/*
* Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package nsk.share.gc;
import java.io.*;
import java.util.*;
import nsk.share.test.ExecutionController;
/**
* NonbranchyTree defines a tree structure. Each node of the tree
* always has one son. A node may have the second son with probability
* branchiness.
*/
public class NonbranchyTree {
/** Minimal size of each node (in bytes) */
public final static int MIN_NODE_SIZE = 20;
private Node root;
private Random random;
private int numberOfNodes;
private float branchiness;
private int size;
private ExecutionController controller;
/**
* Creates a new tree with number of nodes not more than
* numberOfNodes. The implementation uses recursion to build the
* tree, so if StackOverflowError or OutOfMemoryError is
* thrown, the recursion is stopped and the method finishes building of the
* tree. Each node consists of byte[] of length size.
*
* @param numberOfNodes maximum number of nodes for the tree.
* @param branchiness probability for each node to have the second son.
* @param size number of bytes to store in a node.
*
* @throws IllegalArgumentException if numberOfNodes is
* less than 1; or branchiness is greater than 1, or less
* or equal than 0; or size is less than 1.
*
*/
public NonbranchyTree(int numberOfNodes, float branchiness, int size) {
this(numberOfNodes, branchiness, size, new Random(System.currentTimeMillis()), null);
initTree();
}
public NonbranchyTree(int numberOfNodes, float branchiness, int size, ExecutionController controller) {
this(numberOfNodes, branchiness, size, new Random(System.currentTimeMillis()), controller);
initTree();
}
private NonbranchyTree(int numberOfNodes, float branchiness, int size, Random random, ExecutionController controller) {
this.numberOfNodes = numberOfNodes;
this.branchiness = branchiness;
this.size = size;
this.random = random;
this.controller = controller;
}
private void initTree() {
if (numberOfNodes < 1) {
throw new IllegalArgumentException("Illegal number of nodes: "
+ numberOfNodes + ", must be at "
+ "least 1.");
}
if ( (branchiness >= 1) || (branchiness <= 0) ) {
throw new IllegalArgumentException("Illegal value of branchiness: "
+ numberOfNodes + ", must be at "
+ "greater than 0 and less than "
+ " 1.");
}
if (size < 1) {
throw new IllegalArgumentException("Illegal size of nodes: "
+ size + ", must be at least 1.");
}
root = createTree(numberOfNodes, size);
}
// Create a new tree with specified number of nodes and size of each node
private Node createTree(int numberOfNodes, int size) {
// Make sure we respect the controller and stop test after
// given time.
if (controller != null && !controller.continueExecution()) {
return null;
}
Node node = new Node(size);
try {
if (numberOfNodes == 0) {
// No more nodes need to be built
return null;
} else if (numberOfNodes == 1) {
return node;
} else if (numberOfNodes == 2) {
node.left = createTree(1, size);
return node;
} else {
// Create a few nodes
if (makeRightNode()) {
// The node will have two sons
int leftNodes = 1 + random.nextInt(numberOfNodes - 2);
int rightNodes = numberOfNodes - 1 - leftNodes;
node.left = createTree(leftNodes, size);
node.right = createTree(rightNodes, size);
} else {
// The node will have just one son
Node leftTree = createTree(numberOfNodes - 1, size);
node.left = leftTree;
}
return node;
} // if
} catch(StackOverflowError e) {
// No more memory for such long tree
return node;
} catch(OutOfMemoryError e) {
// No more memory for such long tree
return node;
} // try
} // createTree()
// Define the "branchiness" of the tree
private boolean makeRightNode() {
return (random.nextFloat() < branchiness);
}
/**
* Bends the tree. A son of a leaf of the tree is set to the root node.
*
*/
public void bend() {
bend(root);
}
// Bend the tree: make a reference from a leat of the tree to the specified
// node
private void bend(Node markedNode) {
Node node = root;
while ( (node.left != null) || (node.right != null) )
node = node.left;
node.right = markedNode;
}
/**
* Prints the whole tree from the root to the defined PrintStream.
*
* @param out PrintStream to print the tree in
*
*/
public void print(PrintStream out) {
print(out, root);
}
// Print the sub-tree from the specified node and down
private void print(PrintStream out, Node node) {
node.print(out);
if (node.left != null)
print(out, node.left);
if (node.right != null)
print(out, node.right);
}
}
// The class defines a node of a tree
class Node {
Node left;
Node right;
byte[] core;
Node(int size) {
left = null;
right = null;
core = new byte[size];
// Initizlize the core array
for (int i = 0; i < size; i++)
core[i] = (byte) i;
}
// Print the node info
void print(PrintStream out) {
out.println("node = " + this + " (" + left + ", " + right + ")");
}
}