? c1 + s1 : (s1 = step()); c2 = c2 - s2 > 0 ? c2 - s2 : COUNT - (s2 = step()); } @Benchmark public float fMinReduce() { float result = Float.MAX_VALUE; for (int i=0; i<COUNT; i++) result = Math.min(result, floats[i]); return result; } @Benchmark public double dMinReduce() { double result = Double.MAX_VALUE; for (int i=0; i<COUNT; i++) result = Math.min(result, doubles[i]); return result; } @Benchmark public float fMinReducePartiallyUnrolled() { float result = Float.MAX_VALUE; for (int i = 0; i < COUNT / 2; i++) { result = Math.min(result, floats[2*i]); result = Math.min(result, floats[2*i + 1]); } return result; } @Benchmark public float fMinReduceNonCounted() { float result = Float.MAX_VALUE; for (int i = 0; i < COUNT; i += stride) result = Math.min(result, floats[i]); return result; } @Benchmark public float fMinReduceGlobalAccumulator() { acc = Float.MAX_VALUE; for (int i = 0; i < COUNT; i += stride) acc = Math.min(acc, floats[i]); return acc; } @Benchmark public float fMinReduceInOuterLoop() { float result = Float.MAX_VALUE; int count = 0; for (int i = 0; i < COUNT; i++) { result = Math.min(result, floats[i]); for (int j = 0; j < 10; j += stride) { count++; } } return result + count; } }